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Math. Slovaca 36,1986, No. 1, 55—68 

S -cubes 

JOZEF TVARO2EK 

Introduction 

Let I" be the n-dimensional cube and Jn its i-th "double face". Let st: 91"—>9J" 
be the symmetry of 91" with respect to the hyperplane JC, = 0. A group of 
transformations of 31" generated by the set {si, ..., s„} will be denoted by G. To 
each H-touple (u\ ..., un)eGn we assign a factorspace as follows: Let S be the 
binary relation on J" defined via 

xSyox = y or there is an index i e{ l , 2,..., n} 
such that JC, y e Jn and x = ul(y). 

The space In/T, where T is the least equivalence relation on I" containing S, will 
be denoted by /"/(u1, ..., u") and called an s-cube. 

The aim of this paper is: 
1) To prove some basic properties of s-cubes (part 1). 
2) To discuss some special types of s-cubes and the irreducibility of s-cubes 

(part 2). 
3) To give a necessary and a sufficient condition for an s-cube to be a manifold 

(part 3). 

Notation 

Nn = {l ,2 , . . . ,n},N o = 0 
M1'1 = {x — r;xeM} where MaNn—Nr is a nonempty given set 
In = {xeRn; |jCi|^l, ieNn} an n-dimensional cube 
91" = the boundary of I" 
Sn = {xeRn+1; V(JCI + JC! + ...+JC;;+I) = 1 } an n-dimensional sphere 
Jni={xeln; \xi\ = 1} (briefly Jt) the i-th "double-face" of the cube I" 
CX, SkX a cone and a fc-fold suspension over a topological space X 
sr. dln—>dln, JCI-»(JCI, ..., JCi-i, —JC,, xi+1, ..., JC„) the symmetry of 91" with respect 
to the hyperplane JC, =0, i e Nn 

G the subgroup of the group of all transformations of 91" generated by the set 
{si; ieNn}. 
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The group G is abelian, because G = (Z2)
n. Each ueG, u^hid, is the product of 

mutually different transformations sIn ..., sik and may be uniquely written in the 
form 

shi2...ik
 = shoSi2o.. .osik, where ix<i2<...< ik. 

Since to every ueG, w = 8,-....«•*, there corresponds a unique subset {/,, ..., ik} e2N% 
there is a bijective map 

r: G-->2N«, T(S,-..,,) = {/„ . . . , ik}, r(/d) = 0. 

1. Basic properties of s -cubes 

We start with an adapted definition of the s-cube since that given in the 
Introduction is not suitable for future proofs. 

Definition 1.1. Let u\ ..., uneG. An s-cube In/(u\ ..., un) is a factorspace 
In/T, where T is an equivalence relation on In defined as follows: 

k 

xTy if x = y or theie are numbers iu ..., ikeNn such that x,yef]Jit and 
7 = 1 

x = ulloUi2o...oUik(y). 

To simplify the notation, any given s-cube In/(u\ ..., un) will be alternatively 
written in the form Inl(Uu ..., Un), where Ui = x(ui), ieNn. 

Now we give the basic information about the general properties of s-cubes. 
Proposition 1.2. Every s-cube is a Hausdorff space. 
Proposition 1.3. Let T/(UU ..., Un) be an s-cube, f: Nn-*Nn a bijection and 

F: ln-^In, F(x) = (xf(lh ..., xf(n)). Then there is a map F: In/(UU ..., l /n)->/"/ 
/ ( / ( l / r i ( i ) ) , •••> /(£// '(")))> [^'-^[FOOL which is a homeomorphism. 

Lemma 1.4. Let k, reNn, kj=r and let In/(u\ ..., un) be such an s-cube that 
ur = sk. Thenln/(u\ ..., un)~In/(v\ ..., vn), where vl = ul for i=/= rand vr = uk. 

Proof. Without loss of generality we can suppose (see Prop. 1.3.) that r = l , 
k = 2. We find the homeomorphism J"/(s2, u2, ..., un) ^ In/(u2, u2, u3, ..., un) 
first in the case of n = 2 . 

Let us denote A = ( - 2 , 0 ) , B = (2,0), S = (0,0), A ^ - l , - 1 ) , A2 = ( l , - 1 ) , 
A3 = ( l , 1), A4 = ( - l , 1), B1 = (0, - 1 ) , B2 = ( l , 0), B3 = (0, 1), B4 = ( - l , 0), S, = 
{-(Ai — S), ieN4. Now we define three PL-maps fu f2, /3 : 

fx maps the square AlA2A3A4=I2 on the deltoid ABXBB3: it is the identity on 
the square BXB2B3BA, it is linear on the triangles A i B ^ , A2B2BU A3B3B2, 
A4B4B3 and /1(A1) = /i(A4) = A, /1(A2) = /1(A3) = B. 

f2 maps the deltoid ABXBB3 on the square BiB2B3B4: it is the identity on the 
segment BiB3, it is linear on the trianles BXB3A, BXB3B and /2(A) = B4, /2(B) = 
B2. 
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f3 maps the square BXB2B3B4 on the square AXA2A3A4: it is the identity on the 
segments BXB3, B2B4, it is linear on the triangles BiSB2, B2SB3, B3SB4, B4SBX and 
H(Si) = Ai, ieN4. 

