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(Communicated by Milan Medved') 

ABSTRACT. Oscillatory and asymptotic behaviour of solutions of a class of 
nonlinear fourth order neutral differential equations of the form 

(r(t)(y(t) + p(t)y(t - r))" ) " + q(t)G(y(t - a)) = 0 

and 
(r(t)(y(t) + p(t)y(t - r ) ) " ) " + q(t)G(y(t - a)) = / ( . ) (*) 

OO 

are studied under the assumption f t/r(t) dt = oo for various ranges of p(t). 
o 

Sufficient conditions are obtained for the existence of bounded positive solutions 
of (*). 

1. Introduction 

In a recent paper [6], we have studied oscillation of solutions of fourth order 
nonlinear neutral differential equations of the form 

[r(t){y(t) +p(t)y(t - r ) )" ] " + q(t)G{y(t - a)) = 0 (1) 

and the associated forced equations 

[r(t){y(t) +p(t)y(t - r))"}" + q(t)G{y(t - a)) = f(t) (2) 

under the assumption 
oo 

f{t/r(t)) at < oo , (3) 
o 
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where r G C([0, oo), (0, oo)), p G C([0,oo),tf), q G C([0, oo), [0, oo)), / G 
C([0,oo),R) , G G C(R,R) is nondecreasing and uG(u) > 0 f o r H ^ 0 , T > 0 
and cr > 0. Further, sufficient conditions are obtained for the existence of 
bounded positive solutions of (2). In this paper, we continue the study of equa­
tions (1) and (2) under the assumption 

oo 

(H.) r ( t / r ( t ) ) d t = oo. 
0 

If r(t) = 1, then (H x) is satisfied and equations (1) and (2) reduced, respectively, 
to 

and 

(У(t)+P(t)y(t - т ) ) " " + q(t)G(y(t -a))=0 (4) 

Ш + P(t)y(t - т))"" + q(t)G(y(t - a)) = f(t). (5) 

In recent papers [4], [5], P a r h i and R a t h have studied oscillation of solutions 
of nth order neutral differential equations 

(y(t)+p(t)y(t-T)){n)+q(t)G(y(t-a))=0 (6) 

and 

(V(t) + P(t)y(t - T)){n) + q(t)G(y(t - a)) = f(t). (7) 

Clearly, equations (4) and (5) are particular cases of equations (6) and (7) respec­
tively. However, equations (1) and (2) cannot be termed, in general, as particular 
cases of equations (6) and (7) in view of ( H x ) . Therefore, it is interesting to study 
equations (1) and (2) under ( H x ) . Moreover, most of the results in [5] hold for 
n even. The motivation for the work in [6] and the present work came from the 
work of K u s a n o and N a i t o [2], [3], where they studied oscillatory behaviour 
of solutions of fourth order nonlinear differential equations of the form 

(r(t)y(t)")" + y(t)F(y2(t),t) = 0, 

where r and F are continuous and positive on [0, oo) and (0, oo) x [0, oo) re­
spectively, under the assumption (3) or ( H x ) . It is interesting to observe that 
the nature of the function r influences the behaviour of solutions of (1) or (2). 
This influence is more explicit in case of unforced equation (1). 

By a solution of equation (2) we understand a function y G C([—p, oo),IR) 

such that y(t) + p(t)y(t — r) is twice continuously differentiable, r(t)(y(t) + 

p(t)y(t — T ) ) is twice continuously differentiable and (2) is satisfied for t > 0, 

where p = max{r, cr}, and sup{|H(£)| : t > t0] > 0 for every tQ > 0. A solution 

of (2) is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is 

called nonosdilatory. 
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2. Sufficient conditions for oscillation 

In this section, sufficient conditions are obtained for oscillation of solutions 
of (1) and (2). We need the following lemmas for our work in the sequel: 

LEMMA 2 .1 . Let (Hx) hold. Let u be a twice continuously differentiable 
function on [0, oo) such that r(t)u"(t) is twice continuously differentiable and 
(r(t)u"(t)) < 0 for large t. If u(t) > 0 ultimately, then one of the cases (a) 
and (b) holds for large t, and if u(t) < 0 ultimately, then one of the cases (b). 
(c). (d) and (e) holds for large t, where 

(a) u'(t) > 0, u"(t) > 0 and (r(t)u"(t))' > 0. 

(b) u'(t) > 0. u"(t) < 0 and (r(t)u"(t))' > 0 ; 

(c) u'(t) < 0. u"(t) < 0 and (r(t)u"(t))' > 0. 

(d) u'(t) < 0. u"(t) < 0 and (r(t)u"(t))' < 0. 

(e) u'(t) < 0. u"(t) > 0 and (r(t)u"(t))' > 0. 

P r o o f . Since (r(t)u"(t))" < 0, then u(t) , u'(t), r(t)u"(t) and (r(t)u"(t))' 
are monotonic and hence there are eight possibilities. Let u(t) > 0 for t > t0 > 0. 
It is enough to show that (c), (d), (e) and the following cases, viz., 

(f) u'(t) < 0, u"(t) > 0 and (r(t)u"(t))' < 0, 

(g) u'(t) > 0, u"(t) > 0 and (r(t)u"(t))' < 0, 

(h) u'(t) > 0, u"(t) < 0 and (r(t)u"(t))' < 0 

do not hold. Indeed, in each of the cases (c) and (d), u(t) < 0 for large £, which 
is a contradiction. In case (e), u"(t) > (r(^1)it / /(^1))/r(t) for t > tx > t0. 
Multiplying the inequality through by t and then integrating it we obtain 
u'(t) > 0 for large t due to (Hx) , a contradiction. Since (r(t)u"(t)) is mono-
tonic decreasing, then in each of the cases (f) and (g), u"(t) < 0 for large t, 
which is a contradiction. In case (h), integrating (r(t)u"(t)) < 0 twice we 
obtain r(t)u"(t) < (ru")'^)^ - tx), tx > 10, and hence r(t)u"(t) < -kt for 
t > t2 > tx, where k > 0. Consequently, u'(t) < 0 for large t in view of (Hx), 
which is a contradiction. Next suppose that u(t) < 0 for t > t0 > 0. The case (a) 
does not occur because in this case u(t) > 0 ultimately. In each of the cases (f) 
and (g), u"(t) < 0 for large £, which is a contradiction. Proceeding as above we 
obtain a contradiction in the case (h). Thus the lemma is proved. • 

