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LOCALLY BEST QUADRATIC ESTIMATORS

LUBOMIR KUBACEK

Introduction

Let Y=XB + € be an n-dimensional random vector, X is a known n X k matrix
and B € #* (k-dimensional Euclidean space) is an unknown vector parameter. The
mean value of the error vector £ is E(e)=0 and its covariance matrix is

p
E(ee’)===>%V.. The symmetric matrices Vi, i=1,...,p, are known,
i=1
(%4, ..., 9,)' =& €9* is unknown vector parameter and 9* is a subset of the space
P with nonempty interior. The matrix of the third central moments E[e(X)(g€’)] is
@ and the matrix of the fourth central moments E[(ee’) X (ee’)] is . The symbol
® denotes the tensor product. The parametric space R* X 9* X @* X y* is denoted
by 6*; @* and y* are given subsets of the space of all matrices of the third and the
fourth moments, respectively.

The problem is to estimate a function (B, 3)=c'f+ f'9, B e R*, # € 9*, from
a realization y of the random vector Y. The vectors ¢ € R, fe R”, are given. The
unbiased estimator of the function with minimum variance at the given point
0=(B, ¥, ¢, V) of the parametric space 0* is considered in the form §=
a'Y+ Y'AY, where ae R" and A is an n X n matrix.

The aim of this paper is to contribute to the determination of the explicit
expression for the vector a and for the matrix A.

The fundamental paper on this problem is [1].

1. Notations and auxiliary statements

Definition 1.1. Let &, and M., ., respectively, be the space of all symmetricn X n
matrices and the space of all m X n matrices. Mappings

vec(:): Mo, n—> R™,
VeCh(.) : yn — gl"('”“)/l
(CR)Vec(.): F— Qrin+12

are given by the following relationships
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VCC(T):(I;_;, Bty ooy bt 8,25 8225 coes b2} oo tony Bny ooy b))
VeCh(S)z(Sl.l, S$1,25 +-vs S1,n 3 82,2, 82,35 -+ S2,n 3 -ov 3 Sn—1,n~15 Sn—1,n 3 sn,n)ly
(CR)VCC(S) =(s1‘l, 231,2’ LRET) 2sl.n 5 82,2, 2s2,39 LRRE] 2s2.n 3 eees Sn—1,n—1, 2Sn-—l,rl H sn.n),-

Here t.;={T). and si,; = {S}..; are the (i, j)-th elements of the matrices T and S,
respectively. :

Definition 1.2. Mapping
(CC)( ) t My, 2> M. Hr+1)2

is given by

(cOM)=(my 1, m2+myy, ..., M, +M, 15 My My3+Mss, ..., My, +m,,;
...; mr—l,r—l, mr—l.r + mr,r—l; mr,r),

where

M=(m1_|, mya ..My, ;M2 ,, Mo ..., M2, 5 ..., M1, M 2, ..., m,',).

Here m, ;e R, i, j=1, ..., r, are columns of a matrix M.
An analogous operation on the rows of the matrix M € M,2,, defines the mapping

(cRY(M): M2, — Mpp1y2, 1

Lemma 1.1. For arbitrary matrices Ae M,,, Se¥,, Be M, , there holds:
ASB=C<(B'®A) vec(S) =vec(C)<(cR)(cC) (B'X®A) vech(S) = (cR)vec(C).
Proof is obvious.

Lemma 1.2. Let Ne ¥, be a positive semidefinite (p.s.d.) matrix, A€ M, .,
yeR™, ye M(A) (column space of the matrix A). Then there exists a matrix
G e M,,.» with the property:

V{x: Ax=y}(Gy)'NGy<x'Nx& AGy=y;

the matrix G is a solution of the equations AGA = A, (GA)'N=NGA. A particular
solution is (N+ A’A)"A'[A(N+ A’A)"A’]". (The symbol ~ denotes a g-inversion,
i.e. the matrix S~ fulfils the condition SS™S=S8.)

Proof. See [4, p. 44] and [2, Lemma 2.1.12 and Lemma 2.1.15].

The matrix G from Lemma 1.2 is denoted as A,(n).

Lemma 1.3. The equation AXB=C, Ae M, ,, Xe M,..,Be M, s, Ce M, s with an
unknown matrix X has a solution iff AATCB™B = C. If this condition is fulfilled, the
general solution is X=A"CB~+T—A"ATBB~, where T is an arbitrary matrix
from M,,,.

