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S-cubes

JOZEF TVAROZEK

Introduction

Let I" be the n-dimensional cube and J7 its i-th “‘double face”. Let s;: 3I"—3I"
be the symmetry of 3I" with respect to the hyperplane x;=0. A group of
transformations of 3I" generated by the set {s,, ..., s,} will be denoted by G. To
each n-touple (u', ..., u") e G" we assign a factorspace as follows: Let S be the
binary relation on I" defined via

xSy<>x =y orthereisanindexie{1l,2,...,n}
such that x, y e J7 and x = u'(y).

The space I"/T, where T is the least equivalence relation on I" containing S, will
be denoted by I"/(u’, ..., u") and called an s-cube.

The aim of this paper is:

1) To prove some basic properties of s-cubes (part 1).

2) To discuss some special types of s-cubes and the irreducibility of s-cubes

(part 2).
3) To give a necessary and a sufficient condition for an s-cube to be a manifold

(part 3).
Notation

N,={1,2,...,n}, No=0

M= {x—r; xe M} where Mc N, —N, is a nonempty given set
I"={xeR";|x|=1,ieN,} an n-dimensional cube

3I" =the boundary of I"

S"={xeR"*'; V(x}+x3+...+x2.:)=1} an n-dimensional sphere
Ji={xeI";|x|=1} (briefly J,) the i-th “double-face” of the cube I"

CX, S*X a cone and a k-fold suspension over a topological space X

§;i: 9I" =3I, x> (x4, ..., Xi—1, —Xi, Xi+1, ..., X») the symmetry of OI" with respect
to the hyperplane x; =0, i€ N,

G the subgroup of the group of all transformations of 3I" generated by the set
{si; ieN,}.
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The group G is abelian, because G =(Z,)". Each u e G, u#id, is the product of
mutually different transformations s;,, ..., s, and may be uniquely written in the
form

Sivip...ix = Siy0Sio0...08;,, Where i, <i,<...<ly.

Since to every u € G, u=s;,_,, there corresponds a unique subset {i,, ..., i, } € 2™,
there is a bijective map

t: Go2M, (s, W) ={ii, ..., ik}, T(id)=0.

1. Basic properties of s-cubes

We start with an adapted definition of the s-cube since that given in the
Introduction is not suitable for future proofs.

Definition 1.1. Let u', ..., u" € G. An s-cube I"/(u', ..., u") is a factorspace
I"/T, where T is an equivalence relation on I" defined as follows :

k
xTy if x=y or there are numbers i,, ..., ik € N, such that x,yeﬂ].-, and
j=1

X=u"oU...ou*(y).

To simplify the notation, any given s-cube I"/(u', ..., u") will be alternatively
written in the form I"/(U,, ..., U,), where U,=t(u'), i €N,.

Now we give the basic information about the general properties of s-cubes.

Proposition 1.2. Every s-cube is a Hausdorff space.

Proposition 1.3. Let I"/(U,, ..., U,) be an s-cube, f: N,— N, a bijection and
F: I">1", F(x)=(x;1), ..., X;m). Then there is a map F: I"/(U,, ..., U,)—1"/
I(f(Us-1y)s --s f(Uy 1)), [x]—[F(x)], which is a homeomorphism.

Lemma 1.4. Let k, reN,, k#r and let I"/(u', ..., u™) be such an s-cube that
u =s.. ThenI*/(u’, ..., u*)=I"/(v', ..., v"), where vi =u'fori# rand v" = u*.

Proof. Without loss of generality we can suppose (see Prop. 1.3.) that r=1,
k=2. We find the homeomorphism I"/(s,, u? ..., u") = I"/(u? u? u?, ..., u")
first in the case of n=2.

Let us denote A =(-2,0), B=(2,0), $=(0,0), A,=(—1, —1), A,=(1, —1),
A,=(1, 1), A,=(—1, 1), B,=(0, —1), B,=(1, 0), B,=(0, 1), By=(—1,0), S, =
1(A;—S), i e N,.. Now we define three PL-maps fi, f5, f3:

f1 maps the square A, A,A;A,=I? on the deltoid AB;BB;: it is the identity on
the square B;B,B;B,, it is linear on the triangles A,;B;Bs, A,;B;B,, A;B;B,,
A4B.B, and fi(A) =fi(A)=A, fi(A,)=f.(A;)=B.

f> maps the deltoid AB,BB; on the square B;B,B;B,: it is the identity on the
segment B, B, it is linear on the trianles B,B;A, B,B;B and f,(A)=B,, f,(B) =
B,.
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f» maps the square B;B,B;B, on the square A;A,A;3A,: it is the identity on the
segments B, B, B,B,, it is linear on the triangles B,SB,, B,SB;, B;SB., B,SB, and
fi(Si)=Ai, i€ N.,.

