Mathematic Slovaca

Wang Peiguang; Yuan Hong Xu

Oscillation of solutions for nonlinear second order neutral equations with deviating arguments

Mathematica Slovaca, Vol. 51 (2001), No. 2, 205--213
Persistent URL: http://dml.cz/dmlcz/132692

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

OSCILLATION OF SOLUTIONS FOR NONLINEAR SECOND ORDER NEUTRAL EQUATIONS WITH DEVIATING ARGUMENTS

Wang Peiguang* - Yu Yuanhong**
(Communicated by Milan Medved')

Abstract

This paper discusses the oscillatory conditions of second order neutral differential equations with continuous distributed deviating arguments.

1. Introduction

The study of the oscillatory behavior of the solutions of neutral delay differential equations, besides its theoretical interest, is important in application. Examples of their applications can be found in [1]. A few results on the oscillatory behavior of the solutions of second order neutral delay differential equations are recently obtained in [2], [3], [4], [5], [6], [7], [8] and their references. However, it is noticeable that most of the cases are with discrete delay. The aim of this paper is to extend some results in [2]-[6], [8] to the following nonlinear equation with continuous deviating arguments

$$
\begin{equation*}
\left[a(t)\left[y(t)+\sum_{i=1}^{m} c_{i}(t) y\left(\tau_{i}(t)\right)\right]^{\prime}\right]^{\prime}+\int_{a}^{b} f(t, \xi, y[g(t, \xi)]) \mathrm{d} \sigma(\xi)=0, \quad t \geq t_{0} \tag{1}
\end{equation*}
$$

and to establish some new oscillatory criteria.
It is easy to see that (1) includes the following equation

$$
\begin{equation*}
\left[a(t)\left[y(t)+\sum_{i=1}^{m} c_{i}(t) y\left(\tau_{i}(t)\right)\right]^{\prime}\right]^{\prime}+\sum_{j=1}^{n} f_{j}\left(t, y\left[g_{j}(t)\right]\right)=0, \quad t \geq t_{0} \tag{2}
\end{equation*}
$$

then the obtained oscillatory criteria improve and generalize some known results.

[^0]Suppose that the following conditions hold.
$\left(\mathrm{H}_{1}\right) a(t), c_{i}(t) \in C\left(\left[t_{0},+\infty\right), \mathbb{R}_{+}\right) ; f(t, \xi, y) \in C\left(\left[t_{0},+\infty\right) \times[a, b] \times \mathbb{R}, \mathbb{R}\right) ;$ $\mathbb{R}_{+}=[0,+\infty) ;$
$\left(\mathrm{H}_{2}\right) \quad \tau_{i}(t) \in C\left(\left[t_{0},+\infty\right), \mathbb{R}\right) ; \tau_{i}(t) \leq t$, and
$\lim _{t \rightarrow+\infty} \tau_{i}(t)=+\infty, i \in I_{m}=\{1,2, \ldots, m\} ;$
$\left(\mathrm{H}_{3}\right) \quad g(t, \xi) \in C\left(\left[t_{0},+\infty\right) \times[a, b], \mathbb{R}\right) ; g(t, \xi) \leq t$ for $\xi \in[a, b]$, $g(t, \xi)$ is nondecreasing with respect to t and ξ, respectively; and $\lim _{t \rightarrow+\infty} \min _{\xi \in[a, b]}\{g(t, \xi)\}=+\infty ;$
$\left(\mathrm{H}_{4}\right) \sigma(\xi) \in([a, b], \mathbb{R})$ is nondecreasing, integral of equation (1) is a Stieltjes integral.
Let $u \in C\left(\left[t_{-1},+\infty\right) ; \mathbb{R}\right)$, where

$$
t_{-1}=\min \left\{\min _{i \in I_{m}}\left\{\inf _{t \geq t_{0}} \tau_{i}(t)\right\}, \min _{\xi \in[a, b]} g\{(t, \xi)\}, t_{0}\right\}
$$