LEMMA 2.2. Let the conditions of Lemma 2.1 hold. If u(t) > 0 ultimately, 
then u(t) > RT(t)(r(t)u"(t))' for t>T > 0. where 

. ( « ) - / • 

„ . , , (t-s)(s-T) , 
Rrr(t) = / 4 ds т w ' r(s) 
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P r o o f . Let u(t) > 0 for t > t0 > 0. From Lemma 2.1 it follows that one of 
the cases (a) and (b) holds. Suppose that (a) holds. Since (ru")' is decreasing, 
then we have 

t 

r(t)u"(t) > f(r(s)u"(s))' ds > (t-T)(r(t)u"(t))' 

for t > T > t0. Hence 

Ąt)>{r(t)u"(t))' J((s-T)/r(s))ăs. 
t 

/ / . x . / / . x # # / . x \ / 
U X , 

T 

Consequently the integration by parts yields 
t , e 

/ / . x / / / . x \ / 

u (t) > (r(t)u"(t))' J I J((s-T)/r(s)) ds\ d0 
T \ T / 

t 

= (r(t)u"(t))' J((t-s)(s-T)/r(s))ds 
T 

= (r(t)u"(t))'RT(t). 

Next suppose that (b) holds. For t > T > t0, we integrate RT(t)(r(t)u"(t)) 
< 0 by parts to obtain 

t 

0 > JRT(s)(r(s)u"(s))" ds 
T t 

> RT(t)(r(t)u"(t))' + f(s - T)u"(s) ds 
T 

>RT(t)(r(t)u"(t))' -u(t) 

since R'T(t) > 0 and RT(T) = 0. Hence u(t) > (r(t)u"(t))'RT(t). Thus the 
lemma is proved. • 

LEMMA 2.3. ([1; p. 46]) If q G C([0, oo), [0, oc)) and 

t 

liminf / q(s) ds > 1/e, 
t->oo J 

t-T 

then x'(t)-\-q(t)x(t — T) < 0. t > 0 ; cannot have an eventually positive solution. 
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THEOREM 2.4. Let 0 < p(t) < p < oo. r < a and (H-_) hold. Suppose that 

(H2) there exists A > 0 such that G(u) + G(v) > \G(u + v) for u > 0 and 
v>0; 

(H3) G(u)G(v) = G(uv) for u, v G R; 
c 

(H4) fdu/G(u) < oc /or all c>0; 
o 

oo 

(H5) / G(RT(t - a))Q(t) dt = oo, T > 0, 
T+P 
where Q(t) = min{g(£), q(t — r ) } /or t > T . 

Then every solution of (1) oscillates. 

Remark. (H3) implies that G(-u) = -G(u), u G R. Indeed, G(1)G(1) = 
G(l) and G(l) > 0 imply that G(l) = 1. Further, G(-1)G(-1) = G(l) = 1 
and G(-l) <0 imply that G(-l) = - 1 . Hence G(-u) = G(-l)G(u) = -G(u), 
u G R. On the other hand, G(uv) = G(u)G(v) for u > 0 and .v > 0 and 
G(-u) = -G(u), ueR, imply that G(xy) = G(x)G(y) for x,y eR. 

P r o o f of T h e o r e m 2.4. If possible, let y(t) be a nonoscillatory solu­
tion of (1). Hence y(t) > 0 or < 0 for t > t0 > 0. Let y(t) > 0 for t > t0. 
Setting 

z(t) = y(t)+p(t)y(t-r), (8) 

wre obtain 

0<z(t)<y(t)+py(t-T) (9) 

and 

(r(t)z"(t))" = -q(t)G(y(t-a))<0 (10) 

for t > t0 + p. Then one of the cases (a) and (b) of Lemma 2.1 holds. The use 
of (H2) and (H3) yields 

0 = (r(t)z"(t)")" + q(t)G(y(t - a)) + G(p)(r(t - T)Z"(t - r ) ) " 

+ G(p)q(t-T)G(y(t-T)) 

> (r(t)z"(t))" + G(p)(r(t - T)z"(t - r - a))" 

+ XQ(t)G(y(t -a)+ py(t - T - a)) 

> (r(t)z"(t))" + G(p)(r(t - T)z"(t - r ) ) " + XQ(t)G(z(t - a)) 

for t >t1 >t0 + 2p. Hence, by Lemma 2.2, we obtain 
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0 > (r(t)z"(t))" + G(p)(r(t - T)z"(t - r))" 

+ XQ(t)G(RT(t - a)(r(t - a)z"(t - a))') 

= (r(t)z"(t))" + G(p)(r(t - T)z"(t - r))" 

+ XQ(t)G(RT(t - a))G((r(t - a)z"(t - a))') 

for t > T + p > tx. Hence 

XQ(t)G(RT(t-a)) < - [G((r(t-a)z"(t-a))')Y1(r(t)z"(t))" 

- G(p)[G((r(t - a)z"(t - a)) ' )]~l (r(t - T)z"(t - T))" 

<-[G((r(t)z"(t))')Y\r(t)z"(t))" 

- G(p) [G((r(t - T)z"(t - r))')]~' (r{t - T)z"(t - r ) ) " . 