Now we define a map F,: I’ I? F,=fsof:0f;. The induced map E: 17/
/(s2, u?) > I*/(u?, u?), [x]—[Fx(x)], is a homeomorphism. Thus the assertion is
proved for n =2. This result can be extended to the general case via the cartesian
product; after a tedious computation it is possible to show that the map F,: I"/
/(u', ..., u")—>I"/(v', ..., v"), induced by the map F, =F, X (id)"~?, is the deman-
ded homeomorphism n =2.

Proposition 1.5. Letn,re N,1=r<nandletI"/(U,, ..., U,) be an s-cube such
that

1) U.cN, for ieN,,

2) UicN,—N, forieN,—N.,.

Then the map h: I"/(U,, ..., U)->I'/(U,, ..., U)X I"~"/(UY,, ..., UD), [x]—
([(x15 --es x)], [(Xr415 -+ x2)]), is @ homeomorphism.

Proof. Denote s-cubes I*/(U,, ..., U,), I'/(Uy, ..., U,), I"™"/(U,, ..., UY) by
I"/T, I' Ty, I"~"/ T, respectively. It is not difficult to show that T =T, X T>. Since
s-cubes are compact Hausdorff spaces, the map h is a homeomorphism.

Example 1.6. Applying Lemma 1.4 and Proposition 1.5 to the s-cube X = I*/
/(825 S1, S3, S34, Se, Sses S7, Sg) We get:

X =TI%/(s1, $1, $3, S345 Ss6, Ss6, $7, $8) =
zIZ/(sl, sl)X IZ/(sl, slz) X Iz/(slz, slz) X I/(sl) X I/(s1)=
~§?>x Kb X RP*X §'x §!

where Kb is the Klein bottle and RP? is the real projective plane.

Remark 1.7. Proposition 1.5 enables to represent any finite product of s-cubes
as an s-cube. In [2] and [3] it was shown that I"/(sy, ..., $:))=S", I"/(S12...ny +--
S12...)=RP" and I"/(Sy . nk, ..., S1..n-x)=S*RP"* Making use of these results
we get immediatelly that every finite product of spheres, real projective spaces and
their suspensions can be represented as an s-cube.

2. Special types of s-cubes

In Example 1.6 we have seen an s-cube which was homeomorphic to a product
of several s-cubes of lower dimensions. Such decompositions of x-cubes will now
be introduced.

Let Uy, ..., U, be given subsets of N,. Define a binary relation R(Uy, ..., U,) on
N, via

xRy<(x=y)v(xeU,)v(yeU,)v(3seN,: x,ye U,)
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The least transitive relation on N, containing R(Uj, ..., U,) is an equivalence
relation and will be denoted by E(U,, ..., U,), briefly E.

Definition 2.1. Ans-cube I"/(U,, ..., U,) is said to be combinatorially irreduc-
ible (c-irreducible) if N,/ E(U,, ..., U,) consists of exactly one equivalence class,
otherwise X is said to be combinatorially reducible (c-reducible).

Example 2.2. An s-cube I"/(si, S, ..., $.) is c-reducible for n>1, s-cubes
I"/(s1, ..., s1) and I"/(S12 . m ..., S12...n) are c-irreducible.

Theorem 2.3. Every c-reducible s-cube is homeomoprhic to a product of
c-irreducible s-cubes.

Proof. For a given c-reducible s-cube I"/(U,, ..., U,) denote N,/
/E(Uy, ..., U)={A,, ..., A}, cc=card A;, ieN,, q=2. Let h: N,—>N, be
a bijection such that A,={h(1), ..., h(t)}, A.={h(t;+1), ..., h(t)}, ...,
A,={h(t,-1+1,...,h(t,)}, where t;=c,+ ...+ ¢, i € N,. Using Proposition 1.3 for
f=h"' we get the homeomorphism I"/(I,, ..., U,)=I"/(h"'(Usy), ...
h™(Unwy)). To complete the proof it is sufficient to apply (q —1)-times Prop-
osition 1.5.

A c-irreducible s-cube need not to be irreducible. For example, an s-cube
X =TI/(s1, $1, S123) is c-irreducible, but X =1%/(s,, s;) X I/(s1).

Definition 2.4. An s-cube I"/(u', ..., u") is quasi-regular if there are not
i, jeN,, i #], such that u’ = s; and card U;> 1. An s-cube I"/(u', ..., u") is regular if
foreveryi, j € N, u' =s;implies u’ = s;. Regular s-cubes are called briefly r-cubes.

Lemma 2.5. Let X=1I"/(u’, ..., u") be an s-cube. Suppose that there are iy, ...,
i€ N, such that u =s,, u2=s,, ..., u*1=s,. Then I"/(u', ..., u™)=I"/(v', ..., v"),
where vi=v2=...=v"=u" and v'=u’ otherwise.