be a given function and let y_{0} be a given constant. Using the method of steps, equation (1) has a unique solution $y(t) \in C\left(\left[t_{-1},+\infty\right) ; \mathbb{R}\right)$ in the sense that both $y(t)+\sum_{i=1}^{m} c_{i}(t) y\left(\tau_{i}(t)\right)$ and $a(t)\left[y(t)+\sum_{i=1}^{m} c_{i}(t) y\left(\tau_{i}(t)\right)\right]^{\prime}$ are continuously differentiable for $t \geq t_{0}, y(t)$ satisfies equation (1) and

$$
y(s)=u(s) \quad \text { for } s \in\left[t_{-1}, t_{0}\right], \quad\left[y(t)+\sum_{i=1}^{m} c_{i}(t) y\left(\tau_{i}(t)\right)\right]_{t=t_{0}}^{\prime}=y_{0}
$$

For further questions concerning existence and uniqueness of solutions of neutral delay differential equations, see [1].
DEFINITION 1. A function $y(t)$ is called eventually positive (negative) if there exists a number $t_{1} \geq t_{0}$ such that $y(t)>0(<0)$ holds for all $t>t_{1}$.
DEFINITION 2. A solution $y(t)$ of equation (1) is said oscillatory if it is not eventually zero solution and it has an unbounded set of zeros. Otherwise, it is called nonoscillatory.

For the sake of convenience, we assume that every inequality about functional values is true for all sufficiently large t.

2. Main results

Theorem 1. Suppose that the following conditions hold

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i}(t) \leq 1 \quad \text { and } \quad \int_{t_{0}}^{+\infty} \frac{1}{a(s)} \mathrm{d} s=+\infty \tag{3}
\end{equation*}
$$

OSCILLATION OF SECOND ORDER NEUTRAL EQUATION

there exist function $Q(t, \xi) \in C\left(\left[t_{0},+\infty\right) \times[a, b], \mathbb{R}_{+}\right)$and $F(y) \in C(\mathbb{R}, \mathbb{R})$ such that

$$
\begin{equation*}
f(t, \xi, y) \operatorname{sgn} y \geq Q(t, \xi) F(y) \operatorname{sgn} y \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
-F(-y) \geq F(y) \geq \lambda y>0, \quad(y>0, \quad \lambda>0 \text { is a constant }) \tag{5}
\end{equation*}
$$

If there exists a $\frac{\mathrm{d}}{\mathrm{d} t} g(t, a)$ and function $\varphi \in C^{\prime}\left(\left[t_{0},+\infty\right), \mathbb{R}_{+}\right)$such that

$$
\begin{equation*}
\int_{t_{0}}^{+\infty}\left[\lambda \varphi(s) \int_{a}^{b} Q(s, \xi)\left\{1-\sum_{i=1}^{m} c_{i}[g(s, \xi)]\right\} \mathrm{d} \sigma(\xi)-\frac{a[g(s, a)] \varphi^{\prime 2}(s)}{4 \varphi(s) g^{\prime}(s, a)}\right] \mathrm{d} s=+\infty \tag{6}
\end{equation*}
$$

then all solutions of equation (1) are oscillatory.
Proof. Suppose to the contrary that there exists a nonoscillatory solution $y(t)$ of equation (1). We may assume that $y(t)$ is an eventually positive solution. Let

$$
\begin{equation*}
z(t)=y(t)+\sum_{i=1}^{m} c_{i}(t) y\left(\tau_{i}(t)\right) \tag{7}
\end{equation*}
$$

Then equation (1) can be written as

$$
\begin{equation*}
\left[a(t) z^{\prime}(t)\right]^{\prime}+\int_{a}^{b} f(t, \xi, y[g(t, \xi)]) \mathrm{d} \xi=0 \tag{8}
\end{equation*}
$$

It follows from (7) that

$$
y[g(t, \xi)]=z[g(t, \xi)]-\sum_{i=1}^{m} c_{i}[g(t, \xi)] y\left(\tau_{i}[g(t, \xi)]\right)
$$