Since lim (r(t)z"(t)) exists, then the use of (H4) yields 
t - »OO 

OO 

I Q(t)G(RT(t-a)) dt<cx), 

T+p 

which contradicts (H5). Hence y(t) < 0 for t > t0. Putting x(t) = -y(t) for 
£ __ ^o' w e obtain x(t) > 0 for t > t0 and 

[r(t)(x(t) + p(t)x(t - r ) )" ] " + q(t)G(x(t - a)) = 0 . 

Proceeding as above we arrive at a contradiction. Thus the proof of the theorem 
is complete. ---

THEOREM 2.5. Let 0 < p(t) <p<oo. Suppose that (Hx) and (H2) hold. If 

(H'3) G(u)G(v) > G(uv) foru>0,v>0, 
(H6) G(-u) = -G(u), ueR, 

and 
OO 

(H7) / Q ( t ) d t = oo, 
T 

then every solution of (1) oscillates. 

P r o o f . Let y(t) be a nonoscillatory solution of (1). Let y(t) > 0 for t > 
t0 > 0. The proof for the case y(t) < 0, t > t0, is similar. Setting z(t) as in (8) 
we obtain (9) and (10) for t > t0 + p. From Lemma 2.1 it follows that one of 
the cases (a) and (b) holds. Hence z(t) > k > 0 for t > tx > t0 + p. Proceeding 
as in the proof of Theorem 2.4 we obtain 
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0 > (r(t)z"(t)")" + G(p)(r(t - r)z"(t - T ) ) " + XQ(t)G(z(t - a)) 

> (r(t)z"(t))" + G(p)(r(t - T)z"(t - r ) ) " + XQ(t)G(k) 

oo 

for t > t2 > t1 + 2p. Hence f Q(t) dt < oo, which is a contradiction to ( H 7 ) . 
t2 

Thus the theorem is proved. • 

Remark. (H3) and (H6) need not imply ( H 3 ) . Indeed, if 

G(u) = (a + (3\u\x)\u\»sgnu, A > 0 , fi > 0 , a > l , p > 1, 

then (H 3) and (H 6) are satisfied but (H 3) fails to hold. 

Remark. The prototype of G satisfying ( H 2 ) , (H 3) and (H 6) is 

G(u) = (a + &|u | A ) |u | / x sgnu, where a > l , 6 > 1 , A > 0 , Lx > 0. 

Remark. In Theorem 2.5, G could be superlinear, sublinear or linear. However, 
(H 7) implies (H 5) because R'T(t) > 0 for t > Tx > T. 

THEOREM 2.6. Let 0 < p(t) < p < 1. Suppose that (H x) and (H 3) hold. If 

(H 8) liminf(G(x)/x) > 7 > 0 

and 

(H 9) liminf / G(RT(s-a))q(s)ds>(z1G(l-p))~l, 
t~a 

then all solutions of (1) oscillate. 

Remark. (H9) implies that 
oo 

( H io) / G(RT(s-a))q(s) ds = oo. 
T+a 

Indeed, if oo 

/ G(Rт(s — a))q(s) ds = a < oo . 

T+a 

then, for t > T-f 2O-, 

t / t t-ay 

I G(RT(S - a))q(s) ds = j - j G(RT(s - a))q(s) ds 

t-° \ T+a T+a 

implies that 
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t 

liminf / G(Rт(s — a))q(s) ds < a — a = 0, 

t-a 

which is a contradiction to ( H 9 ) . 

P r o o f of T h e o r e m 2.6. Suppose that y(t) is a nonoscillatory solution 
of (1). Let y(t) > 0 for t > t0 > 0. The case y(t) < 0 for t > t0 may similarly 
be dealt with. Setting z(t) as in (8) we obtain z(t) > 0 and (10) for t > t0 + p. 
Then one of the cases (a) and (b) of Lemma 2.1 holds. In each case, z(t) is 
increasing. Hence, for t>t0 + 2p 

(1 - p(t)) z(t) < z(t) - p(t)z(t - T) = y(t) - p(t)p(t - T)y(t - 2T) < y(t) 

and (l-p(t))z(t) > (l-p)z(t). Thus y(t) > (l-p)z(t). From (10) we obtain, 
for t > T + a > t0 + 2p + a, 

0>(r(t)z"(t))" + q(t)G((l-p)z(t-a)) 

> (r(t)z"(t))" + q(t)G((l-p)RT(t - a)(r(t - a)z"(t - a))') (11) 

= (r(t)z"(t))" + G(l -p)q(t)G(RT(t - a))G((r(t - a)z"(t - a))') 

using Lemma 2.2 and ( H 3 ) . Let lim (r(t) z"(t)) = c Y . I f O < c Y < o o , then 

(r(t)z"(t))' > (3 > 0 for t > tx > T + O - . F r o m ( l l ) we obtain, for t > t2 > tx+a, 

G(l-p)q(t)G(RT(t-a))G((3) < -(r(t)z"(t))". 

Integrating the above inequality yields 

oo 

/ q(t)G(Rт(t-a)) dt<oc. 

a contradiction to ( H 1 0 ) . Hence a = 0. Consequently, (H 8) implies that 

G[(r(t)z"(t))') > ~i(r(t)z"(t))' for t > t3 > t2. Using this in (11) we ob­

tain, for t > t3 + a , 

(r(t)z"(t))" + 7 G ( 1 - p)q(t)G(RT(t - a)) (r(t - a)z"(t - a))' < 0 . 

Hence the inequality u'(t)+ryG(l—p)q(t)G(RT(t—a))u(t — a) < 0 admits a posi­

tive solution (r(t)z"(t)) , which is a contradiction due to (H g ) and Lemma 2.3. 