Proof. By repeated application of Lemma 1.4 for r=1i,, i,», ..., i, we get the

homeomorphism f, f: X 5> X; 5 ... > X,-y, X, =I1"/(uly, ..., ufy), where ufl=

u for k=t—j, t—j+1, ..., t—1 and u{;,=u’ otherwise, j=1, ..., t—1. For
j=t—1 we have ujl_y=uf-=...=up_y=u', uj—y=u' for i#iy, i, ..., i.

Let I"/U,, ..., U,) be an s-cube. Let U;={xeN,; 3i,, ..., ke N,, k>1,i,=x,
=], ui=s,, uz=s,, ..., u1=s,} for jeN, such that card U;>1 and U,=0
otherwise. It is not difficult to prove that for different p, ge N, we have
U,nU,=0. By a repeated application of Lemma 1.4 we obtain that I/
/(Uy, ..., U)=I"/(V,, ..., V,), where V,=Uj for ie U, je N, and V, = U, other-
wise. Further, the s-cube I"/(V,, ..., V,) is quasi-regular, because u‘=s; implies
card V;=1, je N,. We have just proved

Proposition 2.6. Every s-cube is homeomorphic to some quasi-regular s-cube.

Let X=1I"/(U,, ..., U,) be an s-cube, P, = U,u...uU,u{jeN,; card U,>1}
and My =N, — Py. Let R(U,, ..., U,) be a binary relation on My defined via

xRuy<>(x=y)v(xeU,)v(yeU.).
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Suppose that E(U,, ..., U,) (briefly Ey) is the least equivalence relation on My
containing Ry and My/E, ={A®, ..., AY).

Let X=I"/(U,, ..., U,), Y=I"/(Vy, ..., V,) be the s-cubes defined in
Lemma 2.5 and let f: X— Y be the homeomorphism constructed in the proof of
Lemma 2.5. Making use of Lemma 1.4 it is not difficult to prove the following

Lemma 2.7. If X is quasi-regular, then Y is quasi-regular. Further, My = My
and MU/EU = Mv/E—v.

Lemma 2.8. LetseN,andlet X=1"/(u', ..., u") be a quasi-regular s-cube such
that My/Ey ={AY, ..., AP}. Then X is homeomorphic to a quasi-regular s-cube
I"/(v', ..., v") such that

1) My =M, and My/Ey=M,/E,

2) There is k, € AY, for which vk =s, and vi=u' for i ¢ AP).

Proof. Suppose that there is not k, € A{? for which u* =s,,. Then there are j,,
.oy Jo€ AP such that uh=s,, uz=s,, ..., uh=s;, 2=t=card A{. By Lemma 2.5
we get that X=1I"/(v', ..., v"), where vi=vi2=_. =ypi =5, and v’ = u' otherwise.
Then k, =j, and vi=u' for i€ A. Condition 1) follows from Lemma 2.7.

Corollary. The s-cube X is homeomorphic to a quasi-regular s-cube I"/
/(v ..., v") such that

1) My=M, and My/Ev=M,/E,

2) For every i€ N, there is k; € A{? such that v&=s,,

3) vi=u' for i€Py.

Le 2.9. Let I"/(u!, ..., u") be a quasi-regular s-cube, My/Ey, ={A®, ..., AR}.
Let there for some s € N, k, € AR for which u* =s, . Then X is homeomorphic to
a quasi-regular s-cube I"/(v’, ..., v") such that

1) My =My, and My/Ey=M,/E,

2) vi=g, for ie AP and v’ =u' otherwise.

Proof. Let je AP be such an index that u/#s, . Since j, k, € AP, u* =ss,

there are iy, ..., i, € A such that j=i,, k, =i, and ur=s,, u?=s,, ..., u-1=s,. By
Lemma 2.5 we get that X is homeomorphic to an s-cube I"/(w', ..., w"), where
wi=wh=_ =wh=g, and w' =u’ otherwise. With respect to Lemma 2.7 we have

My = Myw, My/Ey = Mw/Ew and the s-cube I"/(w?, ..., w") is quasi-regular. In the
case when u! =g, for every j e A{Y we finish. In the other case we continue in the
outlined procedure until we get a quasi-regular s-cube I"/(v’, ..., v") such that
conditions 1), 2) are satisfied.

Corollary. Let X=1I"/(u’, ..., u") be a quasi-regular s-cube such that for every
s € N, there is k, € A with the property u* =s, . Then there is a regular s-cube
I"/(v', ..., v*) homeomorphic to X such that

1) vi=s, for ie AP, seN,

2) vi=u' for i e Py.

