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ABSTRACT. This paper discusses the oscillatory conditions of second order neu
tral differential equations with continuous distributed deviating arguments. 

1. Introduction 

The study of the oscillatory behavior of the solutions of neutral delay dif
ferential equations, besides its theoretical interest, is important in application. 
Examples of their applications can be found in [1]. A few results on the oscilla
tory behavior of the solutions of second order neutral delay differential equations 
are recently obtained in [2], [3], [4], [5], [6], [7], [8] and their references. However, 
it is noticeable that most of the cases are with discrete delay. The aim of this 
paper is to extend some results in [2] - [6], [8] to the following nonlinear equation 
with continuous deviating arguments 

b 

a(ť) 
m -,/ -

Уrø + EcДťMтДí)) +//(*,Є,Уfo(í,01) <MO = 0, * > í 0 , ( l ) 
*=1 J J í 

and to establish some new oscillatory criteria. 
It is easy to see that (1) includes the following equation 

a(ť) vЏ) + Y,Ф)vШ) 
i=l 

+ £4(*'»M*)-)=°> *^'o> (2) 
j = i 

then the obtained oscillatory criteria improve and generalize some known results. 
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Suppose that the following conditions hold. 
( H J a(t),Ci(t) € C([* 0 ,+oo) ,K + ) ; f{t,Z,y) € C([ t 0 ,+oo) x [a,b) x R , R ) ; 

R+ = [0, +00); 

(H2) Ti(t) € C( [ t 0 ,+oo) ,R) ; Tt(t) < t, and 
lim T.(t) = +oo, * e J ro = { l , 2 , . . . , m } ; 

t—»-foc 

(H3) g(t, 0 e C{[t0, +00) x [a, 6], R) ; g(t, £) < t for £ e [a, 6], 
g(£,£) is nondecreasing with respect to £ and £, respectively; 
and lim min \q(t,£)\ = +00; 

(H4) a(£) £ ([a, b],R) is nondecreasing, integral of equation (1) is a Stieltjes 
integral. 

Let u e C([£_1, +00); R) , where 

t_x = min{ min{ inf r{(t)}, min #{(£,£)}, *o} » 
^ iGIm ^ t>to J £Ela,o] ** 

be a given function and let y0 be a given constant. Using the method of steps, 
equation (1) has a unique solution y(t) (E C([t_x, +00); R) in the sense that 

771 r 771 -j / 

both y(t) + J_ Cittfyfcit)) and a(t) y(t) + __ c»(*)2/(r»(*)) a r e continuously 
z = l L i=l J 

differentiable for t>t0, y(t) satisfies equation (1) and 
771 -1 I 

y(s)=u(s) for s e[t^t0], yW + ^c^y^t))] = y0 . 
i = l -I t=t0 

For further questions concerning existence and uniqueness of solutions of neutral 
delay differential equations, see [1]. 

DEFINITION l . A function y(t) is called eventually positive (negative) if there 
exists a number t1 > t0 such that y(t) > 0 ( < 0) holds for all t > tx. 

DEFINITION 2. A solution y(t) of equation (1) is said oscillatory if it is not 
eventually zero solution and it has an unbounded set of zeros. Otherwise, it is 
called nonoscillatory. 

For the sake of convenience, we assume that every inequality about functional 
values is true for all sufficiently large t. 

2. Main results 

THEOREM 1. Suppose that the following conditions hold 
+ 0 0 

-co, (3) 
Í 1 

> c-(t) < 1 and / —-— ds = -f-c 

£í J <s) 
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there exist function Q(t,£) G C([£0 ,+oo) x [a,6],R+) and F{y) G C(K,R) such 
that 

f{t, & y) sgn y>Q{t, £)F{y) sgn y (4) 

and 
-F{-y) > F{y) > Ay > 0, (2/ > 0 , A > 0 is a constant). (5) 

If there exists a -^g{t,a) and function tp G C'([t0, +oo), R + ) sitcb, £b,a£ 

+ oo r b 7ri 2 

/Lw/<,(..e){i-i:« iw.,o]}^o--^^ 
to L a l~l 

then all solutions of equation (1) are oscillatory. 

ds = +oo , 

(6) 

P r o o f . Suppose to the contrary that there exists a nonoscillatory solution 
y{t) of equation (1). We may assume that y{t) is an eventually positive solution. 
Let 

m 

z(t) = y(t) + J2^(t)y^M- (7) 
2 = 1 

Then equation (1) can be written as 

b 

[a(t)z'(t)]' + jf(t^,y[g(t,0]) d£ = 0. (8) 
a 

It follows from (7) that 

m 

v[g(t,0] = z[g(t,0] - J2cMt^)]v(ri[g(^0]) • 
i = l 

It follows from (Hx) and (H2) that 

z{t) > y{t) and z{t) > 0 . (9) 