It follows from $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ that

$$
\begin{equation*}
z(t) \geq y(t) \quad \text { and } \quad z(t) \geq 0 \tag{9}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\left[a(t) z^{\prime}(t)\right]^{\prime} \leq 0 \tag{10}
\end{equation*}
$$

thus $a(t) z^{\prime}(t)$ is decreasing with respect to t, and we can prove that $z^{\prime}(t) \geq 0$. In fact, let there exist a $t_{1} \geq t_{0}$ such that $z^{\prime}(t)<0, t \geq t_{1}$. Integrating both sides of (10) from $\left[t_{1}, t\right]$, we have $a(t) z^{\prime}(t) \leq a\left(t_{1}\right) z^{\prime}\left(t_{1}\right)$, furthermore, for $t_{2} \geq t_{1}$, we have

$$
z(t) \leq z\left(t_{2}\right)+a\left(t_{1}\right) z\left(t_{1}\right) \int_{t_{2}}^{t} \frac{1}{a(s)} \mathrm{d} s
$$

WANG PEIGUANG - YU YUANHONG

Let $t \rightarrow+\infty$; using (3), it follows that $\lim _{t \rightarrow+\infty} z(t)=-\infty$, which is in contradiction with $z(t)>0$.

From (9), we have $F(y[g(t, \xi)]) \geq \lambda y[g(t, \xi)]>0$, thus

$$
\begin{equation*}
0 \geq\left[a(t) z^{\prime}(t)\right]^{\prime}+\lambda \int_{a}^{b} Q(t, \xi)\left\{z[g(t, \xi)]-\sum_{i=1}^{m} c_{i}[g(t, \xi)] y\left(\tau_{i}[g(t, \xi)]\right)\right\} \mathrm{d} \sigma(\xi) \tag{11}
\end{equation*}
$$

It follows from $\left(\mathrm{H}_{1}\right),(9)$ and (11) that

$$
\begin{equation*}
\left[a(t) z^{\prime}(t)\right]^{\prime}+\lambda \int_{a}^{b} Q(t, \xi)\left\{1-\sum_{i=1}^{m} c_{i}[g(t, \xi)]\right\} z[g(t, \xi)] \mathrm{d} \sigma(\xi) \leq 0 . \tag{12}
\end{equation*}
$$

Noticing that $g(t, \xi)$ is nondecreasing with respect to ξ, we have $g(t, a) \leq g(t, \xi)$ for $\xi \in[a, b]$, thus

$$
\begin{equation*}
\left[a(t) z^{\prime}(t)\right]^{\prime}+\lambda z[g(t, a)] \int_{a}^{b} Q(t, \xi)\left\{1-\sum_{i=1}^{m} c_{i}[g(t, \xi)]\right\} \mathrm{d} \sigma(\xi) \leq 0 . \tag{13}
\end{equation*}
$$

Set

$$
\begin{equation*}
w(t)=\varphi(t) \frac{a(t) z^{\prime}(t)}{z[g(t, a)]} \tag{14}
\end{equation*}
$$

then $w(t) \geq 0$. From the condition of Theorem 1, we have $z^{\prime}[g(t, a)]=$ $\frac{\mathrm{d} z}{\mathrm{~d} g} \frac{\mathrm{~d}}{\mathrm{~d} t} g(t, a)$. Since $a(t) z^{\prime}(t)$ is decreasing, and noticing that $g(t, \xi) \leq t$ for $\xi \in[a, b]$, we have