Proposition 2.10. Every s-cube is homeomorphic to some r-cube.
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Proof. Let Xy=I"/(u', ..., u") be an s-cube. By Proposition 2.6 Xy is
homeomorphic to a quasi-regular s-cube Xy, =I1"/(v, ..., v"). Let My/Ey, ={A{),
..., AQ}. Then by Corollary of Lemma 2.8 Xy is homeomorphic to a quasi-regular
s-cube Xw=1I"/(w!, ..., w"), where W;=V, for i e Pv, Mw=My, My/Ey=My/
/Ew and for every i € N, there is k; € A, such that u* = s,. Further, by Corollary of
Lemma 2.9, Xy is homeomorphic to a regular s-cube Xz=1"/(z', ..., 2"), where
=g, for ie AY, jeN,, z'=v' for iePy.

Example 2.11. Making use of Lemma 1.4 we find an r-cube which is
homeomorphic to the s-cube X =I°/(s3, $123, $2, Ss, Sa)-

XzIS/(Ss, S123, $123, Ss, S4)215/(5123, $1235 $123, S5, 54)z
zIS/(5123, S1235 S123, Sa, 54) =Y

As we can see in Example 2.11, an s-cube is not homeomorphic to the unique
r-cube in general, because X =1°/(5133, S123, S123, Ss, S5) F Y.

Example 2.12. Let X=I"/(U,, ..., U,) be an s-cube with card U;=1 for
i € N,. Then X is quasi-regular and My = N,,. Denote N,/E, ={A{®, ..., AY}. By
Corollary of Lemma 2.8 and by Corollary of Lemma 2.9 X is homeomorphic to
a regular s-cube Y=I"/(v', ..., v"), where vi =35, for ie AD, 5, € AP, jeN,.
Then in a way similar to that in the proof of Theorem 2.3, making use of
Remark 1.7, we get the homeomorphism Y~SX ...x S, where ¢, =card A{,
ieN,.

3. Are all r-cubes manifolds ?

In dimensions 1 and 2 it is evident that r-cubes are not manifolds in general. As
examples we mention r-cubes I/(id), I?/(id, s,)=S" X I (these r-cubess are man-
ifolds with a boundary). In a higher dimension it is sometimes difficult to decide
whether a given r-cube is or is not a manifold. For example, an r-cube I*/(s,, $12,
S123) is a manifold, but an r-cube I’/(sy, $,, S123) is neither a manifold nor
a manifold with a boundary.

The solution of the problem whether a given r-cube is a manifold is in
Theorem 3.18.

Definition 3.1. An r-cube X =1I"/(u’, ..., u") has the property “M” if for each
nonempty subset P < N, such that

i) Vi,jeP:i#j>ui+u ‘ (1)
ii) VieP:card U #1 (2)
" we have
Pnr(H u”)#ﬂ. (3)
jeP

Example 3.2. r-cubes I*/(s1, $12, S123), I*/(s2, 2, S4, 54) have the property “M”’,
60



r-cubes I*/(s1, $12, $12), I*/(S12, $23, 34, $14) have not. Not every r-cube I"/(U,, ...,
U,) with card U, =0 for some i€ N, has the property “M”.

Lemma 3.3. Let I"/(U,, ..., U,) be an r-cube with the property “M”and let
card U, >1 for some k € N,. Then k € U,.

Proof. Suppose that k € U,. Then for P = {k} we have Pnt(u*)={k}n U, =0.

Definition 3.4. An r-cube I"/(U,, ..., U,) is cube-fibreable (briefly c-fibreable)
as there is a set Q, & Q% N,, such that

M on( U U) i )
keNp—
(ii) If U;=U;forsomei,jeN,, theni,jeQori,jeN,— Q. (&)

An r-cube which is not c-fibreable is called c-nonfibreable.

Example 3.5. An r-cube I’/(sy, si;, Si23) is c-fibreable with Q={3} or
Q={2, 3}, an r-cube I*/(s,, s;) is c-nonfibreable.

Lemma 3.6. Let ke N, and let I"/(u’, ..., u") be an r-cube with k € U,. Then
I"/(u, ..., u")=I"/(v', ..., v"), where v"=u"ou"osk for such i e N,, i+ k, that
k € U; and v =u' otherwise. -

Proof. First we define a map h,: I"/(u', ..., u") - I"/(v', ..., v"), h([x])
= [(x1y «oer Xuo1, X+ 1, Xisn, ooy X4)] for % =0, he([x]) = [(X4, ..., Xior, X — 1,
Xiat, «-vs Xa)] for x =0, where X;=x; for jé U, and x;= —x; for je Uy, jeN, —
{k}. It is not difficult to show that h, is well defined and continuous. The map
gi: I'(v', ..., v™) = IM (U ., ut), ge((xXD) =[(x1y -y Xior, Xe— 1, Xien, -y Xa)]
for x, 20, gu([x]) =[(X1, -.., Xx-1, Xk + 1, Xxsy, ..., Xa)] for xx =0, where %; = x; for
j€ Vi, x;=—x; for je Vi, jeN, — {k}, is also well defined, continuous and inverse
to h.. Hence both h, and g, are homeomorphisms.

