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PERIODIC SOLUTIONS IN SYSTEMS AT 
RESONANCES W I T H SMALL RELAY HYSTERESIS 

MlCHAL FEC KAN 

(Communicated by Milan Medved') 

ABSTRACT. We study the existence of periodic solutions for certain systems of 
constant ordinary differential equations at resonances with relay hysteresis. 

1. Introduction 

In this paper, we deal with relay hysteresis [5]. So there is given a pair of 
real numbers a < (3 (thresholds) and a pair of real-valued continuous functions 
hQ G C([a,oo),R) , hc G C((-oo,/?] ,R) such that hQ(u) > hc(u) Vw G [a,/?]. 
Moreover, we suppose that hQ, hc are bounded on [a, oo), ( - co , /?], respectively. 

For a given continuous input u(t), t > t 0 , one defines the output v(t) = 
f(u)(t) of the relay hysteresis operator as follows 

/(«)(*) 

h0(u(t)) if u(t)>(3, 

hc(u(t)) if u(t) < a , 

h0(u(t)) if u(t) G (a,/3) and u{r(t)) = /?, 

hc(u(t)) if u(t) G (a, 13) and u{r[t)) = a , 

where T(£) = sup{5 : 5 G [£0,£], ^(«s) = a ox u(s) ==/?}. If r ( t ) does not 
exist (i.e. tt(cr) G (a,/?) for a G [t0 , t]), then f(u)(a) is undefined and we have 
initially to set the relay open or closed when u(t0) G (a, /?) . Of course, when 
either hQ((3) > hc(/3) or hQ(a) > hc(a) then f(u) is generally discontinuous. 

Electrical engineers are interested in the periodic behaviour of circuits with 
hysteresis. A circuit with a relay hysteresis could be modelled by 

Lmy = f(y), 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34A60, 34C25, 94C05. 
K e y w o r d s : periodic solution, relay hysteresis. 
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where Lm is an mth-order differential operator. 
In this paper, in order to deal with much more general equations, we are 

interested in the periodic oscillations of systems given by 

x = Ax + iif(xl)b, (1.1) 

where A is a constant n x n matrix, x1 is the first component of x e Rn , 
b e Rn is a constant vector and /z e R is a small parameter. Similar systems 
are studied in [1] and [5]-[7]. 

In contrast to these papers, we assume that (1.1) is at resonance, i.e. x = Ax 
has a nonzero periodic solution. The aim of this paper is to find conditions 
ensuring the existence of periodic oscillations of (1.1) for ji ^ 0 small. Since 
(1.1) is generally discontinuous, we consider this as a differential inclusion. The 
method used in this paper is a combination of [3] and [6], i.e. we apply to (1.1) 
a Lyapunov-Schmidt decomposition procedure together with topological degree 
theory for multivalued mappings [2]. Periodically forced problems of (1.1) are 
also investigated. We end the paper with examples of unforced and forced third-
order ordinary differential equations with a small relay hysteresis. 

2. The existence of periodic solutions 

We suppose that the following condition holds 
i) W = {x e Rn : x = eAx} ^ {0} and there is an x0 e W such that 

Ax0 7--O. 

By [4] we have 

TV* = {x e Rn : x = e~A* x} ^ {0} , dim W* = dim IV = d > 1. 

Moreover, the linear equation 

x = Ax + h(t), heL2 = L2([0, l],Rn) 

has a solution x e TV1'00 = TV1 '00^, l],Rn) satisfying x(0) = x{l) if and only 
if 

l 

MweW* [(h{s),e-A*sw) ds = 0. 
o 

Here (•, •) is the inner product on Rn . The norm on IV1'00 is denoted by || • ||. 
Let x = Kh be the unique such solution satisfying 

i 

VzeTV I\x(s),e*s z) ds = 0. 

o 

J(x(s),eA°z) 
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We put 

X = \xeW1>°° : J(x(s),eAsz)ds = 0 Vzew}. 
1 o J 

Let 

II: L2-> \heL2: J(h(s),e~A*sw) ds = 0 VwEW*} 
L o ' 

be the orthogonal projection. Of course, /C: imll —> X is linear and bounded. 
By taking a basis {wx,..., wd] of W, we put 7 ^ ) = e"4* wi, i = 1,..., d. 