$$
a(t) z^{\prime}(t) \leq a[g(t, a)] z^{\prime}[g(t, a)] .
$$

Thus

$$
\begin{aligned}
w^{\prime}(t)= & \frac{\varphi^{\prime}(t)\left[a(t) z^{\prime}(t)\right]}{z[g(t, a)]}+\varphi(t) \frac{\left[a(t) z^{\prime}(t)\right]^{\prime}}{z[g(t, a)]}-\frac{\varphi(t)\left[a(t) z^{\prime}(t)\right] z^{\prime}[g(t, a)] g^{\prime}(t, a)}{z^{2}[g(t, a)]} \\
& \leq \frac{\varphi(t)\left[a(t) z^{\prime}(t)\right]^{\prime}}{z[g(t, a)]}+\frac{a[g(t, \xi)] \varphi^{\prime 2}(t)}{4 \varphi(t) g^{\prime}(t, a)} \\
& -\left[\sqrt{\left.\frac{\varphi(t) g^{\prime}(t, a)}{a[g(t, a)]} \frac{a(t) z^{\prime}(t)}{z[g(t, a)]}-\frac{\varphi^{\prime}(t)}{2} \sqrt{\frac{a[g(t, a)]}{\varphi(t) g^{\prime}(t, a)}}\right]^{2}}\right. \\
& \leq \varphi(t) \frac{\left[a(t) z^{\prime}(t)\right]^{\prime}}{z[g(t, a)]}+\frac{a[g(t, a)] \varphi^{\prime 2}(t)}{4 \varphi(t) g^{\prime}(t, a)} .
\end{aligned}
$$

It follows from (13) that

$$
w^{\prime}(t) \leq-\left[\lambda \varphi(t) \int_{a}^{b} Q(t, \xi)\left\{1-\sum_{i=1}^{m} c_{i}[g(t, \xi)]\right\} \mathrm{d} \sigma(\xi)-\frac{a[g(t, a)] \varphi^{\prime 2}(t)}{4 \varphi(t) g^{\prime}(t, a)}\right]
$$

Integrating both sides of the above last inequality from t_{1} to $t\left(t>t_{1}\right)$, we have

$$
\begin{array}{r}
w(t) \leq w\left(t_{1}\right)-\int_{t_{1}}^{t}\left[\lambda \varphi(s) \int_{a}^{b} Q(s, \xi)\left\{1-\sum_{i=1}^{m} c_{i}[g(s, \xi)]\right\} \mathrm{d} \sigma(\xi)\right. \\
\left.-\frac{a[g(s, a)]{\varphi^{\prime 2}}^{2}(s)}{4 \varphi(s) g^{\prime}(s, a)}\right] \mathrm{d} s \tag{15}
\end{array}
$$

Let $t \rightarrow+\infty$, then by (6) and (15), we have $w(t) \rightarrow-\infty$, which leads to a contradiction with $w(t)>0$.

Let $y(t)$ be an eventually negative solution of equation (1). Let $x(t)=-y(t)$, then equation (1) will change to the following equation

$$
\begin{equation*}
\left[a(t)\left[x(t)+\sum_{i=1}^{m} c_{i}(t) x\left(\tau_{i}(t)\right)\right]^{\prime}\right]^{\prime}+\int_{a}^{b} f^{*}(t, \xi, x[g(t, \xi)]) \mathrm{d} \xi=0, \quad t \geq t_{0} \tag{*}
\end{equation*}
$$

where $f^{*}(t, \xi, x[g(t, \xi)]) \equiv-f(t, \xi,-x[g(t, \xi)])$.
Conditions (4) and (5) imply that

$$
\begin{aligned}
f^{*}(t, \xi, x[g(t, \xi)]) & \equiv-f(t, \xi,-x[g(t, \xi)]) \\
& \geq Q(t, \xi)\{-F(-x[g(t, \xi)])\} \geq Q(t, \xi) F(x[g(t, \xi)])
\end{aligned}
$$

therefore, we can use the same method to prove the result. This completes the proof of Theorem 1.

Remark 1. Theorem 1 generalizes Theorem 1 in [2], [3], [5], [6] and [8; Theorem 2].

Remark 2. If function $\varphi(t) \equiv 1$, we have the following corollary.
Corollary. Suppose that (3)-(5) hold. If

$$
\int_{t_{0}}^{+\infty} \int_{a}^{b} Q(s, \xi)\left\{1-\sum_{i=1}^{m} c_{i}[g(s, \xi)]\right\} \mathrm{d} \sigma(\xi) \mathrm{d} s=+\infty
$$

then all solutions of equation (1) are oscillatory.
Remark 3. Corollary generalizes Theorem 1 in [2], [4], [5], [6], [8].