Let X=I"/(u', ..., u*), Y=I"/(v', ..., v") be the s-cubes from Lemma 3.6.
Then the s-cube Y is not an r-cube in general. Let K={ieN,; U =U,, i#¥k},
a =card K. Then for each i € K we have v’ =s, and v* =u*. Now it is easy to see
that the s-cube is not an r-cube if and only if @ =1 and u* # s,. To obtain an r-cube
from the s-cube Y it is sufficient to apply a-times Lemma 1.4. Therefore we can
strengthen Lemma 3.6 into

Proposition 3.7. Letke N, andlet X=1"/(u’, ..., u") be an r-cube with k € U,.
Then the r-cube X is homeomorphic to an r-cube Y=1I"/(w', ..., w"), where
wi=u'ou*os, for such i e N, that k e U, U,# U, and w' =u' otherwise.

Proof. Let K= {ij, ..., i}, @ =1. According to Lemma 3.6 I"/(u’, ..., u")=
I*/(v', ..., v"), v, i€eN,, are described in Lemma 3.6. Then using Lemma 1.4

. . . . f,
successively for r=i,, ..., i, we get homeomorphisms I"/(v?, ..., v") = I"/(zly, ...,
f2 a L. .
) = oo = I (Zayy ooer ) =1"(WY, oy W "), where Ap=v* for i=i,, m=j

and z{;= v’ otherwise. The map A, = faofa1o... fiohy is the demanded homeomor-
phism.
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Lemma 3.8. Let X=1I"/(u', ..., u"), Y=I"/(w', ..., w") be r-cubes defined in
Proposition 3.7. Then the r-cube X has the property “M’ if and only if the r-cube
Y has the property “M”.

Proof. Let the r-cube X not have the property “M”. Then there is a nonempty
set P, satisfying (1), (2), such that Pn r(ﬂ u”) ={. We prove that the r-cube Y has

ieP
not the property “M”. We shall discuss two cases:
i) card P=2, ii)card P=1.
i) Let P={iy, ..., i} and let s, 0=s=r, be such a number that ke U, for i=s
and k ¢ U, fori > s.It is clear that s is even. Suppose that k € P (the other case will

be discussed later). We show that for P=P — {k} we have Pnr(]_[ w‘) =§. In fact,

ieP

[]w =(Eu‘)o(ukosk)"'= (H uf) o(U* 05) o (U 05)" =

ieP

=Skon u‘ 5

ieP

becausee for every ue G we have u?’=id. Then PﬂT(SkoH u‘>=@, because

Pnr(illu")=0. -

In the case when k ¢ P we take P=P for s even and P=Pu{k} for s odd.

ii) Let P={p}. Itis sufficient to take P=P if p ¢ U,, p é W, and P=Pu{k} if
peU,, peW,.

Let now the r-cube Y=1I"/(w', ..., w") not have the property “M”. Taking
X =Y. in Proposition 3.7 we get Y=Z=1I"/(7, ..., z"), where z'=u' for ie N,.
By the first part of the proof we obtain that the r-cube Z, Z =X, has not the
property “M”.

Lemma 3.9. Let X=1I"/(U,, ..., U,) be an r-cube without the property “M"
such that for every i € N,U;#@. Then there are an r-cube Y=I1"/(V,, ..., V,),
X=Y and an integer k € N, such that k ¢ V, and card V, > 1.

Proof. Suppose that i e U; for every i € N, such that card U, >1. Since X has
not the property ‘“M”, there is a nonempty set P = N, such that the conditions (1),
(2) and Pmr(H u’) =@ are satisfied. Without loss of generality we can suppose

jeP
that P={1, 2, ..., r}. Let K,={ieN,; 1e U}, K,=K,n{2, ..., r}, card K, =a,.
Denote X =1"/(U{, ..., U?). Then using Proposition 3.7 for k=1 we have
I"/(UP, ..., U = I"/(UP, ..., UP), where uiy)=tioouloos, for ie K,—{1}
such that U@+ U{” and u{,y= u{o, otherwise. Let P,=P—{1, ..., k}. Then for
k =1 the following conditions are satisfied:
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i) Vi,jeP:iFj>UR+ UM
il) VieP,: card UP>1

i) Pknt( 1 u{k)) =0.

j€Pk

Conditions i), ii) are evident, we prove iii). Let ufy=S108;0...08i,. Then

[Tuf= ( I u(‘o)> o(Uloyo 1)1 =

j€P; jeP;
- (H “50>) oUloyo (Ulyos1)™ =] uloyosi
jeP jeP

because a, is an odd integer and u?>=id for every u € G. Since Pnt(l_[ u{o,) =,
jeP
we have _
P,nr( IT u{,)) = Pmr((H u{0,> osl) =0.
jePy jeP
There are two possibilities: 1) 2 ¢ US", 2) 2e U