Let 
d-\ 

7 (0 , t ) = ^ 0 , 7 i W , ^ R . 
2 = 1 

By i), we obtain that d > 2 and {lUj,... ,iud} can be chosen such that any 
solution of x = Ax, x(0) G PV has the form 7(0, t + u), u G R, 0 G R d _ 1 . From 
now on, {wx,... ,wd] will be such a basis. Let 7^0, t) be the first component 
of 7(0, t). We need the following conditions to hold: 

ii) There is an open bounded subset 0 ^ O C R d _ 1 such that V0 G O and 
Vť0Є 

Ъ( ,t0) = a,ß = > ^(Ô.řoJҙíO. 

iii) V0GC9 min71(0,t) < a, max71(0,^) >/?. 
teR '1V ' tea 

Now in (1.1) we make the following change of variables 

x((l + yju))t) = fiz(t) + 7(0, i ) , ueR. 

The conditions ii) and iii) imply that if z G X satisfies ||z|| < K and /i is 
sufficiently small, then ^z1(t) + 7^0, t) crosses a and /? strictly monotonically 
for arbitrary 0 G O. 

We rewrite (1.1) as a differential inclusion of the form 

x- Ax e ^F(xx)b, (2.1) 

where F is a multivalued mapping defined as follows 

' /(«)(*) i f t i ( t ) 7 - a , 0 , 

/ic(a) if ?x(£) = a , M(T(S)) = a , for any s <t near £, 

F(u)(t) = I h0(/3) if u(t) = /? , w(r(5)) = /?, for any s < t near t, 

[hc(a), h0(a)] if M(£) = a , u(r(s)) = (3, for any s <t near t, 

w [/ic(/3),/z0(/?)] ii u(t) = (3 , u(r(s))=a, for any 5 < £near t. 
ii) and iii) imply that if u(t) = fiz^t) +71(0, t) with z G X bounded and 
fi sufficiently small, then F(u) is well-defined. By a solution of a differential 
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inclusion in this paper we mean a function which is absolute continuous and 
which satisfies that differential inclusion almost everywhere. 

Hence (2.1) has the form 

z(t) - Az(t) € (1 + fiu)F(fiZl + 7 l(0, •)) (t)b + u>A(nz(t) + 7(0, t)) . (2.2) 

By taking the mapping 

G(z,a;,0,/x,A) = 

-= {h G L2 : satisfying the relation 

h(t) e(l + \fiu)F(\fiZl + 7 l (0, •)) (t)b + uA(X^z(t) + 7(0, t)) 

a.e. on [0,1]} , 

(2.2) has the form 
i - A z G G ( z , c j , 0 , / i , l ) . (2.3) 

Using II and /C, we rewrite (2.3) as follows 

(0eH(z,u,9,n,l) 
\ H(z,u,6,n,\) = {(z - \ICUh,Ch) : h G G(z,u,6,li,\)} , { ' ' 

where C: L2 -> Rd is defined by 

Ch= ( f(h(s),e~A's Wl) ds,..., J(h(s),e-A's wd) ds) 
\o o / 

for a basis {w1,..., wd} of W* . 
Since / is bounded in (1.1), for arbitrary T > 0 there exist /x0 > 0 and 

K > 0 such that 

\\KHh\\ < K for arbitrary h G G(z, u, 6, /x, A), 

||2||<A- + I, M<r, eeo, IH</v AG[O,I]. 

Moreover, if /i0 is sufficiently small then by ii) and iii), the mapping 

tf:nx[-Mo,Mo]x[0,l]^2*xKd (2.5) 

is well-defined and singlevalued, where 

fi = {(z,u,0) eXxRd : ||^||<iv" + l , (a;,0)GZ3} 

and B is an open bounded non-empty subset satisfying B CR x O. 
The arguments of [6; pp. 677-678] imply that H: ft x [-/i0,/i0] x [0,1] -> 

X x Rd is continuous and also compact. Similarly, the mapping given by 

M : E x O - > E d , M(CJ,0) = £AI 

h(t) = F ( 7 l (0, •))(t)b + CJA7(0, t) a.e. on [0,1] 

is continuous. 
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THEOREM 2 . 1 . Assume that i) - i i i) hold. If there is a non-empty open bounded 
set B such that B C R x O and 

(i) 0£M(dB), 
(ii) deg(M,£,0)?-0 . 

where deg is the Brouwer degree and M is given by (2.6), then there are con
stants Kx > 0 and fi0 > 0 such that for arbitrary \/i\ < fi0, there exist 
(u , 6 ) G B and a (1 + fiu ) -periodic solution x of (1.1) satisfying 

sup|s (t) - 7(0 , t / ( l + /iw )) I < KM . 
ten* 

P r o o f . First we show 

0 ^ H ( 5 J ) x [ - / i 0 , / i 0 ] x [ 0 , l ] ) 

for arbitrary /i0 > 0 sufficiently small. Assume the contrary. Then there exist 

[0,1] 9 A , - • A0 , Wz^KK + 1, A*i->0, ieN 

dB 3 (u,.,0.) -> (wo.0o) € 5 5 , /.< € G ^ . ^ . ^ ^ . A J 

such that 
£ ^ = 0. 

