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ABSTRACT. A sequential effect algebra (SEA) is an effect algebra on which a 
sequential product with natural properties is defined. It is first shown that the 
tensor product of a Boolean algebra with an arbitrary SEA exists. We then char­
acterize pairs of SEA's that admit a tensor product. As a corollary we show that 
a pair of commutative SEA's admit a tensor product if they admit a bimorphism. 

1. Introduction 

Sequential effect algebras (SEA's) were recently introduced to study general 
properties of sequential measurements ([9], [11], [12]). Important physical models 
for SEA's can be constructed from fuzzy set systems and Hilbert space operators 
([2], [3], [12], [13], [14]). It is relevant to study tensor products of SEA's because 
they describe combined physical systems. For example, the tensor product of a 
Boolean algebra and a SEA describes the interaction of a measuring apparatus 
with a quantum mechanical system. Our work parallels the pioneering results in 
[4] and some of our methods are similar. The basis for all of this research goes 
back to the original work in [6]. 

This paper begins with the basic definitions of effect algebras and SEA's. Our 
first result shows that the tensor product of a Boolean algebra with an arbitrary 
SEA exists. We then characterize pairs of SEA's that admit a tensor product. As 
a corollary we show that a pair of commutative SEA's admit a tensor product if 
they admit a single bimorphism. We note that this result is significant because 
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there are important examples of commutative nonboolean SEA's. The paper 
closes with some unsolved problems. 

2. Basic definitions 

This section summarizes the basic definitions concerning effect algebras ([1], 
[5], [7], [8], [15]) and sequential effect algebras ([9], [11], [12]). For motivation 
and further details the reader is referred to the cited literature. If © is a partial 
binary operation, we write a ± b if a © b is defined. 

An effect algebra is a system (E, 0 ,1 , 0 ) where 0, 1 are distinct elements of E 
and 0 is a partial binary operation on E that satisfies the following conditions. 

(El) If a ± b, then b ±a and b^a = a®b. 

(E2) If a ± b and c± (a © b), then b _L c and a _L (b © c) and a^(b^c) = 
(a^b)^c. 

(E3) For every a G E there exists a unique a' G E such that a ± a' and 
a © a' = 1. 

(E4) If a± 1, then a = 0. 

In the sequel, whenever we write a©b we are implicitly assuming that a ± b. 
We define a < b if there exists a c G _5 such that a © c = b. It can be shown 
that (_5, < , ' ) is a partially ordered set with 0 < a < 1 for all a G P7, a" = a, 
and a < b implies b' < a'. Moreover, we have a ± b if and only if a < b'. 

If J5 and F are effect algebras, we say that <j>\ E -+ F is additive if a JL b 
implies (j)(a) ± (f)(b) and 0(a © b) = 0(a) © (j)(b). 

If 0: E -» F1 is additive and 0(1) = 1, then 0 is a morphism. If 0 : F? —•> F1 

is a morphism and 0(a) _L 0(b) implies that a ± b, then 0 is a monomorphism. 
A surjective monomorphism is an isomorphism. 

It is easy to check that a morphism 0 is an isomorphism if and only if 0 is 
bijective and 0 _ 1 is a morphism. 

If G is also an effect algebra, a map / ? : B x F - > G i s a bimorphism if 

(Bl) /3(1,1) = 1 . 

(B2) /i(a © b, c) = /?(a, c) © /3(b, c) whenever a, b G E with a _L b. 

(B3) /5(a, b © c) = /3(a, b) © /3(a, c) whenever b,c £ F with b _L c . 

We thus see that /3(-, c) and /3(a, •) are additive for all a G _5, c G F\ Moreover, 

/?(-,l) and /?(1,-) are morphisms. 
Roughly speaking, an effect algebra is a structure that is designed to study 

parallel combinations of simple yes-no measurements called effects. We now con­
sider a richer structure that also enables us to study series combinations of 
effects. For a binary operation o , i f a o b — boa, we write a | b. 
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A sequential effect algebra (SEA) is a system (E, 0 ,1 , 0 , o) where (£7,0,1, 0 ) 
is an effect algebra and o: E x E -> E is a binary operation that satisfies the 
following conditions. 

(51) b H-> a o b is additive for every a G E. 
(52) l o a = a for all a£ E. 
(53) If a o b = 0, then a | b. 
(54) If a | b, then a | b' and a o (b o c) = (a o b) o c for all c e E. 
(55) If c | a and c | b, then c | a o b and c | (a 0 b). 