Proof. See [4, p. 24], and Lemma 2.1.5 in [2].
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2. Unbiased and invariant estimators

Lemma 2.1. A function y(B, 3)=c'B+f?, BeR*, #ed*, is unbiasedly
estimable iff ¢ e M(X') and fe M(K), where Ke &, and its (i, j)-th element is
{K}i.; =Tr(ViV; — PV.PV)) = {V’(l - P®P)V}i.i 5 P=X(X'X)"X’, V= [vec(V1),
vec(Va), ..., vec(V,)].

Proof. It follows from the definition of unbiasedness and from the assumption
on the interior of the set 9*.

Lemma 2.2. An estimator ¥ =a’Y + Y'AY of the unbiasedly estimable function
y(B, D) =c'B+F, BeR*, ?ed* (ie. ce M(X'), fe M(K)) is unbiased iff

X'a=c, (X'®X')vec(A)=0, V'vec(A)=f. 2.1)

Proof. The statement is the consequence of the relationships E(a’Y + Y'AY) =
a'E(Y) +[vec(A)E(Y®Y), E(Y)=XB, E(Y®Y)=X®X)(BRB)+Vd and
of the assumption on the interior of the set 9*. (The relationship E(Y®Y)=
(X®X)(BRB) + V& can be obtained in the following way:

E(Y®Y) = E[(XB+ £) D (XB + £)] = (XB) D (XB) + Elvec(ee')] =
= (X®X)(BRB)+ vee (Vi) = XX (BDB) +V.)

Note 2.1. AsV{ye R"}y'Ay =(1/2)y’(A + A’)y the symmetric matrix A(e %,)
can be used instead of the matrix A(€ ., ) from Lemma 2.2. The condition for the
unbiasedness of the estimator § =a’'Y + Y’AY of an unbiasedly estimable function
y(B, D)=c'B+ 1D, BeR*, #ed* can be rewritten as

X'a=c, (cC)(X'®X')vech(A)=0, (cC)(V')vech(A)=T.

Note 2.2. Consider a function y(8, #) = f'#, # € 3*. With respect to Lemma 2.2
the unbiased estimator of this function is fr=a’'Y +[vec(A)]'(Y® Y), where a and
vec(A) fulfil the conditions X'a =0, (X'®X')vec(A)=0, V'vec(A)=f. As Y=
XB + £ the estimate is € kx + (¢’ @ €')vec(A) +[(B' X)X e’ + €' R(B'X")]vec(A),
where kxeKer(X')={u: ueR", X’u=0} and thus it contains the member
[(B'X)YRX e+ e R(B'X)]vec(A) that need not be a zero and depends on the
parameter B. In order to remove this dependence, the condition AX=0 (in the case
of the symmetric matrix A) is used instead of the condition X’AX=0;

AX=0<(X'®Ivec(A) = 0<(cC)(X'@l)vech(A) = 0.
The estimator a’'Y+ Y'AY, A=A/, fulfilling the conditions
Xa=c, (X'®NDvec(A)=0, V'vec(A)=f

is called an invariant estimator. It is clear that the invariant estimator is an unbiased
one. (For details see [1] and [3].)
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Lemma 2.3. An invariant estimator of the function y(B, ) =c'p+ f' &, p e R*,
ded*, exists iff ceM(X') and fe M(K®), where {KP}, =Tr(MV.MV,)=
{(VIMRMV) ), i,j=1, ..., p, M=1-P.

Proof. See [3, p. 9].

3. Locally best estimators

The following denotations will be used:

Var(Z,~) =E{[Z. _E(Zu)][z. "E(zi)]'}’ i= 1) 2;
cov(Zi, Z)) =E{[Z: ~E(Z)][Z, —EZ)]'}. i, j=1, 2, i #].

Lemma 3.1. For random vectors Y, Y® Y, (cR)(Y®Y) the following relation-
ships are true:

@ cov{ ¥, [(R)(Y® V)]} = (C) {corl Y, (YR W]},
(b))  Var[(cR)}(Y® Y)]=(cC)(cR)[Var(YXR Y)] = (cR)(cO)[Var(YR) Y)].
Proof. (a) Follows from [(cR)(Y® Y)]' =(cC)[Y® Y)'] and from the bilineari-
ty of cov(-, - ).
(b) Follows from the relationships:
Var{[vec(A)]'(Y®Y)} = Var{[vech(A)]'(cCR(YR Y)};
Var{[vec(A)]'(YR Y)} =[vec(A)]' Var(YRX Y)vec(A) =
=[vech(A)]'(cR)[Var(YRX) Y)]vec(A) =
=[vech(A)]'(cC)(cR)Var(Y® Y)vech(A)
and
Var{[vech(A)]'(cR)(Y®Y)} =
=[vech(A)]'Var[(cR)(YX) Y)]vech(A).