This completes the proof of the theorem. • 
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THEOREM 2.7. Let 0 < p(t) < p < oo. r < a and (Hx). (H2) and (H3) hold. 
Suppose that 

(Hn) G(xl)/x^ > G(x2)/x% for xl>x2>0 and a > 1 

an J 
CO 

(H12) J Ra(t - a)Q(t) dt = oo. 
T+a 

Then every solution of (1) oscillates. 

P r o o f . Proceeding as in the proof of Theorem 2.4 we obtain 

(r(t)z"(t))" + G(p)(r(t - T)z"(t - T))" + XQ(t)G(z(t - a)) < 0 (12) 

for t > ij > t0 + 2p. Since z(t) is increasing, then z(t) > k > 0 for t > t2 > tx. 
Using (H1X) and Lemma 2.2 we obtain, for t > T + a > t2 + a, 

G(z(t - a)) = (G(z(t - a))/za(t - a))za(t - a) 

> (G(k)/ka)za(t-a) 

> (G(k)/ka)Ra(t - a)((r(t - a)z"(t - a))')a . 

Hence (12) yields 

X(G(k)/ka)Ra(t-a)Q(t) 

< - ((r(t - a)z"(t - a))'ya [(r(t)z"(t))" + G(p)(r(t - T)z"(t - T))"] 

<-((r(t)z"(t))'ya(r(t)z"(t))" 

- G(p)((r(t - T)z"(t - T))'ya(r(t - T)z"(t - T))". 

Since lim (r(t)z"(t)) exists, then proceeding as in the proof of Theorem 2.4 we 
t—»oo v 

obtain 
CO 

/ R«(t-a)Q(t) dt < oo, 

T+cr 

a contradiction to (H12). Thus the theorem is proved. • 

THEOREM 2.8. Let -1 <p < p(t) < 0. / / ( H j , (H3), (H4) hold and if 
CO 

(H13) fq(t)dt = oo, 
o 

then every solution of (1) oscillates or tends to zero as t —> oo. 
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P r o o f . Let y(t) be a nonoscillatory solution of (1). In view of (H3) it is 
enough to consider y(t) > 0 for t > t0 > 0. Setting z(t) as in (8) we obtain 
(10) for t >t0+ p. Hence z(t) > 0 or < 0 for t > tx > t0 + p. Let z(t) > 0 
for t > tx. From Lemma 2.1 it follows that one of the cases (a) and (b) holds. 
Hence z(t) > RT(t)(r(t)z"(t))f for t > T > tx by Lemma 2.2. Since z(t) < y(t) 
and (r(t)z"(t)) is monotonic decreasing, then (10) yields, for t > t2 > T + a, 

(r(t)z"(t))" < -q(t)G(RT(t - a))G((r(t)z"(t))'). 

Hence 
oo 

í q(t)G(Rт(t-a)) dŕ < oo. 

Since RT(t) > 0 and RT(t) > 0, then J q(t) dt < oo, which is a contradiction 
t 2 

to ( H 1 3 ) . Hence z(t) < 0 for t > tx. This implies that y(t) < -p(t)y(t - r) < 
y(t — T) and hence y(t) is bounded. Consequently, z(t) is bounded. One of the 
cases (b)-(e) holds by Lemma 2.1. Let the case (b) hold. If lim z(t) = a , then 

£—>-oo 

— oo < a < 0. Suppose that —oo < a < 0. Hence z(t) < j3 < 0 for t > t3 > t2. 
Further, z(t) > py(t — r) for t > t0 and hence y(t-a) > p~l(3 > 0 for t > t3 + p. 
Consequently, (10) yields 

q(t)G(p-1f3)<-(r(t)z"(t))". 

OO 

Integrating we obtain J q(t) dt < oo, a contradiction. Hence a = 0. Conse-
ts+P 

quently, 

0 = lim sup z(t) > lim snp(y(t) + py(t — T)) > lim sup y(t) + lim inf (py(t — r ) ) 
t—>oo t—»oo t—>oo t—>-oo 

= lim sup y(t) +p lim sup y(t — r) = (1 + p) lim sup y(t). 
t—>-oo t—too t—>-oo 

Since 1 + p > 0, then lim y(t) = 0. In each of the cases (c) and (d), 
t—>-oo 

lim z(t) = — oo, which contradicts the boundedness of z(t). Suppose the case (e) 
t—>oo 

holds. Since z(t) is bounded, then lim z(t) exists. Further, t > t, implies that 
t—>-oo 

z"(t) > (r(t1)z / /(f1))/r(/ ;) . Multiplying the inequality through by t and then 
integrating it we obtain z'(t) > 0 for large t due to (H-J. This contradicts the 
fact that z'(t) < 0 in case (e). Thus the proof is complete. • 
THEOREM 2.9. Let -oo < px < p(t) < p2 < - 1 . If (Hx) and (H13) hold, 
then every bounded solution of (1) oscillates or tends to zero as t —•> oo. 
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P r o o f . Let y(t) be a bounded nonoscillatory solution of (1). Then y(t) > 0 
or < 0 for t > t0 > 0 . Let y(t) > 0 for t > t0. Setting z(t) as in (8) we 
obtain (10) for t > t0 + p and hence z(t) > 0 or < 0 for t > t1 > t0 + p. If 
z(t) > 0 for t > tx, then one of the cases (a) and (b) of Lemma 2.1 holds and 
y(t) > -p(t)y(t - T) > y(t - r ) . Hence lim'mf y(t) > 0 . From (10) it follows 