Moreover, we have 

[a(t)z'(t)]'<0, (10) 
thus a{t)z'{t) is decreasing with respect to t, and we can prove that z'{t) > 0. In 
fact, let there exist a tx > t0 such that z'{t) < 0, t > tx. Integrating both sides 
of (10) from [t1,t], we have a{t)z'{t) < a( t 1 )z / ( t 1 ) , furthermore, for t2 > tx, we 
have 

z(ť)<z(t2) + a(tx)z(tx) j - ^ à s . 

t2 
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Let t —•> +00; using (3), it follows that lim z(t) = - co , which is in contradic

tion with z(t) > 0. 
From (9), we have F(y\g(t,£)]) > \y[g(t,£)] > 0, thus 

b 

0> [a(t)z'(t)]' + \JQ(t,t){z[g(t,0] - f ^ M M r J s t U ) ] ) } MO • 

It follows from (Hj), (9) and (11) that 
( П ) 

b 

[a(t)z'(t)]' + \ f Q&oU-Jt,0^^)]}^,®] Mt)<0- (I2) 

Noticing that g(t, 0 is nondecreasing with respect to £, we have g(t, a) < g(t, 0 
for f 6 [a, b], thus 

6 m 

[a(t)*'(*)]' + \z[g(t,a)]JQ(t,o{l - £ > , [o(i, £)]} da(0 < 0. (13) 

Set 

w(í) = ¥>(*) 
a(t)z'(t) 

(14) 
*[_/(*, a)] ' 

then w(t) > 0. From the condition of Theorem 1, we have z'[g(t, a)] = 
^•^g(^,a) . Since a(t)z'(t) is decreasing, and noticing that g(t, f) < £ for 

f G [a, b], we have 

Thus 

a(t)z'(t)<a[g(t,a)]z'[g(t,a)]. 

= y/(t)[a(t)zҶQ] ^ ( f ) [<*(*)*'(*)]' _ <p(t)[a(t)z'(t)]z'[g(t,a)]g'(t,a) 
•[g(t,a)] • [g(t,a)] [g(t,a)] 

^<p(t)[a(t)z'(t)]' a[g(t,Q]^(t) 
~ z[g(t,a)] 4<p(t)g'(t,a) 

n 2 
l<p(t)g'(t,a) a(t)z'(t) <p'(t) a[g(t,a)] 

V a[s(í,a)] z[fl(ť,a)] 2 ]] <p(t)g'(t,a) 

< , ( t ) Í ^ W , q[g(l,q)]y'2W 
- ^ U z[g(t,a)] Mt)9'(t,a) ' 
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a[g(t,a)]<p'2(t) 
4cp(t)g'(t,a) 

It follows from (13) that 

6 

w'[ , — 

a 

Integrating both sides of the above last inequality from tx to t (t > tx), we have 

t r b 

Hj('x 

Ąt) < - L(í) f Q(t, 0 | l - f; c. [g(t, 0]} dff(0 -

(í) <w(t,)-f Xф)fQ(S,0^l-f^cť[</(*,Ol} da(Ç) 
ťi - a i = 1 

a[g(д,q)]y / 2(ď) 

4y(5)5'(s.«) 
d 5 . (15) 

Let t -> +oo, then by (6) and (15), we have w(t) —> - c o , which leads to a 
contradiction with w(t) > 0. 

Let y(t) be an eventually negative solution of equation (1). Let x(t) = —y(t), 
then equation (1) will change to the following equation 

,/ b 

a(t) xW + ^CiWxfcit)) 
І=l 

+ fr(t,Ç,x\g(t,t)])ăÇ = 0, t>t0. 

(1*) 
where r(t,S,x[g(t,t)]) = -f(t,£,-x[g(ttt)]). 

Conditions (4) and (5) imply that 

r(t,Z,x\g(t,£)]) = -f(t,£,-x\g(t,Q]) 
> Q(t,Q{-F(-x\g(t,t)])} > Q(t,t)F(x[g(t,0]) , 

therefore, we can use the same method to prove the result. This completes the 
proof of Theorem 1. • 

R e m a r k 1. Theorem 1 generalizes Theorem 1 in [2], [3], [5], [6] and [8; 
Theorem 2]. 

R e m a r k 2. If function <p(t) = 1, we have the following corollary. 

COROLLARY. Suppose that (3) - (5) hold. If 

-f-oo b rn 

f |g(5,0{l-Ec^O(5,0]}dO-(0d5 = +oo, 
to a i = 1 

then all solutions of equation (1) are oscillatory. 

R e m a r k 3. Corollary generalizes Theorem 1 in [2], [4], [5], [6], [8]. 
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THEOREM 2. Suppose that (3)-(5) hold, and 

(i) c{(t) = c- > 0. there exist a'(t) and T[(t) > 0, i G Im, 
(ii) there exists a function g't(t,£) G C([£0,+co) x [a, b],R+), 

(iii) there exists a function rj(t) G C([£0, +co),R+) such that 

џ 

Q(t,0>v(t), t>t0, Çє[a,Ъ]. 