In the case 1) the proof is finished. In the case 2) we continue in the outlined
process until we get (by repeated application of Lemma 3.7) a number ko€ {3, ...,
r} and an r-cube I"/(U{™", ..., U%~") such that k, ¢ Ufo~". Now we outline the
proof of the existence of such k. Let for k=3, ..., r ke U§. It is possible to
show that for k=2, ..., r—1 the conditions i), ii), iii) are satisfied. Then for
k=r—1 we get from iii) that {r}nt(ui-n) = {r}nU¢ V=4, a contradiction.

Lemma 3.10. Let X=1I"/(U,, ..., U,) be an r-cube such that for some k € N,
card U, =m>1 and k ¢ U.. Then X is neither a manifold, nor a manifold with
a boundary.

Proof. Let a €3I" be such a point that a, =1 and a;=0 for je N, — {k}. Let
U={xel"; d(x, a)=4} (d is the symbol of the Euclidean metric), 7,: I"—I"/
/(Uy, ..., U,) a projection, V=m,(U). V is a neighbourhood of the point
b=m.(a), V=C(I"'/(S12...ms ---» S12 ..m)), the point b corresponds to the top of
the cone in this homeomorphism. Using [2] we get V= C(S"~"~'RP™). Since V is
contractible,

H(V, V={b}))=H, (V—-{b})=H, (S 'RP")=H,_,,.RP"

for every q € N (the symbol H denotes the reduced homology with Z coefficients).
Then using [1], Proposition 3.2, page 59, it can be proved that there is not
a neighbourhood of the point b homeomorphic to R" or to R} (R} ={xeR";
x.=0}). . :

Now we describe some simple properties of c-nonfibreable r-cubes. Let X =I"/
/(Uy, ..., U,) be a c-nonfibreable r-cube. By M, we shall denote the set {ie N, ;
U =Uy}, keN,.
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Lemma 3.11. If U, = {k} for some k € N, then X =1"/(s¢, ..., Sk)-

Proof: Suppose that M, # N,. Then X is c-fibreable with Q =N, — M.

Lemma 3.12. If the r-cube X has the property “M’ and card U;>1 for some
ieN,, then M, =N, or there is p; € U, such that p, ¢ M, and U, nM, =.

Proof. Let M;#N,. If U,=M,, then X is c-fibreable with Q=N,—M,, a
contradiction. Hence Mg U.. Let p,e U, —M,. We show that U, "M, =0. Let
jeU,nM,. Since card U,>1 for every keN, (Lemma 3.11), we have
jeU,nM;c U,,nU,, p;e U,nU; and {j, p.;}nt(w ou?)=@. Hence the r-cube X
has not the property “M”, a contradiction.

Now we are going to describe c-nonfibreables r-cubes with the property “M”’.

Proposition 3.13. Let X=1I"/(U,, ..., U,) be a c-nonfibreable r-cube with the
property “M”. Then exactly one of the following conditions is satisfied:

i) There is k € N, such that X=1"/(sx, ..., Sx)

i) X=I"/(S12..ny --er S12..0)-

Proof. Suppose that X+ I"/(si, ..., St), K€N., XFI'/(S12. ny ...y S12. n). AS
usually we denote M;={ieN,; U;=U}, jeN, and let t=card {M,; jeN,}.
According to Lemma 3.11 card U,>1 for i € N,. Making use of Lemma 3.12 for
i =po=1 we obtain an integer p, € U,, such that p, é M,, and U, nM,,=@. Let r be
such an integer, 1=r=t—1 that there are integers po, p, ..., p, for which the

conditions

1) peU,—M,,i=0,1, .., r—1
2) U,n(M,uM, u...UM, )=0,j=1,2, ..,r

are satisfiesd. We shall prove that there is p,.,eU, —M, such that
U,,.n(M,uM,u...uM,)=0. There are two possibilities:

i) For every x € U,, there is x e M,,UM, u...UM,, . Then with regard to 2) the
r-cube is c-fibreable with Q=M,,.

ii) There is p,+: € U, such that p,,, ¢ M, UM, U...UM, . We prove that the set
S=U,..n(M,nM,u...UM,) is empty. Let S0 and let g € {0, 1, ..., r} be the
greatest index such that there is s € S with the property s € M,,. By Lemma 3.12 we
have g <r. Let now q,, ¢ =q,=r be the least index such that p,., e U,, ,, let q,,
q = q.<q. be the least index such that p, e U, ,, ..., let g, § = gn <q.-1 be the
least index such that p, _ €U, ., 1=m=r+1, where p, ;is used instead of p, .