WANG PEIGUANG - YU YUANHONG

Theorem 2. Suppose that (3)-(5) hold, and
(i) $c_{i}(t) \equiv c_{i} \geq 0$, there exist $a^{\prime}(t)$ and $\tau_{i}^{\prime}(t)>0, i \in I_{m}$,
(ii) there exists a function $g_{t}^{\prime}(t, \xi) \in C\left(\left[t_{0},+\infty\right) \times[a, b], \mathbb{R}_{+}\right)$,
(iii) there exists a function $\eta(t) \in C\left(\left[t_{0},+\infty\right), \mathbb{R}_{+}\right)$such that

$$
\begin{equation*}
Q(t, \xi) \geq \eta(t), \quad t \geq t_{0}, \quad \xi \in[a, b] . \tag{16}
\end{equation*}
$$

If

$$
\begin{equation*}
\int_{t_{0}}^{+\infty} \eta(s) \mathrm{d} s=+\infty \tag{17}
\end{equation*}
$$

then the derivatives of all differentiable solutions of equation (1) are oscillatory.
Proof. Suppose that there exists a differentiable solution $y(t)$ of equation (1) such that we eventually have

$$
\begin{array}{lll}
y(t)>0 & \text { and } & y^{\prime}(t)>0 \\
y(t)>0 & \text { and } & y^{\prime}(t)<0 . \tag{19}
\end{array}
$$

First, suppose that (18) holds. Let

$$
\begin{equation*}
v(t)=\frac{a(t) z^{\prime}(t)}{\int_{a}^{b} y[g(t, \xi)] \mathrm{d} \sigma(\xi)} . \tag{20}
\end{equation*}
$$

Then it follows that $v(t)>0$, and from (i), we know that there exists $y^{\prime \prime}$, therefore y^{\prime} is continuous, and it follows from (ii) that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{a}^{b} y[g(t, \xi)] \mathrm{d} \sigma(\xi)=\int_{a}^{b} \frac{\mathrm{~d} y}{\mathrm{~d} g} g_{t}^{\prime}(t, \xi) \mathrm{d} \sigma(\xi) \geq 0 .
$$

Then

$$
\begin{align*}
v^{\prime}(t) & =\frac{\left[a(t) z^{\prime}(t)\right]^{\prime}}{\int_{a}^{b} y[g(t, \xi)] \mathrm{d} \sigma(\xi)}-\frac{\left[a(t) z^{\prime}(t)\right] \frac{\mathrm{d}}{\mathrm{~d} t} \int_{a}^{b} y[g(t, \xi)] \mathrm{d} \sigma(\xi)}{\left[\int_{a}^{b} y[g(t, \xi)] \mathrm{d} \sigma(\xi)\right]^{2}} \tag{21}\\
& \leq \frac{\left[a(t) z^{\prime}(t)\right]^{\prime}}{\int_{a}^{b} y[g(t, \xi)] \mathrm{d} \sigma(\xi)} \leq-\lambda \eta(t) .
\end{align*}
$$

OSCILLATION OF SECOND ORDER NEUTRAL EQUATION

Integrating both sides of above inequality from t_{2} to $t\left(t>t_{2}\right)$, we have

$$
\begin{equation*}
v(t) \leq v\left(t_{2}\right)-\lambda \int_{t_{2}}^{t} \eta(s) \mathrm{d} s \tag{22}
\end{equation*}
$$

Let $t \rightarrow+\infty$; from (17), we have $v(t) \rightarrow-\infty$, which leads to a contradiction with $v(t)>0$.

Next, suppose that (19) holds. By (17), there exists a $T \geq t_{0}$ such that

$$
\begin{equation*}
\int_{T}^{t} \eta(s) \mathrm{d} s>0, \quad t>T \tag{23}
\end{equation*}
$$

Using $y^{\prime}(t)<0$ and $g(t, \xi)$ is nondecreasing with respect to t, we have

$$
\begin{array}{rlrl}
y[g(s, \xi)] & \geq y[g(t, \xi)]>0, & & s \leq t \\
\int_{a}^{b} y[g(s, \xi)] \mathrm{d} \sigma(\xi) \geq \int_{a}^{b} y[g(t, \xi)] \mathrm{d} \sigma(\xi)>0, & & s \leq t
\end{array}
$$