Now we define a map F2: I2—>I2, F2 = f3of2ofu The induced map F2: I
2/ 

/(82, u2)-+I2/(u2, u2), [x]r-+[F2(x)], is a homeomorphism. Thus the assertion is 
proved for n = 2. This result can be extended to the general case via the cartesian 
product; after a tedious computation it is possible to show that the map Fn: Inl 
l(u\ ..., un)—>In/(v\ ..., vn), induced by the map Fn =F 2 x (id)n~2

y is the deman­
ded homeomorphism n ^ 2 . 

Proposition 1.5. Lefn, reN,l^r<n and let Inl(Uu ..., Un) be an s-cube such 
that 

1) UiCzKforieNr, 
2) UiCiNn-NrforieNn-Nr. 
Then the map h: In/(UU ..., Un)^T/(Uu ..., Ur)xIn-r/(U\rlu .-•, W), [*]•-> 

([(xu ..., xr)], [(xr+u ..., *„)]), is a homeomorphism. 
Proof. Denote s-cubes In/(UU..., Un), T/(UU ..., Ur), ^/(WL, ..., W) by 

In/T, IrITu In~r/T2, respectively. It is not difficult to show that T= Ti x T2. Since 
s-cubes are compact Hausdorff spaces, the map h is a homeomorphism. 

Example 1.6. Applying Lemma 1.4 and Proposition 1.5 to the 8-cube X = I8/ 
l(s2, 8,, s3, 834, 86, 856, 87, 8s) we g e t : 

A % 1 / ( 8 1 , si, 835 834? 856, 856? 87, s8J ~ 

«I7(s i , si) x I7(si, si2) x I7(si2, si2) x I/(sO x I/(sO« 
~S2xKbxRP2xS1xSl 

where Kb is the Klein bottle and RP2 is the real projective plane. 
Remark 1.7. Proposition 1.5 enables to represent any finite product of s-cubes 

as an s-cube. In [2] and [3] it was shown that In/(su ..., si)«Sn, In/(si2...„, ..., 
8i2...r,)~-RPn and In/(si..n_fc, ..., si...„_k)«S*RPn"\ Making use of these results 
we get immediatelly that every finite product of spheres, real projective spaces and 
their suspensions can be represented as an s-cube. 

2. Special types of s-cubes 

In Example 1.6 we have seen an s-cube which was homeomorphic to a product 
of several s-cubes of lower dimensions. Such decompositions of jc-cubes will now 
be introduced. 

Let Uu ..., Un be given subsets of N„. Define a binary relation R(UU ..., Un) on 
Nn via 

xRyo(x = y)v(xeUy)v(yeUx)v(zlseNn: x, yeUs) 
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The least transitive relation on Nn containing R(UU ..., Un) is an equivalence 
relation and will be denoted by E(UU ..., Un), briefly E. 

Definition 2.1. An s-cube In/(UU ..., Un) is said to be combinatorially irreduc­
ible (c-irreducible) if NJE(UU ..., Un) consists of exactly one equivalence class, 
otherwise X is said to be combinatorially reducible (c-reducible). 

E x a m p l e 2.2. An s-cube Jn/(si, s2, ..., sn) is c-reducible for n>\, s-cubes 
J"/(8i, . . . ,s i) and Jn/(si2...„, ..., 812...n) are c-irreducible. 

Theorem 2.3. Every c-reducible s-cube is homeomoprhic to a product of 
c-irreducible s-cubes. 

Proof. For a given c-reducible s-cube In/(UU ..., Un) denote Nn/ 
IE(Uu...,Un) = {Au...,Aq}, Ci = cardAi, ieNq, q^2. Let h:Nn-+Nn be 
a bijection such that Ax = {h(l), ..., h(u)}, A2 = {h(tl + l), ..., h(t2)}, ..., 
Aq = {h(tq-i + 1,..., h(tq)}, where U = cx + ... + ct, ieNq. Using Proposition 1.3 for 
f = h~l we get the homeomorphism J"/(Ji, ..., Un)~J"/(/z"1(L/^(i)), ..., 
h~l(UHn))). To complete the proof it is sufficient to apply ( g - l ) - t i m e s Prop­
osition 1.5. 

A c-irreducible s-cube need not to be irreducible. For example, an s-cube 
X = P/(su si, si23) is c-irreducible, but X^P/(su si)x J/(si). 

Definition 2.4. An s-cube Inl(u\ ..., un) is quasi-regular if there are not 
i, jeNn, i¥=j, such that ul=Sj and card Uj > 1. An s-cube Inl(u\ ..., un) is regular if 
for every i, j e Nn ul = s} implies u] = s7. Regular s-cubes are called briefly r-cubes. 

Lemma 2.5. LetX = In/(u\ ..., un) be an s-cube. Suppose that there are iu ..., 
iteNnsuch thatuil = si2, u^ = sh,..., u,'-l = sl,. Thenln/(u\ ..., un)~In/(v\ ..., vn), 
where vii = vi2 = ... = vlt = ui{ and vl = ul otherwise. 