£—•00 
00 

that / q(t) dt < 00, t2 > tx, which is a contradiction to (H 1 3 ) . Hence z(t) < 0 

for t >t1. Since y(t) is bounded, then z(t) is bounded and hence none of the 
cases (c), (d), (e) of Lemma 2.1 occurs. Suppose that the case (b) of Lemma 2.1 
holds. If - c o < lim z(t) < 0, then proceeding as in the proof of Theorem 2.8 

t-^-oo 

we arrive at a contradiction. Hence lim z(t) = 0. Consequently, 
t—>oo 

0 = lim inf z(t) < lim inf (y(t) + p2y(t — r)) < lim sup y(t) + lim inf (p2y(t — T ) ) 
t-+oo t-^00 v t-+oo t—>-oo v 7 

= (1 + p2) lim sup y(t). 
£—»oo 

Since 1 + p2 < 0, then lim y(t) = 0. If y(t) < 0 for t > t0, then we set 

x(t) = —y(t) to obtain x(t) > 0 for t > t0 and 

(r(t)(x(t) + p(t)x(t - r))")" + q(t)G(x(t - a)) = 0 , 

where G(u) = — G(—u). Proceeding as above we obtain lim x(t) = 0 and hence 
t—>-oo 

lim y(t) = 0. Thus the theorem is proved. • 
i—>oo 

In the following, we obtain sufficient conditions for oscillation of solutions of 
forced equation (2). Let 

(H14) there exists F G C2([0, oo),R) such that F(t) changes sign, 
rF" e C2([0,oo),M) and (rF")" = / ; 

(H15) there exists F G C2([0, oo),M) such that F(t) changes sign with 
- c o < l iminfF(t) < 0 < l imsupF(t ) < oo, rF" G C2([0, oo), R) 

t^oo t^vQ 
and (rF")" = f; 

(H16) there exists F G C2([0, oo),R) such that F(t) does not change sign, 
lim F(t) = 0, rF" G C2([0, oo),R) and (rF")" = / ; 

t—>oo 

(H;
16) there exists F G C2([0,oo),M) such that 

lim F(t) = 0, rF" G C2( 0,oo),M) and (rF")" = f. 
t-+oo v 
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R e m a r k . If lim F(t) = a / 0 in (H1 6) , then we may proceed as follows: 

We set F(t) = F(t) - a to obtain, F <E C2([0, oo), R ) , F"(t) = F"(t) and 

lim F(t) = 0. If F(t) changes sign, then it comes under (H1 4) . If F(t) does 
£—>-oo 

not change sign, then it comes under (H1 6) . 

THEOREM 2.10. Let 0 < p(t) < p < oo. Suppose that ( H J , (H 2) , (HJ>), 
(H6) and (H14) hold. If 

oo oo 

(H17) / Q(t)G(F+(t - a)) dt = oo and J Q(t)G(F~(t - a)) dt = oo, where 

F+(t) = m a x { F ( t ) , 0 } and F~(t) = m a x { - F ( t ) , 0 } , 

then all solutions of (2) oscillate. 

P r o o f . Let y(t) be a nonoscillatory solution of (2). Hence y(t) > 0 or < 0 
for t > t0 > 0. Suppose that y(t) > 0 for t > t0. Setting z(t) as in (8) we 
obtain (9) for t > t0 + p. Let 

w(t) = z(t)-F(t). (13) 

Hence 
(r(t)w"(t))" = -q(t)G(y(t- a)) <0 (14) 

for t > t0 + p. Thus w(t) > 0 or < 0 for t > t1 > t0-\- p. Since F(t) changes 
sign, then w(t) > 0 for t > t1 by (13). Hence one of the cases (a) and (b) of 
Lemma 2.1 holds for large t and z(t) > F+(t). For t > t2 > t1, we have 

0 = (r(t)w"(t))" + G(p)(r(t - T)w"(t - r ) ) " + q(t)G(y(t - a)) 

+ G(p)q(t-T)G(y(t-T-a)) 

> (r(t)w"(t))" + G(p)(r(t-T)w"(t-T))" 

+ XQ(t)G(y(t - a) +py(t - T - a)) 

> (r(t)w"(t))" + G(p)(r(t - T)w"(t - T))" + XQ(t)G(z(t - a)) 

> (r(t)w"(t))" + G(p)(r(t - T)w"(t - r ) ) " + XQ(t)G(F+(t - a)) . 

Hence 

/ 
Q(t)G(F+(t-a)) d > < o o , 

which is a contradiction to (H1 7) . If y(t) < 0 for t > t0, we set x(t) = —y(t) to 
obtain x(t) > 0 for t > t0 and 

(r(t)(x(t) + p(t)x(t ~ T))")" + q(t)G(x(t - a)) = f(t), 

where f(t) = - / ( * ) • If F(t) = ~F(t), then F(t) changes sign, F+(t) = F~(t) 
and (r(t)F"(t)) = f(t). Proceeding as above we obtain a contradiction. Thus 
the theorem is proved. • 
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E X A M P L E . Consider 

[e"*(y(*) + (1 + e-*)2/(t - TT))" ] " + e* y(t - 2TT) = 2e~l cost , (16) 

t > 0. Hence 0 < p(t) = 1 + e~l < 2 and Q(t) = m i n ^ e ^ } = e*-*. 

Further, F(t) = sin* implies that (r(t)F"(t))" = ( - e ^ s i n t ) " = 2e" ' cos£ . As 

F(t — 27r) = sint , then 

SІП t , 2П7Г <t< (2n + 1)7Г , 
r • [i — Z7г; = < 

and 

i , ч ґ sir 

F - ( ť - 2 т r ) = 

(2n + l)7T < t < 2(n + l)7r 

0, 2n7r < t < (2n + 1)TT , 

- siní , (2n + 1)TT < t < 2(n + 1)TT , 

n = 0,1,2, . . . . Thus 

oo oo 

, dť 

2ir 271 

( Q(t)G(F+(t-2ҡ)) dt = e~ҡ [ ełF+(t-2ҡ) 

2тr 

(2n+ 
OO p 

-E / 
( 2 n + l ) 7 r 

e _ 7 r > / e ť s i n í dt 

Є V ^ Г tl • x .\-\(2n+l)ҡ 

= ^ЫЄ(Smt-C0St)]2nҡ 
n=l 

= ^ " ^ ( e ^ + l ^ ^ e 2 ^ = oo 

and 

2 
n = l 

2 ( n + l ) т r 
oo v ' 

IQ(t)G(F~(t-2ii)) dt = -e~nY^ fjsint 
2IÎ " = 0 ( 2 n + l ) 7 r 

dť 

= \e~* (e2« + e*)Y^e2™ = oo . 