The assumption A=A’ is used. The commutation of (cR) and (cC) is obvious.

Lemma 3.2. Under the assumption from the Introduction the following relation-
ships are valid:

(a) covY, (YR Y)]=¢'+ (' X)QDZ+ZX(B'X),

(b) Var(Y® Y) =y + [(XB)®]¢’ + ¢[(B'X )R] + 1R (XB)]e’ +
+@[IQ(B'X)] + (XBB'X)RDZ+ ZR(XBB'X’) +
+[IQXB)IZ[(B'X )R] + [(XB) QNZ[N® (B'X)] — vec(Z)[vec(2)]'.
Proof. From the definition of cov(-, - -) it follows that
cov(Y, Y®Y)=E{(Y-XB)[YRY-E(Y®Y)]'}=
=E{e[(XB + £)R(XB + £) — (XB) R (XB) — vec(2)]'} =
=E{e[e’'®e’ +e' @(B'X)+(B'X)®e —[vec(D]']},
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where

E[e(e'®e)]=E[(1®¢e)(e'®e')] = E[e' ®(e')]| = ¢’
E{e[e'Q(B'X)]} =E{(e®@D[e'@(B'X)]} =
=[E(ee)]®(B'X)=ZR(B'X'),
E{e[(B'X)®¢e']} =E{(1QX)[(B'X)e']} =
=(B'X)®[E(ee")] = (B'X)RZ,
E{¢g[vec(Z)]’} =0.

If YOY-E(YR®Y)=eRe+(XB)R e+ e@®(XB)—vec(T) is taken into ac-
count, then
Var(YQY) = E{(ee') @ (ee') + [(XB)e' ] X (ee”) +
+ (e ) R[(XB)e'] — vec(Z)(e' D e’) + [e(B'X)]®
& (ee") +(XBB'X )R (eg’) + [e(B' X )R [(XB)e’] -
—vec(D)[(B'X)®e'] + (e ) ®[e(B'X)] +[(XB)e']®
R[e(B'X)] + (e ) Q(XBP'X’) — vec(Z)[e' R (B'X)] -
— (e®¢e)[vec(Z)] —[(XB) R ¢][vec(T)]' —
— [e@(XP)][vec(D)]' + vec(Z)[vec(T)]'},

E[(ee")®(ee")] =,

E{[(XB)e'1®(eg")} =[(XB)RIE[e' @ (ee")] = [(XB)R]’,
E{(e£")Q[(XB)e']} =[1Q(XP)]E[(ee" )R €] = [IQ(XB)E[(e ®1)(e' ®e")] =
=[I®XPIE[(1Xe)(e'®e')] =
=[1®(XB)]E[e’' ®(ee")] =[1X®(XP)]¢’,
—vec(Z)E(e'®¢e’) = —vec(Z)[vec(T)]';
E{[e(B'X")]®(ee")} = E[e ®(ee")][(B'X )R] = 0[(B'X" )R],
(XBB'X" )R E(ee’) = (XBB'X)RZ,
E{[¢(B’X)]R[XB)e’]} =1 (XB)IE(e@e")(B'X)RN] =
=[IQXAIZ(B'X)XR1];
E{(ee")®[e(B'X")]} = E[(ee’) R ][IQ(B'X")] =
=E[(e @D (e’ X)X (B'X)] =
=E[(e@Dee'II®(B'X)] =
=E[e®(ee)I®(B'X)]=[IQ(B'X)],
E{[(XB)e'1R®[e(B'X)]} =[(XB)RINE(e' @ )IRQ(B'X")] =
=[(XB)RNZ[R(B'X")].

It is obvious how to finish the proof.
Further the denotation
(¥EX)-z

\"

where

is used. Let

G= {a’ Y+ YAY:X'a=c, Z'vec(A) = (‘f’)}
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(i.e. the class of all unbiased linear-quadratic estimators of the unbiasedly
estimable  function y(B, d)=c'B+fd, PeR*, Dded*, ce.UX),
fe #[V'(1-PXP)V]); an estimator Jo€§ is called the locally best one at the
point (B, #, @, ) € 6* if

Varg, 5, 0.4(0) =min{Varg s, ¢.o(7): 7€9 }.