Then

{p'+1’ Pais Pazs -+ pqm}mr(up'+l°upq"° °up"'"') =0

and the r-cube X has not the property “M”, a contradiction. Hence there are
integers po, p1, ..., P.—1 such that the conditions (1), 2) are satisfied for i =0, 1, ...,
t—2,j=1,2,...,t—1. Then for j=t—1 we have

U,_.n(M,, UM, u...UM, _,)=0
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and U, _,=M,_,. We see that the r-cube X is c-fibreable with Q=M,_,, a
contradiction.

Let X=1I"/(U,, ..., U,) be a c-fibreable r-cube with the property “M”. Without
loss of generality we can take Q=N, for some r, 1=r<n. To the projection
p: I">I', (xi, ..., Xa)—> (x4, ..., x,) there is the induced map p: X—I'/(UinN,,
..., Uy,nN,) = By, [x]—[p(x)], such that the Diagram 1 commutes. The r-cube

P p p
Tn ‘ T
1"/(U u,) b 1'/(
R h | —— U.,nN,.....U,nNr)
Diagram 1.

By =I'/(UinN,, ..., U,nN,) will be denoted in what follows briefly by I'/(U,, ...
U,) or by I'/(&, ..., i").

Lemma 3.14. For every tel” we have m,op~'(t)=p 'om,(t).

Proof. Let [X]Gn,.op_l(t). Then ﬁ[x]:ﬁon”(x)= =ﬂrop(X)=”,(t)=[t],
hence [x]ep~"'om, (). Let [x] €p~'om,(t). We find such z e p~'(¢) that [x]=[z]

Since p[x]=[p(x)]=[t], there are i,, ..., i,e N, such that p(x), teﬁ]{, and
j=1
p(x)=a"...ou*(t) (t=(t, ..., &), x =(x1, ..., x,)). Let us define ze I", z=(t,, ...,
t.) by x =u'ou’o...0u"(z). Since p(z)=t and x, zeﬁ]:;, we have [x]=[z] and
. j=1

zep~!(t). Hence [x] € mm,op~'(2).

Now using the property “M” of the r-cube X we shall show that p~'[t]=I"""/
/(UY), ..., U =1"""/Q for each point [t] € By. With regard to Lemma 3.14 is is
sufficient to prove that m,(p~'(t))=~I"""/Q for every t e I'. This fact is the direct
colonlary of the following

Lemma 3.15. Let x, yep~'(t), teI'. Then [x]=[y] if and only if (x,.,,
X)Q2(Yrs1y ooey Yn)-

Proof. Let [x]=[y]. Then there are i, ..., i € N, such that x, yeﬁ]:; and
j=1

ceay

y =uko...ou*(x). We can suppose that u»#u's for p#q (if u>=u's, the term
u'»ou's =id can be omitted). Let s € N, be such an integer that j;=r for j=s and
i;>r for j>s. Since (x4, ..., X.)=(y1, ..., y»), We have

T(uou...0u*)NN, =0 . (6)
Further, because X is c-fibreable with Q =N,, (6) implies that s =0 or there is
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j€{ii ..., i,} such that card U>1. Let S={je{ii, ..., ik}; card U;>1}. With
regard to (6) we have
Smr(n ui)=@. (7)
j€S

Since the r-cube X has the property “M” and the set S satisfies conditions (1), (2),
we have with regard to (7) S=0 and s =0. Hence (X,+1, --+s X2 ) 2(Vrs1s «ovs Yn)-

The converse implication is trivial.

Corollary. p~'[t]=I"""/(UY,, ..., U)=F, for every tel".

Lemma 3.16. The r-cubes By=1'/(U,, ..., U,), F, =1"""/(U",, ..., UY)) have
the property “M".

Proof. We prove the assertion for By, the proof for Fy is similar. Let P,
@< P c N, be such a set that the conditions (1), (2) are satisfied. Since the r-cube X

has the property “M”, Pmr(ﬂ u") #0. But then Pnr(H L'l’) #0, because U, =

jeP jeP
UNN, for jeN,.

The r-cube By can be embedded into X, an embedding i, is given by
iv[(ty, ..., )] = [(tiy...st,, O,...,0)]. Suppose now that the r-cube X is
homeomorphic to an r-cube Y =1"/(V,, ..., V,) by Proposition 3.7 for some k=r.
Then the r-cube Y is c-fibreable with the same Q. Let us define a map h,: I'/(U,,
s U)) = I'/(Vy, ..., V,) by by =Ppvohwoiy, where py: I"/(V, ..., V) = I'/(V,,
..., V,) is the induced map by p: I"—1I". The map h, is a homeomorphism and
Diagram 2 commutes (i: I'> I", (x4, ..., x,) » (x,, ..., x,, 0, ..., 0)). Further, the

LT Up) D/, V) e

r e e hk ty y/ r

I — Ir/(U1, e Ur) ——|r/(V1, P Vr) - |
Diagram 2.

map h, preserves fibres in such a way that the fibre over a point [t] e I'/(U,, ..., U,)
maps homeomorphically on the fibre over the point A [t]eI'/(V,, ..., V)

Lemma 3.17. The fibration (X, pu, Bu) is locally trivial with the fibre F, =1"""/
(UM, ..., UD). .