From Theorem 2.10 it follows that all solutions of (16) oscillate. Equation (16) 
may be written as 

y^(t) + (1 + e-V4>(t - TT) - 2y'"(t) - 2(1 + 3e" V ' ( * " *) 
+y"(t) + (1 + 13 e-*)j/"(t - TT) - 12e"* y'(j - TT) (17) 

+ 4 e~* y(t-ir) + e 2 ' y(£ - 2?r) = 2 cos t. 
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However, (17) cannot be written in the form 

m 

W) + P(t)y(t - r ) ] ( 4 ) + Yl Qi(t)G(y(t - at)) = f(t) (18) 
2 = 1 

due to the presence of the terms (l + e~l)y^(t — TT) and y"'(t). If we take 
p(t) = (l + e~l), then we obtain 

[y(t) + (1 + e~t)y(t - TT)]{4) = y^ (t) + (l + e^)H( 4)( t - TT) - 4 e " ^ / / / ( t - TT) 

+ 6 e _ t y"(t - TT) - 4 e _ t y'(t - TT) + e~l y(t - TT) . 

If p(t) is a term other than 1 + e~l, then we cannot get (l + e~t)y^i\t — TT) . 
Hence the results valid for (18) cannot hold for (16). Thus the results in [4], 
[5] cannot be applied to equation (2). However, the results in this paper can be 
applied to (18) for r(t) = 1 in (2) because ( H J holds for r(t) = 1. As there 
are a few results in [4], [5] for even n , the present work may be viewred as the 
complement of the work in [4], [5]. 

THEOREM 2.11 . Let - 1 < p < p(t) < 0. Suppose that ( H J and (H15) hold. 

If 
oo oo 

(H18) / q(t)G(F+(t - a)) dt = oo and J q(t)G(F~(t + r - a)) dt = oo 
a a 

and 
oo oo 

(H19) J q(t)G(F~(t~a)) dt = oo and / q(t)G(F+(t + r - a)) dt = oc, 
G G 

then every solution of (2) oscillates. 

P r o o f . Proceeding as in the proof of Theorem 2.10 we obtain w(t) > 0 or 
< 0 for t > tx > t0 +p when y(t) > 0 for t > t0. Let w(t) > 0 for t>t1. Hence 
one of the cases (a) and (b) of Lemma 2.1 holds. Further, w(t) > 0 implies that 
y(t) > y(t)+p(t)y(t -T)> F(t) and hence y(t) > F+(t). From (14) we obtain 

oo 

J q(t)G(F+(t — a)) dt < oo, a contradiction. Hence w(t) < 0 for t > lx. 
tl+G 

Then one of the cases (b)-(e) of Lemma 2.1 holds. Let the case (b) hold. Since 
w(t) < 0, then y(t) > F~(t + T) for t > t a . From (14) we get 

oo 

J q(t)G(F~(t + T-a)) dt < oc , 

t!+<T 

a contradiction. If y(t) is unbounded, then there exists an increasing sequence 
{an}n°=1 such that an -> oo and y(an) -> oo as n -> oo and y(an) = max{H(t) : 
t1 < t < an]. We may choose n large enough such that an — r > tx. Hence 
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w(an) > y(an)+py(an - r) - F(an) > (1 +p)y(an) - F(an). Since F(t) is 
bounded and (l+p) > 0, then w(an) > 0 for large n, which is a contradiction. 
Hence y(t) is bounded. Consequently, w(t) is bounded. This implies that the 
cases (c) and (d) of Lemma 2.1 fail to hold. The boundedness of w(t) and (H1) 
imply that the case (e) of Lemma 2.1 does not hold. If y(t) < 0 for t > t0, then 
wTe set x(t) = — y(t) to obtain x(t) > 0 for t > t0, 

(r(t)(x(t) + p(t)x(t - r))" ) " + q(t)G(x(t - a)) = f(t), 

where G(u) = -G(-u) and f(t) = -f(t). If F(t) = -F(t), then F(J) changes 
sign with - o c < l imin fF^) < 0 < limsupF(^) < oo, F+(t) = F~(t), 

F (t) = F+(£) and (r(t)F"(t)) = / (£) . Proceeding as above a contradiction 
is obtained. Thus the theorem is proved. • 

Remark. If q(t) is nonincreasing or r-periodic, then 

oo oo 

f q(i)G(F+(t - a)) dt = oo => f q(t)G(F+(t + r - a)) dt = oo 

and 
oo oo 

f q(t)G(F-(t-a)) dt = oo = » í q(t)G(F-(t + т-a)) dí = oo . 

THEOREM 2.12. Let - o o < p < p(t) < 0. Suppose that ( H J . (H 3 ) . (H1 5) , 
(H18) and (H19) hold. Then every solution of (2) oscillates or tends to ±oo as 
t —> oo. 