Theorem 3.1. The locally best unbiased estimator of the function y(f, #)=
C'B+1D, BeR*, Ded*, cel(X), fel[V'(I-PRP)V] is 7=a'¥+YAY,
aeR", Ae M., ., where

a=(X)nwC —[1=X}neX'1Z7D1,2(Z ) me.r (:) ,

vec(A) = (Z)mion (‘f’) = @) @2 52Z'1D3 D21 (X Y

Di..=cov(Y, YXY)=D;1,
D, .=Var(YXYY),
(#) =Z—-Dy,2D3,2[D: 2 — D2,2(Z' ) mp..»Z']D3,2D2.1,
(xx)=D5, =D, 2 [E— Z(X ) X']ZD,...

Proof. First it is necessary to show that () and (xx) are p.s.d. matrices and thus
the g-inversion (X')..) and (Z')mc. is correctly defined. With respect to the
inclusion #((D2,1) = #(D-,2) (it is implied by the relation

P{YXRY-E(Y®Y)eM[Var(YR V)]} =1)
it is valid D, 2Dz D, =D, ; thus (x) can be rewritten as

(¥x)=2-D,.D;5.D,,+D, .D; 2D2.2(Z" )2 »2'D3, 2Dz =
=Var[Y—D,D5,(Y® Y)] +D:..05 . Var{Z[(Z ). ») (YR ¥)} D5.2D, , ;

as (%) is a sum of p.s.d. matrices, (%) is a p.s.d. matrix.
The proof for (x*) is analogous.
The necessary and sufficient condition for the statistic

(@ lvec)]) (y g y)

to be locally the best unbiased estimator of the function y(, #)=c'f+ ',

BeR*, ded*, is
[
X, 0 a \_ .
(0, Z’) (vec(A)) —((f)) (unbiasedness)

and the minimality of the variance
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Var {[V', (Y@ W] (|, ay) | = (@ [vecta)ID (vertay)

where

z Dlz
D=( o )
D2.l’ D2.2

With respect to Lemma 1.2 it means that

’ _ /e
(vectzA)> N ();’, g') m(D) (‘f)) )

(X', 0)_ _ (cl.l, cl.2)
0, r4 m(D) c2, 1 CZ.2
is used, then with respect to Lemma 1.2 two systems of conditions are obtained for

the matrices C;j, i,j=1, 2:
X’Cl_IX’ =X’, X'C,_ZZ' =0,

If the denotation

2'C..X'=0, 2'C,.Z'=2, o)
[0 (&) %] =0 (§2)x.
[(z D...) (c, Z) ] =(D:.1, Dz.2) (c. :)x @)

02000 (8)2] 02000 (&) 2

2,2

With respect to Lemma 1.3 from (1) we obtain:

C.i=(X")", Ci2=Ti.—(X')X'T,2Z'(Z'),
Ci=To—(@Z')ZT,: X' (X)), Cr2=(2')".

The problem is to determine the matrices T;,» and T.,; and to determine the
proper types of g-inversion in order to fulfil the condition (2).

First the matrix T,,; will be determined. When the function y.(g, #)=c’'B,
B € R*, is estimated, then the matrices C;,; and C,, do not occur in the estimator

=Y'X') c+(YRY)[T21—(Z')"Z'T.,: X(X')"]. Let (X')” be fixed; the matrix
T... minimizes the dispersion Var({.) if it is a solution of the equation dVar(ye)/
/3T2,1=0. When (Z') .. is chosen for (Z’)~, then the equation 3Var(7.)/3T,,1 =0
is equivalent to

{(1-[(Z)n©:.2Z']'}D2,2T216¢" = — {1 = [(Z')m©:.0Z'] '} D2, (X")"CC’

(with respect to Lemma 1.3 it can be seen that the last equation can be solved).

399



As the matrix T,,, cannot depend on the vector ¢ the particular solution can be

chosen in the form
T.1=—-D3.D, (X))~
and thus
C..c=—[1-(Z')nwo.»2']Dz.D..1(X") ¢,

because of X'(X')"e=ceM(X'). The type of the g-inversion (X')~ will be
determined later.