We can assume that zi -> z in C([0, l ] ,R n ) and /i^ tends weakly to some 
h0 e L2. Then by applying the standard arguments (see the proof of [2; Re
marks 5.5.1]), we obtain 

h G G(z,u;o,0o,O, A0) and Ch0 = 0, 

i.e. 0 = M(u;o,0o) for some (uj0,#0) G d S . This contradicts (i) of this theorem. 
Consequently, we compute for ji sufficiently small 

deg(tf( . , •, •, /i, 1), ft, 0) = deg(H(-, •, •, /x, 0), 0 ,0) 

= deg(M,B, 0 ) ^ 0 . 

Thus, (2.4) has a solution (z,uJ,0) G ft for arbitrary sufficiently small \i. The 
proof is finished. • 

Now we return to the differential equation 

m 

L
my = Y^aiy{i) = /J /(J/)' 

*=° (2.7) 
cP 
dí* 
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Of course, (2.7) can be rewritten in the form of (1.1). We put 

m 

O = £(-i)Sy(i) • 
i=0 

Let (f)1,..., <fid, respectively ^ l r . . , ^ , b e a basis of the space of all 1 -periodic 
solutions of Lmy = 0, respectively Lmy = 0. We suppose that i)-iii) hold 
for (2.7) and also (j>d is non-constant. A tedious computation shows that the 
mapping (2.6) for (2.7) of the form M:RxO^Rd is given by 

M(u>, 6)=( }h(s)^(s) da, . . . , }h(s)i/;d(s) da) , 
\ 0 0 / , 

(2.8) 

h(t) = F(ry((9, •)) (i) + u J2 ia^W (°> *) ae' on t 0 ' X - > 
i = l 

d - 1 

where 7/(0, £) = J ] ^ ^ ( O - Theorem 2.1 implies the following result. 
t= i 

THEOREM 2.2. Assume that (j)d is non-constant and that the following condi
tions hold: 

a) There is an open bounded subset U ^ - O c Rd~l such that V0 G 0 and 

ri(O,tQ) = a,0 =-> i ) ( f l , t 0 )^0. 

Ví0Є 

b) V<9 G O minrj(»,t) < a, max 7/(0,0 > /?• 

7/ Jftere is a non-empty open bounded set B such that B cRx O and 

(i) 0<£M(dB), 
(ii) deg(M,0,O)^O, 

where M is given by (2.8), then there exist constants Kx > 0 and /x0 > 0 such 
that for arbitrary |/x| < /i0 , Jftere e:ns£ (w„,0 ) G # and an (1 + fKJ )-periodic 
solution y of (2.7) satisfying 

sup|y (t) - -,(0 t/(l + ^ ))| < KM . 
tGSL 

The results of [3] can be modified to give existence results of subharmonic 
solutions of nonautonomous periodic versions of (1.1) expressed in the following 
theorems. 

THEOREM 2.3. Consider 

x = Ax + ix(f(x{)b + q(t)) , (2.9) 

46 



SYSTEMS WITH SMALL HYSTERESIS 

where q G C(R, Rn) is 1-periodic and A, f, b are given in (1.1). Assume that 
i)-iii) hold. If there is a non-empty open bounded set B such that B C E x O 
and 

(i) 0<£M(dB), 
(ii) d e g ( M , £ , 0 ) / 0 , 

where M is given by 

M:RxO-*Rd, M(u,6) = £h, 
(2.10) 

h(t) = F(ll(6,-))(t)b + q(t + u) a.e. on [0,1], 

then there exist constants Kx > 0 and fi0 > 0 such that for arbitrary |/x| < fx0, 
there are (u ,6 ) € B and a l-periodic solution x of (2.9) satisfying 

saj>\x (t)-i(d,t-u )\< KM-
tew r r 

THEOREM 2.4. Consider 

Lmy = n(f(y) + q(t)), (2.11) 

where Lm, f are given in (2.7) and q G C(E, R) is l-periodic. Assume that (j)d 

is non-constant, and a) and b) of Theorem 2.2 hold. If there is a non-empty 
open bounded set B such that S c R x O and 

(i) 0£M(dB), 
(ii) deg(M,£, 0)7-0, 

where M: K x O -r Rd is given by 

MfaO) = ( / M ^ l W d8,...jh(8)l/>d{8) d*) , 

MO =^(*?(0> •))(*) +?(* + ") a.e. on [0,1], 

£/ien £/&ere e:ns£ constants Kx > 0 and fi0 > 0 swell that for arbitrary \/J,\ < fi0, 
there are (w ,0 ) G # and a l-periodic solution y of (2.11) satisfying 

sup ly (t) - 77(0 t-u>J\<KM' 

Remark 2.5. The boundedness of h0 and hc on [a, oo), respectively (-co, /?], 
is not essential. 