Thus using (4), (5), (17) and (23), we have

$$
\begin{aligned}
\int_{T}^{t} \int_{a}^{b} f(s, \xi, y[g(s, \xi)]) \mathrm{d} \sigma(\xi) \mathrm{d} s & \geq \int_{T}^{t} \int_{a}^{b} Q(s, \xi) F(y[g(s, \xi)]) \mathrm{d} \sigma(\xi) \mathrm{d} s \\
& \geq \lambda\left(\int_{T}^{t} \eta(s) \mathrm{d} s\right)\left(\int_{a}^{b} y[g(t, \xi)] \mathrm{d} \sigma(\xi)\right)>0
\end{aligned}
$$

Integrating both sides of equation (1) from T to $t(t>T)$, and using (24), we have

$$
a(t) z^{\prime}(t)-a(T) z^{\prime}(T)=-\int_{T}^{t} \int_{a}^{b} f(s, \xi, y[g(s, \xi)]) \mathrm{d} \sigma(\xi) \mathrm{d} s<0
$$

thus

$$
\begin{equation*}
a(t) z^{\prime}(t)<a(T) z^{\prime}(T) \tag{25}
\end{equation*}
$$

Integrating both sides of above inequality from T_{1} to $t\left(t>T_{1}\right)$, we have

$$
\begin{equation*}
z(t)<z\left(T_{1}\right)+a(T) z^{\prime}(T) \int_{T_{1}}^{t} \frac{1}{a(s)} \mathrm{d} s \tag{26}
\end{equation*}
$$

Noticing $z^{\prime}(t)=y^{\prime}(t)+\sum_{i=1}^{m} c_{i} y^{\prime}\left(\tau_{i}(t)\right) \tau_{i}^{\prime}(t)<0$, we have $\lim _{t \rightarrow+\infty} z(t)=-\infty$, which contradicts $z(t)>0$.

For the case of a differentiable solution $y(t)$ of equation (1) that eventually have

$$
y(t)<0 \quad \text { and } \quad y^{\prime}(t)>0
$$

or

$$
y(t)<0 \quad \text { and } \quad y^{\prime}(t)<0
$$

we can also prove the result by the same argument. This completes the proof of Theorem 2.

Remark 4. Theorem 2 generalizes Theorem 2 in [2], [4], [5], [6] and [8; Theorem 3].

Now, we give some examples.
Example 1.

$$
\begin{equation*}
\left[t\left[y(t)+\left(1-\frac{1}{t} y(t-\tau)\right)\right]^{\prime}\right]^{\prime}+\int_{1}^{2} t y\left(\frac{1}{2} t \xi\right) \sqrt{1+y^{2}\left(\frac{1}{2} t \xi\right)} \operatorname{arctg} \xi \mathrm{d} \xi=0, \quad t \geq 1 \tag{27}
\end{equation*}
$$

in which

$$
\begin{gathered}
\tau>0, \quad a(t)=t, \quad c(t)=1-\frac{1}{t} \\
g(t, \xi)=\frac{1}{2} t \xi, \quad f(t, \xi, y)=t x \sqrt{1+y^{2}} \operatorname{arctg} \xi
\end{gathered}
$$

Choosing $Q(t, \xi)=\frac{\pi}{4}, F(y)=y \sqrt{1+y^{2}}$, the conditions of Corollary are satisfied. Therefore all the solutions of equation (27) are oscillatory.
Example 2.