P r o o f . Proceeding as in the proof of Theorem 2.11 we obtain a contra­
diction if w(t) > 0 for t > tx > t0 + p. Hence w(t) < 0 for t > tx. One of 
the cases (b)-(e) of Lemma 2.1 holds. Suppose that the case (b) holds. Since 
w(t) < 0, then py(t-r) < F(t), that is, y(t) > (-p-1)F~(t + r) for t>tx. In-

oo 

tegrating (14) and using (H3) we obtain j q(t)G(F~(t + r — a)) dt < oo, 
tl+C7 

a contradiction. In each of the cases (c) and (d), lim w(t) = —oo. If, in 
t—»oo 

case (e), — oo < lim w(t) < 0, then we obtain a contradiction due to (H,) . 
t-+oo 

Thus lim w(t) = —oo in each of the cases (c)-(e). Consequently, py(t — r) < 
t—>-oo 

w(t) + F(t) implies that \ims\ip(py(t - r)) < lim w(t) + l imsupF( t ) , that is, 
t - ^oo £-»oo t-+oo 

p\immfy(t) = —oo due to (H1 5) . Hence lim y(t) = oo. The proof for the case 
t—>oo t—>-oo 

y(t) < 0 for t > t0 is similar. Thus the proof of the theorem is complete. • 
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COROLLARY 2.13. If the conditions of Theorem 2.12 are satisfied, then every 
bounded solution of (2) oscillates. 

THEOREM 2.14. Let 0 < p(t) < p < oo and let ( H J . (H2) , (H£), (H6) and 
oo 

(H16) hold. If f Q(t)G(\F(t — a)\) dt = oo. then every bounded solution of (2) 
a 

oscillates or tends to zero as t —> oo. 

P r o o f . Proceeding as in the proof of Theorem 2.10 we obtain w(t) > 0 
or < 0 for t > tx > t0 + p. Let w(t) > 0 for t > tx. Hence z(t) > F(t). 
Suppose that F(t) > 0 for t > t2 > t l . From (15) it follows by Lemma 2.1, that 

CO 

/ Q(t)G(F(t — a)) dt < oo, which is a contradiction. Hence F(t) < 0 for 
ti+o oo 
t >t2. From (14) we obtain f Q(t)G(y(t — a)) dt < oo due to Lemma 2.1. 

t2-\-a oo 

Hence liminfH(t) = 0 because f Q(t)G(\F(t — a)\) dt — oo implies that 
oo t->oo G 

f q(t) dt = oo. Since w(t) is bounded and monotonic, then lim w(t) exists 
t—>-oc 

<7 

and hence lim z(t) exists. Thus lim z(t) = 0 (see [1; Lemma 1.5.2]). As 
t—>-oo t—>oo 

z(t) > y(t)i then n m y(t) — 0- Suppose that w(t) < 0 for t > tx. Hence 
t—>oo 

y(t) < z(t) < F(t). Consequently, lim y(t) = 0. Thus the theorem is proved. 
t—>-oo 

D 

THEOREM 2.15. Let - 1 < p < p(t) < 0. If ( H J and (H16) hold and if 
oo 

f q(t) dt = oo. £/*en ef ery solution of (2) oscillates or tends to zero as t —> oo. 
o 

P r o o f . Proceeding as in the proof of Theorem 2.10, we have w(t) > 0 or 
< 0 for t > t1 > t0 + p. Let w(t) > 0 for t > t l . From (14) we obtain, due to 
Lemma 2.1 that °? 

J q(t)G(y(t-a)) dt < oo , (19) 
t2+cr 

where t2 > L . Hence liminfH(£) = 0. On the other hand, lim w(t) = oo in 
t—>-oo t—>-oo 

the case (a) of Lemma 2.1. Hence lim z(t) = oo. However, y(t) > z(t) implies 
t-^-oo 

that lim y(t) = oo, which is a contradiction. In the case (b) of Lemma 2.1, 
t—>oo 

lim w(t) = a , where 0 < a < o o . l f c r = oo ,we obtain a contradiction as 
t—>-oo 

above. Hence 0 < a < oo. Consequently, lim z(t) = a. From [1; Lemma 1.5.2] 
t—>oo 

it follows that a = 0, which is a contradiction. Hence w(t) < 0 for t > tx. We 
claim that y(t) is bounded. Indeed, if y(t) is unbounded, then there exists an 
increasing sequence {an}n=l such that an -> oo and y(<?n) -> oo as n -> oc 
and H(O"n) = max{H(^) : * - _ < * < t r n } . Hence Hj(O"n) > y(an) + py(an - r) 
198 



OSCILLATORY FOURTH ORDER NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS II 

— F(an) > (1 +p)y((Jn) - F(an). Consequently, w(an) > 0 for large n , which 
is a contradiction. Thus w(t) is bounded. In each of the cases (c) and (d) of 
Lemma 2.1, lim w(t) = - c o , which is a contradiction. In each of the cases 

t-+oo 
(b) and (e) of Lemma 2.1, (19) holds and hence liminf y(t) = 0 and lim w(t) 

t-+oo t-+oo 
exists. Consequently, lim z(t) exists. From [1; Lemma 1.5.2] it follows that 

t-+oo 
lim z(t) = 0. Hence 

t—>-oo 

0 = lim z(t) = lim sup [y(t) + p(t)y(t — r)] > lim sup y(t) + lim inf py(t - r) 
£->oo t^-oo £->oo t-»oo 

= (1 + p) lim sup y(t). 
t—>-oo 

As 1 +p > 0, then lim y(t) = 0. The proof of the theorem is complete. • 
t—>oo 

EXAMPLE. Consider 

[e-<(y(t) + e-^e-1 -l)y(t - 1))" ] " + 4 e " 6 y\t - 2) = 40e~ 3 t , (20) 

t > l .Here - 1 < - e " 1 < p(t) < 0 and q(t) = 4 e " 6 . I f F(t) = (10/9) e" 2 t , then 
(e -* F"(t))" = 40e~3 t and lim F(t) = 0. As all the conditions of Theorem 2.15 

are satisfied, then every solution of (20) oscillates or tends to zero as t —r oo. 
In particular, y(t) = e~f is a solution of (20) which goes to zero as t —> oo. 
Equation (20) may be written as 

y(4)(t) - (e-(*+1) - e - V 4 ) ( * - 1) - 2y'"(i) + ^ e " 1 -Qe^t+1^y'"(t - 1) 

+y"(t) - (Ze-^+e-l)y"(t - 1) - 12e-('+1) y'(t - 1) 

+ 4 e - ( * + 1 ) y(t - 1) + 4 e ( t " 6 ) y3(t - 2) = 40e" 2 t . 