Remark 2.6. The smallness of /J,0 in Theorems 2.1-2.4 can be estimated. 
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3. Examples 

Let us consider the problem 

v+y + y + y = nf(v), (3.1) 
where / is of the form 

a = -6, /3 = S, <J > 0 , h0=g + p, hc = g-p 

with p > 0 constant and g G C(M, M). We apply Theorem 2.2. Now we have 

(j)x(t) = ̂ (t) = s'mt, (j)2(t) = ip2(t) = cost, r](8,t) = Osint. 

By taking O = (5, oo), the conditions a) and b) of Theorem 2.2 are satisfied. 
Let t0 = arcsin | for 0 G O. We compute (2.8) for this case 

M(u,0)=(M1(u,0),M2(ui0)), (3.2) 

where 
2-K to+n 

Mx(u,0) = u(0cost-20smt-30cost)smt dt+ / (g(0s'mt) + p)sint dt 

o t0 

t 0 + 27T 

d* + / (g(6 sin ť) — p) sin t 

to+n 
2TT 

= — 27T0UJ + / g(0siní)siní dt + 4pcost0 

o 
. 2TT 

= -2n0uj + 4pJl - — + l g(0 sin ť) sin t dt, 

o 

2lT ÍO+7T 

M2(CJ, 0) = u(0 cos t - 20 sin t - 30 cos t) cos t dt + / (g(0 sin ť) + p) cos t dt 

0 t0 

ÍO + 27T 

+ / (g(0 sin t) - p) cos t dt 

to-\-ҡ 

2ҡ 

= —2-K0LO + l g(0 sin ť) cos t dt — 4p sintQ 

= -2TT9U - 4-£ . 
0 

We have the following result. 
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THEOREM 3.1. If there exist numbers 5 < ax < a2 such that the numbers 

4pl h Wl 2 I + / 5(^1 s in t ) s in t dt, 

4p[i+f-si)+fg^sint)sintdt 

have opposite signs, then there is a constant K > 0 such that for arbitrary 
sufficiently small \x there exist 6^ G ( a 1 5 o 2 ) ; u^ G (3D,D), D = -f^(~-" + j r ) 
and a 27r(l + fiuj)-periodic solution y^ of (3.1) satisfying 

sup 
ťбR 

2 / , W - ^ s i n T T ^ r | < ^ | . 

P r o o f . It is sufficient to verify (i) and (ii) of Theorem 2.2 when M is given 
by (3.2) and B = (3D,D) x (ava2). 

We put (3.2) in the homotopy 

M{uj,e,\) = {Ml{u,e,\),M2(u;,6,\)), A € [0,1], 

where 

M^u, 0, A) = -2n0(u - 2(1 - X)D) + Apyjl - ^ 

27Г 

+ / g(0smt)smtdt + 4^ - A4-£ , / g(6sint)si 

o 

M 2 ( « J , 0, A) = -27r(9(o; - 2(1 - \)D) - A 4 y . 

It is clear that 

VAG[0,1] M(dB,\)^0. 

Consequently, we obtain 

d e g ( M ( . , . , l ) , ^ , 0 ) = - d e g ( M 1 ( 2 F ) , - , 0 ) , ( a 1 , a 2 ) , 0 ) ^ 0 . 

The proof is finished by using Theorem 2.2. • 

Let us take g(x) = cxx + c2 with cx 2 constant. We compute 

2TT 

Ô I S2 

+ Ѓ~^ 
4 P ( 7 + \ / 1 _ 77u )+ (^Osmt + c^ smt dt 

o 

= ^(l + \/i-^ ] + c i ^ -
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COROLLARY 3.2. If g(x) = cxx + c2 in (3.1) with constant Cj 2 such that 
Cj < 0 and 4p > — CXS-K, then the conclusion of Theorem 3.1 holds. 