$$
\begin{align*}
& {\left[\mathrm{e}^{-t}\left[y(t)+\left(\frac{2}{3}-\frac{1}{3} \mathrm{e}^{-2 t} y\left(t-\tau_{1}\right)+\frac{1}{3} y\left(t-\tau_{2}\right)\right)\right]^{\prime}\right]^{\prime} } \\
&+\int_{-2}^{-1} \mathrm{e}^{t+2 \xi} y(t+\xi)\left[1+y^{\frac{2}{3}}(t+\xi)\right] \mathrm{d} \xi=0, \quad t \geq 1 \tag{28}
\end{align*}
$$

in which

$$
\begin{gathered}
\tau_{1}, \tau_{2}>0, \quad a(t)=\mathrm{e}^{-t}, \quad c_{1}(t)=\frac{2}{3}-\frac{1}{3} \mathrm{e}^{-2 t}, \quad c_{2}(t)=\frac{1}{3} \\
g(t, \xi)=t+\xi, \quad f(t, \xi, y)=\mathrm{e}^{(t+2 \xi)} y\left(1+y^{\frac{2}{3}}\right)
\end{gathered}
$$

Choosing $Q(t, \xi)=\mathrm{e}^{t+2 \xi}, F(y)=y\left(1+y^{\frac{2}{3}}\right), \varphi(t)=\sqrt{t}$, the conditions of Theorem 1 are satisfied. Therefore all solutions of equation (28) are oscillatory.

Example 3.

$$
\begin{equation*}
\left[\frac{1}{t}\left[y(t)+\frac{1}{2} y\left(t-\tau_{1}\right)+\frac{1}{2} y\left(t-\tau_{2}\right)\right]^{\prime}\right]^{\prime}+\int_{0}^{1} \frac{t+\xi}{\sin \xi} y\left(\frac{t}{2}+\xi\right) \mathrm{e}^{y^{2}\left(\frac{t}{2}+\xi\right)} \mathrm{d} \xi=0, \quad t \geq 2 \sqrt{2} \tag{29}
\end{equation*}
$$

in which $\quad \tau_{1}, \tau_{2}>0, \quad g(t, \xi)=\frac{t}{2}+\xi, \quad f(t, \xi, y)=\frac{t+\xi}{\sin \xi} y \mathrm{e}^{y^{2}}$.
Choosing $Q(t, \xi)=t+\xi, F(y)=y \mathrm{e}^{y^{2}}, \eta(t)=t$, the conditions of Theorem 2 are satisfied. Therefore the derivatives of differentiable solution of equation (29) are oscillatory.

Acknowledgement

The authors thank the referee for useful comments and suggestions.

REFERENCES

[1] GRAMMATIKOPOULOS, M. K.-LADAS, G.-MEIMARIDOU, A. : Oscillations of second order neutral delay differential equations, Rad. Mat. 1 (1985), 267-274.
[2] WALTMAN, P.: A note on an oscillation criterion for an equation with a functional argument, Canad. Math. Bull. 11 (1968), 593-595.
[3] TRAVIS, C. C.: Oscillation theorems for second order differential equations with functional arguments, Proc. Amer. Math. Soc. 31 (1972), 199-202.
[4] ZHANG, L. Q.-FU, X. L.: Oscillatory theorems of a class of second order nonlinear neutral equation with several deviating arguments, Quart. J. Math. Oxford Ser. (2) 43 (1992), 109-110.
[5] GRACE, S. R.-LALLI, B. S.: Oscillation of solutions of nonlinear neutral second order delay differential equations, Rad. Mat. 3 (1987), 77-84.
[6] RUAN, S. : Oscillations of second order neutral differential equations, Canad. Math. Bull. 36 (1993), 485-496.
[7] LI, H. J.-LIU, W. L.: Oscillation criteria for second order neutral differential equations, Canad. J. Math. 48 (1996), 871-886.
[8] YU, Y. H.-FU, X. L. : Oscillation of second order nonlinear neutral equation with continuous distributed deviating argument, Rad. Mat. 7 (1991), 167-176.

Received June 11, 1998
Revised July 30, 1999

* Department of Mathematics

Hebei University Baoding, 071002 P. R. CHINA

E-mail: pgwang@mail.hbu.edu.cn
** Institute of Applied Mathematics Academy of Sinica, 100080 P. R. CHINA

[^0]: 2000 Mathematics Subject Classification: Primary 34C15, 34K11.
 Key words: oscillation, neutral equation, distributed deviating arguments.
 Project supported by Natural Science Foundation of Hebei Province of P. R. China.