Explanation given in the example following Theorem 2.10 also holds here. 

THEOREM 2.16. Let - o o < p(t) < 0. / / (Hx) and (H16) hold and if 
oo 

f q(t) dt = oo. then every bounded solution of (2) oscillates or tends to zero 
o 
as t —> oo . 

The proof is similar to that of Theorem 2.16 and hence is omitted. 

COROLLARY 2.17. Suppose that the conditions of Theorem 2.16 are satisfied. 
Then every nonosdilatory solution of (2) which does not tend to zero as t -» oo 
is unbounded. 

Remark. Theorems 2.10-2.12, 2.14 and Corollary 2.13 do not hold for equa­
tion (1). However, Theorems 2.15 and 2.16 hold for equation (1). 
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3. Existence of positive solutions 

Sufficient conditions are obtained for the existence of bounded positive solu­
tions of equation (2). 

THEOREM 3 .1 . Let 0 < p(t) < p < 1. Suppose that (H15) holds with —1(1—jo) 
< liminfF(t) < 0 < l imsupF( t) < \(l—p) and G is Lipschitzian on intervals 

of the form [a,b], 0<a<b<oo.lf 

C O / OO v 

I ^ y ( y sq(s)ds) d*<oc, (21) 
0 ^ t ' 

then (2) admits a positive bounded solution. 

P r o o f . It is possible to choose t0 > 0 sufficiently large such that 

O O / OO \ 

L!^tj[!sqis)ás)dt<j{i-p) 

t0 ^ t ' 

where L = m a x j i j , G( l )} and L1 is the Lipschitz constant of G on [|(1—p), l] . 
Let X = BC([t0, oo), M) . Then X is a Banach space with respect to the supre-
mum norm. Let 

S={xeX: l(l-p)<x(t)<l, t>t0}. 

Hence S is a complete metric space. For y £ 5 , we define 

' Ty(t0+p) for iG M 0 + p ] , 

W ) = < - p ( t ) y ( t - r ) + i±£+ .F(t) 
OO , OO v 

- / [ffFj Hu~ s)q(u)G(y(u - a)) duj ds for t > t0 + p. 

Hence Ty(t) < ±±* + ^ = 1 and Ty(t) > -p + ±±2 - ±=* - ^ = ±=2 for 
l > !o + t9- Consequently, Ty £ S, that is, T : 5 —> 5 . Further, for x, y € 5 , 

| r y ( t ) - T x ( t ) | < p | | x - y | | + ^ | | x - y | | = - - - ^ | | x - i v | | . 

Hence ||TH — Tx|| < ^ ^ | | x — y|| for every x,y e S. Thus T is a contraction. 
Consequently, T has a unique fixed point y0 in 5 . Then H0(£) is a solution of 
(2) with ^(1 — p) < y0(t) < 1. Thus the theorem is proved. • 
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THEOREM 3.2. Let 0 < p{t) < p < 1 . Suppose that (H'16) and (21) hold. If G 
is Lipschitzian on intervals of the form [a, b]. 0 < a < b < oo, then (2) admits 
a bounded positive solution. 

P r o o f . We may choose t0 > 0 sufficiently large such that \F(t)\ < -̂ -=p 
and 

OO / CO x 

LfMf'*')i')"<1*r' 
to V t ' 

where L = max{L 1 ,G( l )} and Lx is the Lipschitz constant of G on [ ^ f , l ] -

We set X = BC([t0, oo),R) and 

S={xeX: !-=£ < x(*) < 1 , t>t0}. 

For y G S, we set 
f Ty(t0 + p) for t e [ * 0 , * 0 + p ] , 

TУ(*) = < P ( < M ř - r ) + ^ + F ( í ) 
OO / oo 

" / (ffS /(« " a)?(«)G(»(« - (J)) d u ) d s for t > to + P-
Proceeding as in the proof of Theorem 3.1 we may show that T has a unique 
fixed point y0 in S and it is the required solution of (2). The proof of the 
theorem is complete. • 

Remark . Theorems similar to Theorems 3.1 and 3.2 can be proved in other 
ranges of p(t). 

Summary 

In [6], equations (1) and (2) are studied under the assumption (3). As (H 1) 
holds for r(t) = 1, then the results of this paper can be compared to some of 
the results in [5]. Indeed, Theorem 2.4 is better than [5; Theorem 3.6] for n = 4. 
Theorems 2.5 2.7 are new. Theorem 2.8 is comparable with [5; Theorem 3.12]. 
As equation (1) is not, in general, a particular case of equation (6), then we 
obtain every solution of (1) oscillates or tends to zero as t -» oo in Theorem 2.8. 
Similar situation occurs when Theorem 2.9 is compared with [5; Theorem 3.14]. 
Theorems 2.10 and 2.11 are similar to [5; Theorems 2.3, 2.1] respectively for 
n = 4. Theorem 2.12 can be compared with [5; Theorem 2.2] for n = 4. The­
orems 2.14 2.16 are new. It would be interesting to study neutral differential 
equations with quasi-derivatives of the form 

. (r,(t)(r2(t)(r,(t)(y(t) +p(t)y(t - r ) ) ' ) ' ) ' ) ' + q(t)G(y(t - a)) = f(t). 
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