Proof. We can suppose that there is an intéger s, 0=s =r such that card U, =1
for i=s and card U,>1 for s<i=r. In the case when s=r, the fibration
(X, Pu, By) is trivial (Proposition 1.5). Now we give a local trivialization of the
fibration (X, py; By). Let [a] € By.

1) If a é3I", then the set A ={[x] € By; x ¢3I"} is a neighbourhood of [a]. We
have pg'(A)=A X Fy via [(x1, ..., X2)] = ([X15 -0r X)), [(Xrs1s s X2)])-
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2) If a €dI", then we shall discuss two cases:

I) a;# +1 for i>s. The set A={[x]€By; x;e(—1,1) for jeN,, x;€(—1,1)
for jeN,—N,} is a neighbourhood of [a] and the map f: p5'(A)—> A X Fu,
[x]=([x1, ..., )], [(xs+1, ---s Xa)]) is @ homeomorphism.

II) a;=t1forsomei>s.LetS={ieN,—N,;a==x1} = {i, ..., i}. Denote
I"/(Uy, ..., U,) by I"/(uloy, ..., uly). Then applying Proposition 3.7 for k=i, ..., i
we get the hemeomorphisms A,: I"/(uli-yy, ..., Uf-1)) = I"/(udy, ..., udH), j=1,
..., t, where ufy=uf_ouf_1os; for such m that j;e U™, U+ U4 and
ufy=ug-, otherwise. Let A=Hh,oh_jo...ch,, hI"/(U,..,U)) = I
(Vi ..., Vu), h[a] =[c], see Diagram 2, where h is substituted for A,(h: Bu— By
is the map induced by /). Then ¢, =0 for k € S, the set C={[x]eI'/(V1, ..., V});
xj€(—1,1) for jeN,, x;e(—1, 1) for j € N, — N, }, is a neighbourhood of the point
[c] € By a the map fc: p7'(C)— C X I""/(V,, ..., VI, [(x4, ..., x.)] = ([(x15 .-,
x.)], [(x+41, ..., x,)]) is a homeomorphism. Further, I"~7/(UY,, ..., U =1""
(V¥ ..., V), Let A={[x]el'/(U,, ..., U,), x;e(—1,1) for jeN,,
x;€(—=1,0)u(0, 1) for jeS$, x;e(—1,1) for jeN,—N,, j € S}. We see that A is
a neighbourhood of the point [a] € By and the map h|,: A— C is a homeomor-
phism. The map fa = fco(h|p'(A)): po'(A) - CXI*"/(V,, ..., Vi) is also
a homeomorphism and the required local trivialization.

Theorem 3.18. An r-cube X=1I"/(U,, ..., U,) is a manifold if and only if it has
the property “M”. :

Proof. Let X not have the property “M”. If U, =@ for some i € N,, then X is
not a manifold. If U;#@ for all ieN,, then according to Lemma 3.9 and
Lemma 3.10 X is neither a manifold nor a manifold with a boundary.

Let now X have the property ‘“M”; there are two possibilities :

1) X is c-confibreable. Then by Proposition 3.13 and Remark 1.7 X=S" or
X=RP".

2) X is c-fibreable. To prove that X is a manifold, it is sufficient to use
Lemmas 3.16, 3.17, Proposition 3.13, Remark 1.7 and the induction.
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S-KYBbI
Jozef Tvarozek

PeswomMme

B craTtbe uccnenyloTcs HeKOTOpble (aKTOP-NPOCTPAHCTBA n-MEpHOTO KyGa I", KoTOpble BO3-
HUKAIOT OTOXAECTBAEHUEM OMNpENENEHHbIX TOYEK Ha €ro rpaHuue. Bo3zHHKaOWHe MPOCTPAHCTB L

Ha3BbIHBI S-KYOaMHu.
B HepBOit 4acTH CTaTbH YCTAHOBJIEHbI OCHOBHbIE CBOMCTBA §-KYOOB. BO BTOPO#M HACTH H3YyU. HOTCS
npo6yieMbl pa3noxeHus s Ky6oB. B TpeTbeil YacTH HalieHO HEOOX0AUMOE U AOCTATOYHOE YCIIOBHE ANS

TOro, 4Tobbl §-Ky6 6bUI MHOrOO6pa3neM.
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