Proof. By repeated application of Lemma 1.4 for r = it-u it-2, ..., ix we get the 

homeomorphism / , / : X -^ X2 4 ... -^ Xt-U X. = In/(uljh ..., ufo), where ufo = 

ui{ for k = t-j, t-j+l, ..., t - \ and ui
(j) = ui otherwise, 1 = 1, ..., t-1. For 

j = t - \ we have u[\-i) = ui^-i) = ... = ui(t-l) = uit, u[t-1) = ui for i£iu i2, ..., /,. 
Let In/Uu ..., Un) be an s-cube. Let Uj = {xeNn; 3iu ..., ikeNn, k>\, ix = x, 

ik=j, w'i = s,2, ^ = ^3, ..., uik-1 = sik} for jeNn such that card 17,>1 and O/ = 0 
otherwise. It is not difficult to prove that for different p,qeNn we have 
UpnUq=0. By a repeated application of Lemma 1.4 we obtain that lnl 
l(Uu..., Un)~In/(Vu..., Vn), where V. = U, for i e Uf, jeNn and Vt. = U,^other­
wise. Further, the s-cube In/(VU ..., V„) is quasi-regular, because ul = Sj implies 
card Vj = l, jeNn. We have just proved 

Proposition 2.6. Every s-cube is homeomorphic to some quasi-regular s-cube. 
Let X-=Jn / ( l /1 , ..., Un) be an s-cube, Pu=Ulu...uUnu{jeNn; card U,>1} 

and Mu = Nn-Pu. Let R(UU ..., Un) be a binary relation on Mv defined via 

xRvyo(x = y)V(JC e Uy)v(y e Ux). 
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Suppose that E(UU ..., Un) (briefly Ev) is the least equivalence relation on Mv 

containing Rv and MvIEu = {Av
), ..., Aft}. 

Let X = In/(Uu ..., Un), Y = In/(V1, ..., Vn) be the s-cubes defined in 
Lemma 2.5 and let /: X—> Y be the homeomorphism constructed in the proof of 
Lemma 2.5. Making use of Lemma 1.4 it is not difficult to prove the following 

Lemma 2.7. // X is quasi-regular, then Y is quasi-regular. Further, MV = MV 

and Mu/Eu = Mv/Ev. 
Lemma 2.8. Lets e Nr and let X = In /(u\ ..., un) be a quasi-regular s-cube such 

that Mu/Eu = {Av\ ..., A ^ } . Then Xis homeomorphic to a quasi-regular s-cube 
In/(v\ ..., vn) such that 

1) Mu = Mv and Mu/Eu = Mv/Ev 

2) There is ks e Av\ for which vk<=sks and vl = ul for i^Av\ 
Proof. Suppose that there is not keAty for which uk* = sks. Then there are /-, 

..., jte Av
} such that uil = sh, u'- = s>3, ..., u'' = s71, 2 = ^ c a r d Afe>. By Lemma 2.5 

we get that X~In/(v\ ..., vn), where vii = vi2 = ... = vit=sh and vl = ul otherwise. 
Then ks =/- and vl = ul for ieAty. Condition 1) follows from Lemma 2.7. 

Corollary. The s-cube X is homeomorphic to a quasi-regular s-cube Inl 
l(v\ ..., vn) such that 

1) Mu = Mv and Mu/Eu = Mv/Ev 

2) For every ieNr there is heAty such that i>k'=sfcl 

3) vl = ul for ieFi/. 
Le 2.9. Let P7(u\ ..., un) be a quasi-regular s-cube, MvIEu = {Av\ ..., A ^ } . 

Let there for some s eNr kse Aty for which uk' = sks. Then X is homeomorphic to 
a quasi-regular s-cube In/(v\ ..., vn) such that 

1) Mv = My and MulEu = MvIEy 
2) vl = sks for ieAty and vi = ui otherwise. 
Proof. Let jeAty be such an index that u'£sks. Since /, kseAu\ ufc* = sfcj, 

there are i-,..., irGA^such that7 = ii, ks = it and u'l = sI2, u
i- = sI3, ..., u

,- l = sJ|. By 
Lemma 2.5 we get that X is homeomorphic to an s-cube In/(w\ ..., wn), where 
w'l = w1- =.. . = w1' = sks and wl = ul otherwise. With respect to Lemma 2.7 we have 
Mu = Mw, Mu/Eu = Mw/Ew and the s-cube In/(w\ ..., wn) is quasi-regular. In the 
case when u' = sfcj for every j e Afe} we finish. In the other case we continue in the 
outlined procedure until we get a quasi-regular s-cube In/(v\ ..., vn) such that 
conditions 1), 2) are satisfied. 