We can proceed analogously in the case of the matrix Ty,,. When (2') is fixed
and the matrix (X')n) is chosen for (X’)” in the estimator

Fo=3=(YRY)(Z) (‘,7) +

+ Y [Ti2— (X)) XT1.Z/(Z)] (‘f’) ,
then the particular solution of the equation 3Var(9/)/3T;.=0 is
Ti2=—-27D2(Z')".

For the linear member of the estimator of the function (8, #)=f'{#, #€9*,

Ci.- (g) = —[1-(X)m@X']ZD:,2(Z')" (‘:)
(because of (‘f’) € M[Z'(1-PRP)Z] ./%(Z’)) holds.

It remains to determine the type of the g-inversion (X')” in the expression for
the matrix C,,; (and thus in the expression for the matrix Cy,1) and the type of the
g-inversion (Z')” in the expression for the matrix C;,, (and thus in the expression
for the matrix C,,,).

Consider the first condition from (2). Its right-hand side is

r.h.s. = Z(X’)_X’ - D]_2[| - (Z,);I(Dz,z)zI]D;, 2D2' l(x:)—xl =
= {2 - D1.20£ 2[02.2 - DZ,Z(Z’);I(DLz)z,]Dz—' 202'1}(x') X'

If in the last expression the matrix (X'). is substituted for the matrix (X')", then
with respect to Lemma 1.2 the r.h.s. is a symmetric matrix and thus the first
condition from (2) is fulfilled. Analogously the choice (Z').., for the matrix (Z')"
fulfils the third condition in (2).
It remains to verify the second condition of (2). Its left-hand side is
Lhs.=[(ZC,,2+D,,C,2)Z'] =
={-Z[l- (X)X ]2 D1,2(Z')n@nZ’ + D1.2(Z ) Z'}' =
=Z[(Z") ] D2 1(X ) mm X'

(Lemma 1.2 and #(D,,2) c M(Z) = ==7D,,,=D;.. were utilized.)
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The r.h.s. of the second condition from (2) is

r.h.s.= (D31, D2,2) (g;l) X' =D21(X' )X’ —
, 1

= D:.5[1 = (Z')7©:22']D3,2D2,1(X )X’ = Z[(Z")@:.0]' D21 (X ) X'

(Lemma 1.2 and #((D,,1) c M(D.,2) > D,,,Dz,2D2,1 =D,,; were applicated.)
The equality between the r.h.s. and the L.h.s. can be proved in the following way-
Let two random vectors

L1 = Y® Y- DMZ‘ Y+ DZ,IE—X[(x’);‘(x)]’ Y
and

Lz =Y- Dl_zn‘z 2( Y® Y) + DI.ZDi 22[(2');'(02.2)] '(Y® Y)

be considered. The expression for the cov(Li, L2):

cov(Ly, L)=D3,;1— D, 27 [Z-Z(X')meX'] -
—[D2,2=D2,2(Z' )7, »%']D2,2D2,1 +
+ Dz_ ,Z“[E - Z(X’);(I)X’]Z‘DMD{, 2[02,2 - D2,2(Z,);|(D2,z)z']D2—, 202. 1y

can be arranged into two following forms:

COV(LI, Lz) = Dz,l(X’);-(z)x' -
— {(1=D2,,27[Z = 2(X")m@X']ZD1.2D3,2} [D2,2 — D2,2(Z )02 9Z']D2,2D2,1 =
=Dz, 1(X)meX’ — (x:)[1 — (Z')m©:.»Z']D2,2D2,1 = Fy ;
cov(L,, L;)=-D;, 12-[2 = Z(X)mxX]-
-{I-X27Dy,.Dz,;[D2,. — Dz,z(z');.(nz,z)z']ni 2021} + Z[(Z")m02.0] ' D21 =
= =D, 2 {1- X[(X)rn@] '} (+) + Z(Z')7©:.5] D21 = F>.