P r o o f . In Theorem 3.1, it is enough to take ax > 5 near to S and a2 > al 

sufficiently large. • 

Now we consider a forced problem of (3.1) 

y+y + y + y = »{f(y) + sint), (3.3) 

where / is given in (3.1). According to Theorem 2.4 and the computations for 
(3.2), the mapping (2.12) for (3.3) has the form 

M(u,0)={M1{u,0),M2(u>,0)), (3.4) 

where 
. 2TT 2TT 

Mx (u, 9) = 4pJl - — + / g(9 sin t) sin tdt+ sm(t + u) sin t dt 

0 

2тг 

I J2" / 
= 4 p y l — -Г75--F / g( s in t)sin t dt + ҡcosLJ, 

0 

2тr 

M2(u,0) = -4-j + / sm(t + u)cost dt 

= —4— + nsmu. 
0 

Assume that 4p = n and n/2 < u < ir. Then the equations Ml = 0, M 2 = 0 
are equivalent to 

2TT 

f g(M^-S)smtdt = 0. 
0 

Theorem 2.4 implies the following result. 

THEOREM 3.3. Assume that 4p = ir and g € C^R, R). If the function 

2TT 

p H-» g(5psmt)smt dt 

0 

has a simple root p0 > 1, then by putting l / p 0 = sinu;0; 7r/2 < u0 < TT , there is 
a constant K > 0 such that for any p sufficiently small there are (u , 6 ) near 
to (u;0,5p0) and a 2TT-periodic solution y^ of (3.3) satisfying 

sup\y (t)-9 sm(t-u )\<K\ft\. 
tern 
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2TT 

P r o o f . If p0 > 1 is a simple root of p H-> / g(S p sin t) sin t d£, then 
o 

60 = Sp0l l/p0 = sino;0, 7r/2 < LU0 < TT is a simple zero of M = 0 given 
by (3.4), i.e. M(uo,0o) = 0 and DM(uo,0o) is invertible. The proof is finished 
by Theorem 2.4 when B is taken as a small open neighbourhood of (CJ0, 60). • 

Let us take g(x) = cxx
3 + c2x with cx 2 constant. Then 

27Г 

/ 
g(Sp sin t) sin t dt = -jҡcгS

3p3 + ҡSc2p. 

o 

Theorem 3.3 gives the next result. 

COROLLARY 3.4. Assume that 4p = ir. If g(x) = c x x 3 + c2x in (3.1) with 
constant cx 2 such that cxc2 < ^f-c^S2, then the conclusion of Theorem 3.3 holds. 

P r o o f . The assumption cxc2 < ^c^S2 implies the existence of a simple 
root p0 > 1 of the equation 

^nc^p3 +7rSc2p = 0. 

Now we assume that g(x) = cxx with constant cx > 0 in (3.3). Then (3.4) 
has the form 

S2 

M 1 ( ( J , 5 ) = 4 p W l - — + 7T COS LJ + C107T , 

5p 
M2(UJ,0) = - 4 - ~ +7rs inc j . 

By assuming 7r > 4p, the equation M(u;, 0) = 0 with 0 > S and 7r/2 < u < n 
is equivalent to 

I s2 / ш ӯ 

ì.e. 
8TTCIPV02 - 82 + c262ir2 = n2- 16p2 . (3.5) 

If 7r2 — 16p2 > c2£27r2, then (3.5) has a unique simple root 

o = \ =H±^EM) +-. (3.6) 

Like for Corollary 3.4, we obtain 
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THEOREM 3.5. Assume that g(x) = cxx with constant cx > 0 such that 
7T2 — 16IY2 > c2527r2. Then there exists a constant K > 0 such that for arbitrary 
sufficiently small fi there exist (u , 0 ) near to (u;0,0O) given by (3.6) and 7r/2 < 

uQ < 7r, sincctQ -= ^ , and a 2n-periodic solution y of (3.3) satisfying 

° sup|tf ( t ) - f f s i n ( t - a ; ) | < 1 T H . 

Similarly we have 

THEOREM 3.6. Assume that g(x) = cxx with constant cx < 0 such that 
16P2(1 — c\52) > n2 . Then there exists a constant K > 0 such that for arbitrary 
sufficiently small [i there exist (u ,6 ) near (uQ,0o) given by 

,o = ^l,'?LzWr£Z£i, +16^2 j 

s i n a ; o = -2T» TT/2<(JQ <7r , 

and a 2n-periodic solution y of (3.3) satisfying 

sup|y ( ť ) - f , . s i n ( ť - « ) |<A-|/ i | . 
<6K 
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