Corollary. Let X = In/(u\ ..., un) be a quasi-regular s-cube such that for every 
seNr there is ks e Aty with the property uk'=sks. Then there is a regular s-cube 
In/(v\ ..., vn) homeomorphic to X such that 

1) v*=sks for ieAv\ seNr 

2) vi = ui for iePu-
Proposition 2.10. Every s-cube is homeomorphic to some r-cube. 
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Proof. Let Xv = P/(u\ ..., un) be an s-cube. By Proposition 2.6 Xv is 
homeomorphic to a quasi-regular s-cube Xv = P/(v\ ..., vn). Let MV/EV = {AV\ 
..., Av

}}. Then by Corollary of Lemma 2.8 Xv is homeomorphic to a quasi-regular 
s-cube Xw = P/(w\ ..., wn), where Wt = Vt for fefv, MW = MV, MVIEV = MWI 
IEW and for every i e Nr there is k,- e A v such that wfc- ^ S*,. Further, by Corollary of 
Lemma 2.9, Xw is homeomorphic to a regular s-cube Xz = P/(z\ ..., zn), where 
zi = ski for ieAty, jeNr, zi = vl for i eP v . 

Example 2.11. Making use of Lemma 1.4 we find an r-cube which is 
homeomorphic to the s-cube X = P/(s3, s123, s2, s5, s4). 

X ~ I / (S 3 , S123, S123, S5, 54)^=-1 / ( S 1 2 3 , S123, ^123, S5, S4) ~ 

~ i /(s123, s123, s123, s4, s4) ^ y 

As we can see in Example 2.11, an s-cube is not homeomorphic to the unique 
r-cube in general, because X«I5/(s123, s123, s123, s5, s5)̂ = Y. 

Example 2.12. Let X = PI(UU ..., Un) be an s-cube with card (7, = 1 for 
/ G N „ . Then Xis quasi-regular and Mv = Nn. Denote NnIEv = {Av\ ..., AP}. By 
Corollary of Lemma 2.8 and by Corollary of Lemma 2.9 X is homeomorphic to 
a regular s-cube Y = P/(v\ ..., vn), where vl = skj for / e A ^ , s^eA^, jeNr. 
Then in a way similar to that in the proof of Theorem 2.3, making use of 
Remark 1.7, we get the homeomorphism Y~SCi x ... x SCr, where c, =card A#, 
ieNr. 

3. Are all r-cubes manifolds? 

In dimensions 1 and 2 it is evident that r-cubes are not manifolds in general. As 
examples we mention r-cubes II (id), PI (id, s2)~SlXl (these r-cubess are man­
ifolds with a boundary). In a higher dimension it is sometimes difficult to decide 
whether a given r-cube is or is not a manifold. For example, an r-cube P/(su s12, 
s123) is a manifold, but an r-cube J3/(sl5 s23, s123) is neither a manifold nor 
a manifold with a boundary. 

The solution of the problem whether a given r-cube is a manifold is in 
Theorem 3.18. 

Definition 3.1. An r-cube X = PI(u\ ..., un) has the property "M" if for each 
nonempty subset PczNn such that 

i) V i , / G P : ^ / = > u ^ ^ (1) 
ii) VieP: card U,-£l (2) 

we have 

Pnrfj\u^0. (3) 

Example 3.2. r-cubes P/(su sl2, s123), Pl(s2, s2, s4, s4) have the property "M", 
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r-cubes J3/(8i, s12, su), I4/(s12, 523, s34, s14) have not. Not every r-cube In/(UU ..., 
Un) with card Ut = 0 for some ieNn has the property "M". 

Lemma 3.3. Let In/(UU ..., Un) be an r-cube with the property "M"and let 
card Uk > 1 for some keNn. Then k e Uk. 

Proof. Suppose that k t Uk. Then for P = {k} we have Pnr(uk) = {k}nUk = 0. 
Definition 3.4. An r-cube Inl(Uu ..., Un) is cube-fibreable (briefly c-fibreable) 

as there is a set Q, 0§iQ£Nn , such that 

(i) Qn( (J U)=0 (4) 
\keNn-Q I 

(ii) If U = U} for some i, j e Nn, then i, jeQor i, jeNn- Q. (5) 

An r-cube which is not c-fibreable is called c-nonfibreable. 
Example 3.5. An r-cube I3/(8i, 8i2, 5i23) is c-fibreable with 0 = {3} or 

0 = {2, 3}, an r-cube P/(s2, s2) is c-nonfibreable. 
Lemma 3.6. Let keNn and let In/(u\ ..., un) be an r-cube with ke Uk. Then 

In/(u\ ..., un)~In/(v\ ..., vn), where vi = uioukosk for such ieNn, i4=k, that 
keUi and vl = ul otherwise. 

Proof. First we define a map hk: In/(u\ ..., un) —> In/(v\ ..., vn), hk([x]) 
= [(*!, ..., xfc_i, xk + l, xk+1, ..., xn)] for xk^0, hk([x]) = [(xu ..., ifc_i, xk -1, 
ifc+i, •., xn)] for xkSO, where xs = x, for /£ Uk and i7 = — JC,- for / e Uk, jeNn-
{k}. It is not difficult to show that hk is well defined and continuous. The map 
gk: I

n/(v\ ...,vn) -> In/(u\ ..., un), gk([x]) = [(x1, ..., jck.-i, xk-l, xk+u ...,xn)] 
forxfcSO, gk([x]) = [(xu ..., xk-u JC* + 1, xk+1, ..., xn)] for xk _S0, where x}, = xf for 
j £ Vk, Xj = — Xj for j e Vk, j e Nn — {k}, is also well defined, continuous and inverse 
to hk. Hence both hk and gk are homeomorphisms. 