(The relationships
D:,2(Z')m©:.»Z'D22D2,1 =
=2Z[(Z')m©2.0)' D2.2D3,2D2,1 = Z[(Z')m2.]'D2.1,
D,, 12_2(X');.(}:)X'Z_D_1,2 =
=05, 2 X[(X")m®] ZZ7D1,2 = D2, 1 XE7[(X )7 x)] ' D12,

etc. resulting from Lemma 1.2 and from ((D1,2) = #(Z), ‘/“(DZ,I)C'\/“(DLZ) were

utilized.)
Further
Z[(Z)mieo) Fi(X)moX' =Z[(Z )] D21 (X )X (X ) X' —
= (%)@ Z' [1 = (Z')m@2.2Z']D2,2D2,1 = Lh.s.
because of
X' (X)mX' =X, Z[(Z)meol (x%) = (3)(Z ) Z’
and i

(Z)nerZ' (Z @2 = (Z ) Z'
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Analogically
Z[(Z');.(..,]’Fz(X’);.(.)X' = Z[(Z');.(oz,z)llnz_ ,(X’);.(.)X’ =r.h.s.

Lemma 3.3. The class of all unbiased quadratic estimators of the zero function is
Uo={T0: To=Y'[I-(X) Xu+(YRY)[I-(Z)Z]t,ue R", te R"™’}.
Proof. It is analogous to the proof of Lemma 2.2 considering the relationships
Ker(X')={a: Xa=0}={[1-(X')"X']u: ueR"} and Ker(Z')={[I-(2Z')"Z']t:
te R").
Note 3.1. Theorem 3.1 can be proved with the help of the relation
cov(?, 1) =0, To€ Uo

(e.g. [2, p. 55]), which expresses the necessary and sufficient condition for the
estimator y to be the locally best. Thus it is sufficient to verify

a’zh + a’'D, »vec(B) + [vec(A)]'Dz,1b + [vec(A)]'D..2vec(B) =0.
It is advantageous to choose the zero estimator in the form
To=b'Y+[vec(B)]'(Y®Y)=Y'[l- (X’);.o:)X’]li +
+(YRY) - (Z)mo:nZ']t; UER", te R™.
In the following the denotations

Nl,z = (CC)(D]_z), Nz,z = (CC)(CR)(Dzz)
are used.

Corollary 3.1. For the locally best estimator of the function y(, #)=c'f+f' &,
BeR*, ded*, ceM(X'), feM[V'(I-—PRP)V], written in the form §=
a’Y+ Y'AY, where Ae ¥,, there holds

a=(X")mwc = [1- (X" )m®X']Z " N1.2[(cC)Z’)]mew ((f,) ,

vech(A) = [(cC)(Z")]mew (lf]) = (1= [(cO(@Z)]nm. o(cOUZ') I N2 2N 1 (X')cr€,

where
(¥) =Z = Ni2N2 2{N2,2 — N2 5[ (cC)(Z") ] mma.2(cC)(Z') } N2 2N, 1,
(#%) =Nz2— N2, . Z7[Z - Z(X)meX']Z Ny 2.

If Lemma 3.1 is taken into account, then the statement can be proved
analogously to the statement of Theorem 3.1. This form of estimator is more
advantageous for numerical computing.

When estimating a function y.(8, #)=c’'B, B e R*, c e #(X"), we can restrict
ourselves to linear estimators @'Y, X'a=c, only. It is obvious that the best
estimator from the larger class U, ={a'Y+ Y'AY: X'a=c, Z'vec(A) = 0} cannot
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be worse than the linear one. Analogously when estimating a function y,(8, #) =
'3, ded* feM[V'(I-PRP)V], we can restrict ourselves to estimators of the
form Y'AY. In this case it is also obvious that the best estimator from the larger
class 9, cannot be worse than the estimator Y’AY. In spite of it the proof of the
following theorem can help to gain a deeper insight into the fact.

Theorem 3.2. (a) Let v.(B, })=c'B, BeR*, ce M(X') be an estimated
function. For the estimator

c'B=c'[(X)nw]'Y— ' {[1=(Z)n©.2Z']1Dz2,2D:,1(X )2} (YR Y)
from Theorem 3.1 it is true that
Var(e’'B)<Var{c'[X)m]'Y};

(on the right-hand side the variance of the best linear unbiased estimator of the
function Y. is).