+ CO 

/ r](s) ds = +co , 

(16) 

(17) 

then the derivatives of all differentiable solutions of equation (1) are oscillatory. 

P r o o f . Suppose that there exists a differentiable solution y(t) of equa
tion (1) such that we eventually have 

y(t)>0 and y'(t)>0, 

y(t)>0 and y'(t)<0. 

First, suppose that (18) holds. Let 

v(t) = 
a(t)z'(t) 

(18) 

(19) 

(20) 

fy[g(t,0] da(0 

Then it follows that v(t) > 0, and from (i), we know that there exists y", 
therefore y' is continuous, and it follows from (ii) that 

d_ 
dí 

0 b 

fy[g(t,0] da(Ç) = f fgg't(t,0 da(0 > 0. 

Then 

v'(t) = 
[a(t)z'(t)}> [a(t)z>(t)]$-tfy[g(t,ţ)]da(0 

fy[g(t,0] da(0 

a 

[a(t)z'(t)]' 

fy[g(t,0]da(0 

п 2 

< 

fy[g(t,0] da(0 
a 

< -ЛГÍ(Í) . 

(21) 
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Integrating both sides of above inequality from t2 to t (t > t2), we have 

t 

. W < ^ ) - * / * ) d . . (22) 

Let t —•> +00; from (17), we have L>(£) -» —00, which leads to a contradiction 
with v(J) > 0. 

Next, suppose that (19) holds. By (17), there exists a T > t 0 such that 

t 

fr)(s)ds>0, t>T. (23) 
T 

Using y'(t) < 0 and g(t, 0 is nondecreasing with respect to t, we have 

y[s(*,0] >»[</(*,0] >o, s<t, 
b b 

Iy[9(s,0} MO > Iy[g(t,0} MO > o, s<t. 
a a 

Thus using (4), (5), (17) and (23), we have 

t b t b 

1 1 f(s,Z,y[g(s, 01) MS)ds> J J Q(s,0F(y[g(s,0}) da(0ds 
T a T a 

> X I I r/0) ds J f fy[g(t, 0] MO ) > 0 • 

Integrating both sides of equation (1) from T to t (t > T), and using (24), we 
have 

t b 

a(t)z'(t) - a(T)zf(T) = -fff{s^ y[g(s, 0}) MO d* < 0 , 
T a 

thus 

a(t)z'(t) < a(T)z'(T). (25) 

Integrating both sides of above inequality from Tx to t (t > Tx), we have 

t 

z(t) < z(T,) + a(T)z'(T) f ^ ds . (26) 
Ti 
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771 

Noticing z'(t) = y'(*)+ £ ^y'(^(t))^) < 0, we have lim z(t) = - c o , which 
i=l t->+oo 

contradicts z(t) > 0. 
For the case of a differentiable solution y(t) of equation (1) that eventually 

have 

y(t)<0 and y'(t)>0, 
or 

y(t)<0 and y'(t)<0, 

we can also prove the result by the same argument. This completes the proof of 
Theorem 2. • 

Remark 4. Theorem 2 generalizes Theorem 2 in [2], [4], [5], [6] and [8; 
Theorem 3]. 

Now, we give some examples. 

EXAMPLE 1. 
2 

[t[y(t)+{l-±y(t-T))]']\ Jty(ltt)y/l + yi(ltt;)&Tctgt; d( = 0, t>l, 

(27) 
in which 

r > 0 , a(t) = t, c(t) = 1 - - , 

</(«,0 = | t£, /(*,£,») = teVl + V2a-rctg£. 

Choosing Q(£, £) = | , ^(y) = y^/l + y2, the conditions of Corollary are satis
fied. Therefore all the solutions of equation (27) are oscillatory. 

EXAMPLE 2. 

[e-'bW + d - l e ^ ^ - T ^ + l^-^))] ' ] ' 
- 1 

+ /e t+2 fy(j + O[l + 2/f(t + O]d£ = 0, i > l , 
(28) 

in which 
2 1 1 

т , , т 2 > 0 , a(i) = e-*, cx(í) = - - e _ 2 ť ' ^ г W ^ 

s(t,0 = * + £, /(U,v) = e(t+2«y(i + y*)-
Choosing Q(*,f) = e t+2^, F(y) = y(l + y§), <p(t) = >/£, the conditions of 
Theorem 1 are satisfied. Therefore all solutions of equation (28) are oscillatory. 
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EXAMPLE 3 . 

[Hw(*)+Jy(--T1)+|y(--ra)]'] + | ^ | y ( | + 0 e » * ( - + « d£ = 0, *>2v/2, 
0 

(29) 
inwhich r 1 ? r 2 > 0 , fl(*,0 = | + f, f(t,Z,v) = &£ye* -

Choosing <?(£,£) = i+f, F(y) = ye^2, rl(t) = t, the conditions of Theorem 2 
are satisfied. Therefore the derivatives of differentiable solution of equation (29) 
are oscillatory. 
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