We call an operation that satisfies (S1)-(S5) a sequential product on £ \ If a | b 
for all a,b e E, we call J5 a commutative SEA. 

There are many examples of SEA's ([11], [12]), but we shall only consider 
the four most important ones here. For a Boolean algebra 25, define a !_ b if 
a A b = 0 and in this case a®b = aV b. Defining a o b = a A b , we have that 
(23, 0 ,1, 0 , o) is a commutative SEA. A particularly simple commutative SEA is 
the unit interval [0,1] C R. For a,b e [0,1], define aob = ab and define alb 
if a + b < 1, in which case a 0 b = a + b. For the function space [0, l]x define 
the functions / 0 , /-_ by / 0 (x) = 0, /^a;) = 1 for a l l x G l . 

We call T C [0, l ] x a jfkz2j/ set system on X if 

if / G J7, then /x - / G -F, 
if f,geF with / + g< 1, then f + gef, 
if / , f f € - F , then / g G J^. 

Then JF becomes a commutative SEA when / 0 # = / + g for / + </ < 1 and 
f o g = fg. The most important noncommutative SEA is obtained from the set 
£(H) of self-adjoint operators on a Hilbert space H satisfying 0 < A < I. 

For A,B e £(H) we define A J_ B if A + B G 5(ff) and in this case 
, 4 0 £ = A+B. The sequential product on £(H) is defined by AoB = Al/2BA1'2 

where A1/2 is the unique positive square root of A. 

It is shown in [11] that (£(H), 0 , 7 , 0 , o) is a SEA. This Hilbert space SEA 
is useful for studying the foundations of quantum mechanics ([2], [3], [13], [14]). 

Let E and F be SEA's. A SEA-morphism </>: E —j> F is an effect algebra mor-
phism that satisfies </>(a o b) = 0(a) o 0(b) for every a,b £ E. A SEA-morphism 
that is an effect algebra isomorphism is a SEA-isomorphism. 

If G is also a SEA, a SEA-bimorphism is a map (3: E x F —>> G that is an 
effect algebra bimorphism satisfying 

/3(a ,b )o /J (c ,a 7 )=/?(aoc ,bod) 

for all a,c£ E and b, d G F. 
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The SEA tensor product of E and F is a SEA T and a SEA-bimorphism 
r : ExF -> T such that 

(Tl) Every a G T has the form a = T(a1,bl) 0 • • • 0 T(an, bn). 
(T2) If (3: E x F -> G is a SEA-bimorphism, then there exists a SEA-mor-

phism (j>: T —r G such that (3 = 4>OT. 

It can be shown that the SEA tensor product is unique up to a SEA-iso­
morphism if it exists. Examples of SEA-bimorphisms and SEA tensor products 
will be given in the next section. The definition of an effect algebra tensor product 
is obtained from our previous definition by replacing SEA with effect algebra 
whenever it appears. 

3. Tensor products 

It is shown in [4] that the effect algebra tensor product of a Boolean algebra 
with an arbitrary effect algebra always exists. We now show that this result holds 
for SEA's. Our proof is similar to the special case proved in [11]. 

THEOREM 3 .1 . If B is a Boolean algebra and E is a SEA, then the SEA 
tensor product of B and E exists. 

P r o o f . By the Stone representation theorem, we can (and will) assume that 
B is the set of clopen subsets of a totally disconnected topological space X. 

We call a function / : X —> E simple if / is continuous for the discrete 
topology on E and / has a finite number of values. 

Define 

T = {/ eEx : / i s simple} . 

On T define / 1 g if f(x) _L g(x) for all x G X and if / _L g define (f@g)(x) = 
f(x)®g(x). Defining 0(x) = 0 and l(x) = 1 for every x G X, it is easy to check 
that (T, 0 ,1 , 0 ) is an effect algebra. For f,g €T define ( / o g)(x) = f(x) o g(x). 
Again, it is easy to check that (T, 0 , 1 , 0 , o) is a SEA. Define r : B x E -> T by 

(a if x G A, 
r(A'a)(x) = io if*M. 

It is clear that r is an effect algebra bimorphism. Since 

(r(A, a) o T(B, b))(x) = r(A, a)(x) o r ( B , b)(x) = T(AnB,ao b)(x) 

= T(AoB,aob)(x), 

we see that r is a SEA-bimorphism. 
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Suppose / eT and / has the distinct values a1,...,an. Then f~1(ai) = 
A{ e B and we have A{ n A- = 0, i ^ j , and |J Af = X . Moreover, we have the 
representation 

f = @T(Ai,ai). 