(b) Let yi(B, #)=1F'd, ded*, fe M[V'(I-PRP)V] be an estimated function.
For the estimator

=00, 1)(@Z )l (YRV)— (0, £){[1- (X)X |27 D1,2(Z )rcn}' Y
from Theorem 3.1 it is true that

Var(f'#) < Var{[vec(A)] (YR Y)},

where vec(A.) =(Z')mo.. ((f,)’ which means that [vec(A.)]'(Y®Y) is the locally

best estimator based on the vector YX Y.
Proof. Consider A€ My, ., ¥y € M(A), Re F., S€ F., where the matrices R, S
and R—S are p.s.d. Then with respect to Lemma 1.2 there holds:

V{x: Ax=y}||ArsYlls<|[x]ls<] x|lr >
> ||An@Yllssmin{||x|ls: Ax =y} = |Az@Yls.
If we substitute- ¢, X, (») for y, S, R, then
R - S = D],zDz_, z[Dz,z - Dg,z(zl);.(pz_z)Z']Dz—, ZDZ. 1.

Further with respect to Lemma 1.2 the matrix D, >— D;2(Z’)70,,Z can be
rewritten as

{1-Z[(Z")70. 5]} D2,2[1 = (Z') 0202 ],

which is a p.s.d. matrix; thus R—S is p.s.d. and ¢, =, (») fulfil our assumptions. It
means that

Var(e'B) = [|(X)nweli < [(X)rmellE = Var{e' [(X)rm]' Y}
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The fact that ¢'[(X')mx)]’Y is the best unbiased linear estimator of the function y.
is proved, e.g., in [2, p. 140].
(b) Can be proved analogously.

Lemma 3.4. For an invariant estimator

a'Y+[vec(A)]'(YRY), Ae.,
Xa=ceM(X), (XXvec(A)=0,
V'vec(A) = fe MV (MRM)V]

of the function y(B, ®)=c'B+ 9, B R, & €d*, there holds
Var{a'Y +[vec(A)]'(YR Y)} =
=(a’, [vec(A)]') (i: P — vec(;p)[vec(Z)]'> (vec‘zA)) )
Proof. If (2.2), Lemma 3.2 and relationships
AX=0<X'A=0<
X'RDvec(A)=0<=(1RX )vec(A)=0
are taken into account, then
cov(Y, YR Y)vec(A)=
=g@'vec(A) + (B’ @Z)(X' ®Nvec(A) + (ZR B IIRX')vec(A) = p'vec(A),

and analogously

[vec(A)]' Var(YX® Y)vec(A) =
=[vec(A)]'yvec(A) — [vec(A)]'vec(Z)[vec(Z)]'vec(A).

Lemma 3.5. The matrix

3, Q' )
<cp, P — vec(Z)[vec(Z)]
is p.s.d.

Proof. It can be easily proved that the mentioned matrix is Var ( , which

£
e®£)
is obviously p.s.d.

Further the denotations

DL, = — vec(Z)[vec(D)]',
N = (cO)(9"),
N$2, = (cC)(cR)DS,,

. XX
ar — (AL
z7=("g")
will be used.
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Lemma 3.6. The class of all invariant estimators of the zero function is

UP = (0 80 = Y[I- (X)X ]u+ (YR Y)[I- @) ZP]t,
ueR", te R").

Proof. For t§? € U the following has to be valiid:

V{BeR*, #e0*)Ep o (7?) = 0& (X' ®I)vec(A) =0 <
<>X'a=0&Z"vec(A)=0.

Theorem 3.3. The locally best invariant estimator of the function

(B, D) =c'B+1d, BeR*, ded*, ceMX),
fe MVMPROM)V], is 7P=a’'Y+Y'AY, acR", Ac¥.,
where '

a=(X)re = (1= X)r@X 1= 0ZP)rew (‘,’) :

vee(A)= @i (§) =1~ @ YrcornZ [OL) 0 X o0,
(+) = = — @' (D) [DS"s — DPA(Z™ YzconvZP | (DI) 0,
(+5) =D, — G [E — (X Y2 coX 1Z-.

Proof. The estimator t{? from Lemma 3.6 in the form

=Y [I- (X)X u+ (YY) [I- (Z)ne..nZ"t,
UeR", teR™

and Note 3.1 has to be utilized. ol

Corollary 3.2. The following form of the locally best invariant estimator is more
advantageous for numerical computations:

a=(X")rnwe = [1- (X)nxX ] N[ (cCHZ)]me (‘f’) ,

vech(A) =[(cC)(Z™) e (lf’) -

= {1 = [(cO)(Z™)]mmz 2 (cCYHZP) }(NE%) "N (X ) €
(») =Z — Ni%(N£E%) {NE% — NE%[(cO)(ZP) w20 (cOH(ZM)  (NS%) NS,
(*#) = Ng)z - NS')IZ'[Z - Z(XI);(z)x’]Z_Nﬁ)z.