Let X = In/(u\ ..., un), Y = In/(v1, ..., vn) be the s-cubes from Lemma 3.6. 
Then the s-cube Y is not an r-cube in general. Let K = {ieNn; Ut = Uk, /=£ k}, 
a = card K. Then for each ieKwe have vi = sk and vk = uk. Now it is easy to see 
that the s-cube is not an r-cube if and only if a =" 1 and ukj= sk. To obtain an r-cube 
from the s-cube Y it is sufficient to apply a-times Lemma 1.4. Therefore we can 
strengthen Lemma 3.6 into 

Proposition 3.7. Let k e Nn and let X = In/(u\ ..., un) be an r-cube with keUk. 
Then the r-cube X is homeomorphic to an r-cube Y = In/(w\ ..., wn), where 
w' = uloUkosk for such ieNn that k e Ut, Ui£ Uk and wl = ul otherwise. 

Proof. Let K = {iu ..., ia}, a S I . According to Lemma 3.6 In/(u\ ..., un)~ 
In/(v\ ..., vn), v\ ieNn, are described in Lemma 3.6. Then using Lemma 1.4 

successively for r = iu ..., ia we get homeomorphisms In/(v\ ..., v") « In/(za), ..., 
l2 , fa 

Z(D) ~ ... ~ In/(zlah •••» zna)) = In/(w\ ..., w"), where zh) = vk for i = im, m^j 

and Z(i) = vi otherwise. The map hk=faofa-lo...fiohk is the demanded homeomor-
phism. 
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Lemma 3.8. LetX = In/(u\ ..., urt), Y = In/(w\ ..., wn) be r-cubes defined in 
Proposition 3.7. Then the r-cube X has the property "M" if and only if the r-cube 
Y has the property "M". 

Proof. Let the r-cube X not have the property "M". Then there is a nonempty 

set P, satisfying (1), (2), such that Pnrl U uj = $• We prove that the r-cube Y has 

not the property "M". We shall discuss two cases: 
i) card P S 2 , i i )cardP=l . 
i) Let P = {/i, ..., /-} and let s, O ^ s ^ r , be such a number that ke U, for it^s 

and k£U for i >s.lt is clear that s is even. Suppose that keP (the other case will 

be discussed later). We show that for P = P - {k} we have Pnri U w) = 0- In iact> 

n^ , =(nw' )o (u k o5 k ) s "" i =(r iw'V( M ' C o 5 0o(w k o^) s = 
i e i 5 \ « e P ^ieP ' 

= SkoUui > 
i e P 

becausee for every u E G we have u2 = id. Then Pnr( sfcofj u'J =0, because 

Pnr(Uu']=0. 

In the case when k^P we take P = P for s even and P = Pu{k} for s odd. 
ii) Let P = {p}. It is sufficient to take P = P if p£ Up, p£Wp andP = Pu{k} if 

P£Up,peWp. 
Let now the r-cube Y = In/(w\ ..., wn) not have the property "M". Taking 

X = Y in Proposition 3.7 we get Y « Z = In/(z1, ..., zn), where z' = u' for ieNn. 
By the first part of the proof we obtain that the r-cube Z, Z = X, has not the 
property "M". 

Lemma 3.9. Let X = Inl(Uu ..., Un) be an r-cube without the property "M" 
such that for every ieNnUiJ=0. Then there are an r-cube Y = Inl(Vu ..., Vn), 
X ~ Y and an integer keNn such that k£Vk and card Vk > 1. 

Proof. Suppose that / e Ut for every / e Nn such that card Ut > 1. Since X has 
not the property "M", there is a nonempty set P<= Nn such that the conditions (1), 

(2) and P n x i n u M = 0 are satisfied. Without loss of generality we can suppose 

that P = {1,2,'..., r}.LetK1 = {/eNn; 1 e U,}, K1 = K1n{2, ..., r}, card Kx = ax. 
Denote X = In/(U(

1
0), ..., U{0)). Then using Proposition 3.7 for k = l we have 

r /(W0 ) , ..., LT(
n
0)) - I»l{U\l\ ..., Uil)), where uU^u^oulo.os, for ^ ^ ^ - { l } 

such that l / ^ ^ U ^ and u;1) = u;0) otherwise. Let Pk = P- {1, ..., k}. Then for 
k = 1 the following conditions are satisfied: 
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i) Vi,jePk:i*j^U\k>±UW 
ii) ViePk: card LTjk>> 1 

iii) P^nr / f l "(*))= 0-

Conditions i), ii) are evident, we prove iii). Let ul0) = s1osilo'...°sim. Then 

n"r° = (n"(o>V("(«°-0,,,= 
; e P i \ > e P i / 

= (n";(0))oW(
1o)o(M(o)o5i)ai = riwi(0)osi , 

\ / e P / ;eP 

because ai is an odd integer and u2 = id for every w e G. Since Pnr( n u'(0)) = 0, 

P i n t ( n 4 ) ) = f t n T ( ( n u(o))o5i)=0. 

we have 

There are two possibilities: 1) 2<£ U?\ 2) 2eU2
1). 