This representation is unique because suppose 
771 

i=i 

where 6- ^ bj, B- n ^ = 0, i / j , and I J - ^ = X . Then x G ^ if and only if 
/(x) = b-. Hence, b- = â  for some i and then B^ = A f. The uniqueness now 
follows. Let /3:/?xjE'-».Fbea SEA-bimorphism. Define </>: T -» F as follows. 
If / — 0 r ( - 4 ^ a i ) -S the unique representation of /, then (j)(f) — ® (3(Ai,ai). 
Notice that (B/^trl^aJ is defined because 0/3(A i ? l) = 1 and ^(A^a^ < 
P(A{, 1). To show that 0 is a SEA-morphism, we have 

0(1) = /3(X,1) = 1. 

If / _L g and g = 0 T(B>, b-) is the unique representation of g, then 

f®g = @r(AinBj,ai®bj). 

Assuming for simplicity that ai®b-^ar®bs, i^r, j / s, we have 

^(/e .?) = 0 i 8 ( A i n B i , o < e 6 j ) 

0/5(-A.ПB í.,a ť) Øj9(A iПB J . ł ò i) 

If â  0 6 • = ar 0 bs, we can group these terms together and obtain a similar 
result. In a similar way we obtain 

<t>(f°9) = ®P(AinBj,aiobj) = ®(3(Ai,ai)o/3(Bj,bj) 
h3 i,j 

= 0 P ( A V a,) o ®Í3(B., 6.) = <t>(f) o # s ) . 

We conclude that <j> is a SEA-morphism. Moreover, 

/3(A,a) = </>(T(A,a))=0or(J4,a) 
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for every A G B, a G E so that (3 = </> o r . • 

We now characterize pairs I? and F of SEA's that admit a tensor product. 
A finite sequence A = {(a^b j} in E x F is orthosummable if 0/?(-4) := 

0/3(^,6^) is defined for every SEA-bimorphism /?. 
We say that F? and F are tensoral if 

(1) there exists a SEA-bimorphism /?: I? x F -> G for some SEA G?, 

(2) for any orthosummable sequence A m E x F and (c, d) G E x F there 
exists an orthosummable sequence C in E x F such that 

0/?(O) =[0/M)]°/?M) 
for every SEA-bimorphism /?. 

LEMMA 3.2. I/F? and F are commutative and satisfy (1), then E and F are 
tensoral. 

P r o o f . To show that (2) holds, suppose that A = {(ai,bi)} is ortho­
summable in E x F and (c, d) G E x F. Let C = {(a^ o c,bio d)} . Then 
for any SEA-bimorphism P on E x F we have 

0 / 5 ( C ) = 0 i 0 ( o i o C , 6 i o d ) = 0 / 3 ( c o o i , d o 6 i ) 

= 0[/?(c,d)o/?(o i ,O i)] 

= /3(c,d) O 0 / J K , 6,). 

Since 

P(c, d) o /?(<.., 6.) = (3(c oa{,do 6.) = /?(fli o c, 6f o d) = /?(oi; 6.) o /3(c, d), 

we have 

0 0 ( C ) = [ 0 / ? K ^ ) ] o/?(c,d) = [ 0 0 ( A ) ] o/?(c,d). 

D 

THEOREM 3.3. The SEA tensor product of E and F exists if and only if E 
and F are tensoral. 

P r o o f . Suppose the SEA tensor product of E and F exists. Then clearly 
(1) holds. To show that (2) holds, suppose A = {(a^bj} is orthosummable in 
ExF and (c,d) G E x F. By (Tl) there exists a finite sequence C -= {(c-, d-)} 
m E x F such that 

Ø т ( c , , d . ) = [ Ø T Í Ą Л ) ] oт(c,d). 
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If (3: E x F -+ G is a, SEA-bimorphism, by (T2) there exists a SEA-morphism 
(f>:T -> G such that f3 = </> o r . Hence, 

00(C) = 0 / ?^ ,^ ) = 0^or(Cj,d.) = </> [0r(Ci,d,.)] 

= ^{[©7-K>^)]0^(c.d)}=[©^0^>^)]0^°^,d) 
= [00(A)] o/?(c,d). 