Note 3.2. An analogy of Theorem 3.2 can be proved for invariant estimators
from Theorem 3.3.

Theorem 3.4. If ¢ =0, then the locally best invaria_nt estimau_)r of a function
y(B, M)=c'B+F}, BeR*, ded*, ce M(X'), fe MV (MRM)V] is
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7= Y’(X’);(x)c + (Y@ Y)'(Z(’)');.(D) (;7) s

where

2, 0
D= (0, Y- vec(E)[vec(E)]') ’

Proof. From Lemma 3.6, Note 3.1, Lemma 1.2 and assumption ¢ =0 it follows
that

V{ueR", te R} u' (1-X[(X) )} =X )mme +

1 (1-Z00Z) 1D Yrw (5) = 0

(because of ce M(X’) and ((f’) EJ%(Z‘"')).

Note 3.3. The vector @ and the matrix A from Theorem 3.3 are the solution of
the equations

(a) MZa +Mg’'vec(A)=0
(b) (MM)[yvec(A) +ga]=(MRM)VA

derived by J. Kleffe (in [1, equations (4.4), (4.5)]) for the locally best invariant
estimator. In (b) the vector A has to exist.

Proof. If the expressions from Theorem 3.3 are substituted for the vector a and
the matrix A, then for (a) there holds:

MZa +Mg'vec(A) = ME(X )i € — ME[1 = (X )me X']-
2@ (Z" ) ((f)) + M (Z)men (lf’) -
- MCP'“ - (Zm'),_,.(pz'2(!))2(')'](D§f)2)_Q)(x’);'(_)c =

=M@)(X)nee +ME(X)n@X 27" (27 )0, (?) =0

because of
M(*)(X’);.(.)c = M(*)(X’);(-)X'U =
MX[(X)mw] (x)u=0 (MX=0,c=X"u)
and

ME(X)meX' =MX[(X)m@]'Z=0.
For (b) the following is valid:

MEM) {4 (@) () ~ 1= @027 (0O G Vo) +
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+¢ <(X');<.)c = [1- (X)neX 12 (Z" ) (7))} =

=M@M) { (4= 001~ (X)X 150 @i (7) +

+ (1= {D5"; + vec(Z)[vec(2)] }1 = (2 )02 ZP)(DL%) ™) -

- P(X)meoC} = (MOM) {((**) +vec(D)[vec()]' ) Z™Van (‘f’) +

+ DL E )0 02 D) §(X 0= V.
(e 1= @ Yar 02 1OL) 9K Vro0) | =
= 0. MMV )z (o)t + MOM)Y-

.<‘.1[vec(z)]'(2‘”')%<~-> (‘,’)> i

+(0, MOMV)[(Z™)mm] 'DE%(D5%) (X" )mi € —
= (MRM)V(D[vec(Z)]'[1 - (Z® )r(or,.,Z"] (DE) " (X)mpC) =v.

((g) =Z"'t was utilized.) It is clear that for the obtained expression v there exists

a vector A such that (M®M)VA is equal to the vector v, which was to be proved.
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JIOKAJTBHO HAUIYYIIUE KBAJIPATUYHBIE OLIEHKU
Lubomir Kubacek

Peswome

B nuHEHHON CMeLIaHHOH MOoJeH
Y=XB+e, E(c)=0, E(EE')=§}0.-V.» X Vi oo Vs
HU3BECTHBIC Man}‘lubl) HY>XHO OINPEACTIHTh OLEHKY q)yHKLUIIPl
v(B, N=c'p+1'd, PpeR*
(k-pa3mepHoe npoctpanctso Eskiupa), & € 3* c R°. MaTpuubl TPETHHX M YETBEPTHIX MOMEHTOB
9=E(e®(ee’)), v=E[(ee)®(ec")]

JaHBbI. HecMmemieHnble 1 WHBAPHAHTHLIC OLCHKM MPEANOoJararTcs B d)OpMe

Y=a'y+y'AY.

[TpuBeNEHHbI SIBHbIE BbIPaXEHHUs U1l BEKTOPA @ ¥ MaTPHIBI A TaKOBBI, YTO PE3yNTUPYIOLIHE OLEHKH
ABJSIIOTCA B 3alaHHOM Touke (f, &, @, ) mapaMeTpUYECKOro MPOCTPAHCTBA HAWITYYLIAMH.
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