In the case 1) the proof is finished. In the case 2) we continue in the outlined 
process until we get (by repeated application of Lemma 3.7) a number k0e {3, ..., 
r} and an r-cube Inl(Uik°~l), ..., Un

k°~l)) such that k0& Uk
k°-l). Now we outline the 

proof of the existence of such k0. Let for k = 3, ..., r ke Uk
k~iy. It is possible to 

show that for k = 2, ..., r — \ the conditions i), ii), iii) are satisfied. Then for 
k = r-\ we get from iii) that {r}nr(ur

(r-i)) = {r}nl/(
r
r~1) = 0, a contradiction. 

Lemma 3.10. Let X = In/(Uu ..., Un) be an r-cube such that for some keNn 

card Uk = m > 1 and k£Uk. Then X is neither a manifold, nor a manifold with 
a boundary. 

Proof. Let a edln be such a point that ak = \ and a, = 0 for jeNn-{k}. Let 
U={xeln; d(jc, a)^h} (d is the symbol of the Euclidean metric), nn: In-*Inl 
l(Uu ..., Un) a projection, V = jtn(U). V is a neighbourhood of the point 
b =jzn(a), V«C(r,~1/(si2...m- ..., su ...m)), the point b corresponds to the top of 
the cone in this homeomorphism. Using [2] we get V « C(Sn~m~1RPm). Since V is 
contractible, 

Hq(V, V-{b}) = Hq-1(V-{b}) = Hq.1(S
n--~1RP^ 

for every q e N (the symbol H denotes the reduced homology with Z coefficients). 
Then using [1], Proposition 3.2, page 59, it can be proved that there is not 
a neighbourhood of the point b homeomorphic to Rn or to Rn(Rn ={xeRn; 
xn^0}). . 

Now we describe some simple properties of c-nonfibreable r-cubes. Let X = VI 
l(Uu ..., U„) be a c-nonfibreable r-cube. By Mk we shall denote the set {ieN„; 
U, = Uk},keNn. 
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Lemma 3.11. If Uk = {k} for some keNk, then X = In/(sk, ..., sk). 
Proof : Suppose that Mk£Nn. Then X is c-fibreable with Q = Nn-Mk. 
Lemma 3.12. If the r-cube X has the property " M " and card U > 1 for some 

ieNn, then Mt = Nn or there is pt e ^ such that pt £ M, and UPlnMi = 0. 
Proof. Let M^Nn. If W = A_i, then X is c-fibreable with Q = Nn-Mt, a 

contradiction. Hence M^Ui. Let pteUi — M,. We show that UPlnMl =0. Let 
jeUPinMi. Since card [/*>1 for every keNn (Lemma 3.11), we have 
j e UPinMiCz UPinUj, piE UPinUj and {/, p.}nr(w'owp ') = 0. Hence the r-cube X 
has not the property "M" , a contradiction. 

Now we are going to describe c-nonfibreables r-cubes with the property "M" . 
Proposition 3.13. Let X = Inl(Ux, ..., Un) be a c-nonfibreable r-cube with the 

property "M" . Then exactly one of the following conditions is satisfied: 
i) There is keNn such that X = In/(sk, ..., sk) 

ii) X = In/(s12...n, ..., s12...n). 
Proof. Suppose that X=/=In/(sk, ..., sk), keNn, Xj=In/(s12. n, ..., s12. n). As 

usually we denote Mj = {ieNn; ^ = ^ } , jeNn and let t = card {M,; jeNn}. 
According to Lemma 3.11 card ^ • > l for ieNn. Making use of Lemma 3.12 for 
i=Po= 1 we obtain an integer px e L^such that p1£MP0 and UplnMPQ = 0. Let r be 
such an integer, 1 __= r__it — 1 that there are integers p0, Pu •••, pr for which the 
conditions 

1) piEUPi-MPi, i = 0, 1, ..., r-1 
2) Up/n(MpouMplu...uMPy_1) = 0, / = 1, 2, ..., r 

are satisfiesd. We shall prove that there is pr+1eUPr — MPr such that 
L/Pr+1n(MpouMplu...uMPr) = 0. There are two possibilities: 

i) For every x e UPr there is x eM p o uM p l u. . .uM P r . Then with regard to 2) the 
r-cube is c-fibreable with Q = MPr. 

ii) There is pr+1 e UPr such that pr+1 <_ Mp ouMp lu. . .uMP r . We prove that the set 
S= L/Pr+1n(MponMplu...uMPr) is empty. Let Sj=0 and let qe{0, 1, ..., r} be the 
greatest index such that there is s e S with the property s e MPq. By Lemma 3.12 we 
have q<r. Let now qu q^q^r be the least index such that pr+1 e UPq ,, let q2, 
qfkq2<qx be the least index such that pqie UPq2, ..., let qm, q = qm<qm-i be the 
least index such that pqm_xe UPqm, l _ = m _ ? r + l , where pqtj is used instead of pqr 

Then 

{Pr+uPqi,pq2, ...,pqm}nT(up'+loUp«lo...oUp*™) = 0 

and the r-cube X has not the property "M", a contradiction. Hence there are 
integers p0, pl9 ..., pt-x such that the conditions (1), 2) are satisfied for / = 0, 1, ..., 
t — 2, ;' = 1, 2, ..., t — 1. Then for / = t — 1 we have 

UPl_ln(MpouMplu...<jMPl_2) = 0 
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and UPt_x = MPt_x. We see that the r-cube X is c-fibreable with Q = MPt_„ a 
contradiction. 

Let X = In/(UU ..., Un) be a c-fibreable r-cube with the property " M " . Without 
loss of generality we can take Q = Nr for some r, l__.r<n. To the projection 
p: Jn—>P, (*,, ..., x„) »-*(*-> ..., jcr) there is the induced mapp: X—>Ir/(U1nNr, 
..., UrnNr) = Bu, [x]>-*[p(x)], such that the Diagram 1 commutes. The r-cube 

— Г 

'n/'U, U J — - — l7(U.nN. UroNr) 

Diagram 1. 

B_, = I7(LrinN r, ..., U rnN r) will be denoted in what follows briefly by 17(11!,..., 
tX) or by r l V , ..., u r). 

Lemma 3.14, For every telr we have Jtnop~1(t) = p~1oJtr(t). 
Proof. Let [xjej^op"1^)- Then p[x] = pQjtn(x)= =jtrop(x) = Jir(t) = [t], 

hence [jc]ep-1o;r r(0. Let [x] ep-l

0nr(i). We find such z E p _ 1 ( 0 that [JC] = [Z] 

Since p[x] = [p(x)] = [r], there are iu ..., iseNr such that p(x), tef]Jr

h and 
7 = 1 

p(jt) = u,1o...oUi*(f) (t = (tu..., tr),x = (xu ...,xn)). Let us define zeln,z = (tu ..., 

tn) by x = uilowi2o...oMis(z). Since p(z) = f and x, zef]Jn, we have [x] = [z] and 
/=-

z e p _ 1 ( 0 . Hence [jt]ejrnop_ 1(0. 
Now using the property " M " of the r-cube X we shall show that p~1[t]^In~r/ 

/(UVlu ., W) = In~rIQ for each point [t]eBv. With regard to Lemma 3.14 is is 
sufficient to prove that nn{p~\t))*-IH-rIQ for every telr. This fact is the direct 
coloilary of the following 

Lemma 3.15. Let x, yep-x(t), telr. Then [x] = [y] if and only if (xr+1, ..., 
xn)Q(yr+u ..., yn). 

k 

Proof. Let [x] = [y]. Then there are il9 ..., ikeNn such that x, yef]Jn and 
7 = 1 

y = uiio...oUik(x). We can suppose that u^^u1* for p£q (if uip = ui^, the term 
ul" o u^ = id can be omitted). Let seNn be such an integer that i7 _i r for / _Ss and 
ij>r for j>s. Since (JCI, ..., xr) = (yu ..., yr), we have 

T(w iiow i-o...oU i*)nNr = 0 . (6) 

Further, because X is c-fibreable with Q = Nr, (6) implies that s = 0 or there is 
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/£{/ , , ..., /.} such that cardUj>l. Let S = {j e {/.,..., U ; card J7y>l}. With 
regard to (6) we have 

S n T l W W . (7) í,п»'H 
Since the r-cube X has the property " M " and the set S satisfies conditions (1), (2), 
we have with regard to (7) S = 0and s = 0. Hence (x r +i,..., xn)Q(yr+u ..., yn). 

The converse implication is trivial. 
Corollary. p-x[t]~In-rl(U\rlu ..., W) = FV for every teT. 
Lemma 3.16. The r-cubes Bv = Irl(Uu ..., Ur), Fu = In-rl(U\r]

+u ..., U[r]) have 
the property " M " . 

Proof. We prove the assertion for Bv, the proof for Fv is similar. Let P, 
0 £ Pcz Nr be such a set that the conditions (1), (2) are satisfied. Since the r-cube X 

has the property "M", P n r ^ u ' W o . But then P O T ^ U ' W O , because U,= 

UjnNr for jeNr. 
The r-cube Bv can be embedded into X, an embedding iv is given by 

iu[0u ..., O] = [('., . . , fr, 0, . . . ,0)] . Suppose now that the r-cube X is 
homeomorphic to an r-cube Y = I7 (Vi , ..., Vn) by Proposition 3.7 for some k^r. 
Then the r-cube Y is c-fibreable with the same Q. Let us define a map hk: Ir/(UU 

..., D r ) -> I7(Vi, ..., Vr) by hk =pvohkoiu, where p v : I"/(V„ ..., Vn) -> I 7 ( V „ 

..., Vr) is the induced map by p : In-+Ir. The map /ifc is a homeomorphism and 
Diagram 2 commutes (/: F-> J", (xi, ..., jcr) »-> (*,, ..., xr, 0, ..., 0)). Further, the 

|п _^\"/(\j, Un) -J^ľYÍV., .. .. Vn) — - ln 

Pu 

Г _ . ґ / ( Ü 1 f Ur) — - w l r / (V 1 ( 

Diagram 2. 

. , Vr) - — - |r 

map hk preserves fibres in such a way that the fibre over a point [t] e Ir/(UU ..., Ur) 
maps homeomorphically on the fibre over the point hk[t]eIr/(Vu ..., Vr) 

Lemma 3.17. The fibration (X, pv, Bv) is locally trivial with the fibre Fv = ln'rl 
/(UWi, ..., W). 

Proof. We can suppose that there is an integer s, O^s ^ r such that card Ut = 1 
for i^s and card ^ > l for s</^r. In the case when s = r, the fibration 
(X, pu, Bv) is trivial (Proposition 1.5). Now we give a local trivialization of the 
fibration (X, pv; Bv). Let [a]eBv. 

1) If a £9P, then the set A = {[JC] e Bv; x £ dlr} is a neighbourhood of [a]. We 
have pu

1(A)^AxFu via [(*-, ..., xn)] »-> ([*-, ..., xr)], [(.xr+i, ..., xn)]). 
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2) If a eдľ, then we shall discuss two cases: 
I) atФ±í for i>s. The set A = {[x]eBul JC7Є< —1, 1> for/єN s , * ; є ( - l , 1) 

for / є N г - N 5 } is a neighbourhood of [a] and the map f: ßul(A)-*AxFv9 

[x]r-+([xu ..., xr)], [(JCГ+1, ..., *„)]) is a homeomorphism. 

II) al=±lforsome/>s.LetS = { / є N r - N s ; a , = ± l } = {i„ ..., /J.Denote 
ľ/(Uu ..., Un) by ľl(u\0),..., un

0)). Then applying Proposition 3.7 for k = î ь ..., /, 
we get the hemeomorphisms hц: Г7(мo_,), ..., wô-n) -> ľl(ulІЬ ..., uц), / = 1 , 
..., ř, where и5) = и{У-i)ow&-i)oSf, for such m that ђєL/ä - 0 , L/^-^^UЙ"0 and 
Ий=и5_i ) OÜIЄГWІSЄ. Let Й = Йi|oЌił_1o...oЙłl, h(ľ/(Uu...,Un)) = -Гn 

/(Vь ..., Vn), й[a] = [c], see Diagram 2, where й is substituted for fik(h: Bu-*BV 

is the map induced by й). Then ck = 0 for fc є S, the set C = {[JC] є ľ l ( V u ..., Vr); 
Xj e (-1, 1) for / єN 5, Xf e(-1, 1) for jeNr- Ns}, is a neighbourhood of the point 
[c]eBv a the map / c: pv\C)-+Cx í -7(Vlî l f . . . , VŁr|), [(xь ..., Jt,)] ^ ([(^ь .-, 
JCr)], [(дcr+,, ..., JCП)]) is a homeomorphism. Further, Г-7(lЛÏ„ ..., tЛГ)) = /я~г 

ҚVVlu -.., V1;1), Let Л = {[JC]ЄÍ7(LГI, ..., Űr), Xie(-l,l) for /єiЧ, 
J C ; Є ( - 1 , 0)u(0,1) for jeS, J C , Є ( - 1 , 1) for / є N г - N f , jéS}. We see that A is 
a neighbourhood of the point [a]eBv and the map Һ\A: A-*C is a homeomor-
phism. The m a p / A = /coí/îІpDЧ^)): PІЇ(A) -+ Cxľ"ҚWlu ..., VŁrl) is also 
a homeomorphism and the required local trivialization. 

Theorem 3.18. An r-cube X = ľ/(Uu ..., Un) is a manifold if and only if it has 
the property "Лí". 

Proof. Let X not have the property UM". If Ц = 0 for some i eNn, then X is 
not a manifold. If UІФØ for all ieNn, then according to Lemma 3.9 and 
Lemma 3.10 X is neither a manifold nor a manifold with a boundary. 

Let now X have the property UM"; there are two possibilities: 
1) X is c-confibreable. Then by Proposition 3.13 and Remark 1.7 X « S n or 

X~RPn. 
2) X is c-fibreable. To prove that X is a manifold, it is sufficient to use 

Lemmas 3.16, 3.17, Proposition 3.13, Remark 1.7 and the induction. 
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5-КУБЫ 

1охег Т у а г о г е к 

Р е з ю м е 

В статье исследуются некоторые фактор-пространства /1-мерною куба /", которые воз­

никают отождествлением определенных точек на его границе. Возникающие пространств! 

назвыны я-кубами. 

В нервой части статьи установлены основные свойства 5-кубов. Во второй части изучаются 

проблемы разложения 5 кубов. В третьей части найдено необходимое и достаточное условие для 

того, чтобы 5-куб был многообразием. 

68 


		webmaster@dml.cz
	2012-08-01T02:04:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