We conclude that E and F are tensoral. 
Conversely, suppose E and F are tensoral. Let /C be the set of all finite 

sequences K in E x F such that 0/?(-K") = 1 for every SEA-bimorphism /3 
on E x F. Now /C ^ 0 because {(1,1)} G /C. Let £(/C) be the set of all 
finite sequences {(^?^)} i = = 1 in J5 x F for which there exists a finite sequence 
{(c-, dj)}

m
=1 in E x F such that 

{(al5 bx),..., (an, 6n), (cl3 d j , . . . (cm, dm)} G /C . 

On £(/C) we define a relation - by A ~ B if 0/?(A) = 0 /3 (5 ) for every 
SEA-bimorphism (5 on E x F. Then ~ is an equivalence relation and for A e 
£(K) we define 

TT(A) = {Be£(K): B ~ A} . 

Let TT(/C) = {TT(A): A e £(K)} and define 0 G TT(/C) by 0 = TT[{(0,0)}] and 
len(K) by l = 7r[{(l,l)}]. 

We now organize TT(K) into a SEA as follows. For A = { ( a ^ ^ ) } " = 1 G £(K) 
and B = {(cj5 d,.)}™^ G £(/C) define TT(A) ± ir(B) if 

C = {fai, &i), • • •, (a„, bn), (cl5 rfj,..., (cm, dm)} G £(/C). 

Then there exists a D G £(/C) such that 

0/?(A)©0/?(£)e0/?Co) = i 
for every SEA-bimorphism (5 on E x F. The relation ± is well defined because 
if A1 ~ A and B' ~ B, then for any SEA-bimorphism (3 on E x F we have 

0 / V ) 00/?(B') ©00(D) = 1. 

Hence, for A' = {(a-,6-)}"^ and 5 ' = { ( c ^ ) } ™ ^ we have 

C" = { (a ' 1 ) 6 ' 1 ) ) . . . ) ( a^ ) 6 ; , ) ) ( c ' 1 ) d ' 1 ) ) . . . ) ( c^ ) 0}€^( /C) . 

If n(A) _L n(B), we define TT(A) ®7T(B) = 7r(C) and this is well defined because 
0/?(C) = 0 / ? ( C ) for every SEA-bimorphism /? on E x F. It is easy to check 
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that (7r(/C),0,1, ©) is an effect algebra. For A, B G £(/C) given previously there 
exists a C G £(/C) such that 

00(C) = ©0(A) o0/3(B) 

for every SEA-bimorphism on ExF. Indeed, by (2) there exists a finite sequence 
C • in E x F that is orthosummable and satisfies 

®P(Cj)=[@P(A)]op{cj,dj), j = l,...,m, 

for every (3. Let C be the finite sequence in E x F formed by concatenating 
C1,..., Cm. Then for every /3 we have 

m 

®^(C) = @[®P(A)]of3(cpdj) = Qfi(A)oQf3(B). 
j=i 

Letting B' G £(JC) such that 0 (3(B) © ©/?(£') = 1, there exists a finite 
sequence C in E x F satisfying 

0 0 ( C ) = ©/?(A)o©0(JB') 

for every (3. Hence, for every SEA-bimorphism /? on E x F we have 

0/?(O)©0/?(O') = 0 ^ ) o 0/3(5)© ©/3(A) o 0 0(5') 

= ©/3(A) . 

It follows that C G £(/C). Define 7r(A) OTT(B) = ir(C) and it is clear that this is 
well defined. 

We now show that o is a sequential product on 7r(/C). Suppose that TT(B) _L 
TT(C). NOW there exists D,E G £(/C) such that for every /? we have 

00(D) = © 0(A) o © 0(B), 

© 0(E) = ©0(A) o © 0(C), 

Hence, for every /3 we have 

0 P(D) 8 © 0(E) = © 0(A) o [ 0 0(B) © 0 0(c)' . 

It follows that TT(A) o TT(B) ± n(A) o TT(C) and 

TT(A) O [TT(B) 0 7r(C)] = TT(D) © n(E) = TT(A) O TT(B) © TT(A) O -r(C) 

so that (SI) holds. For if G /C and A e S(K) we have 

© 0(A) = 0/?(tf) o © 0(A) 



TENSOR PRODUCTS OF SEQUENTIAL EFFECT ALGEBRAS 

for every /?. Hence, 

1 o n(A) = TT(K) O -K(A) = -K(A) 

so that (S2) holds. Now it is easy to show that IT (A) ± ir(B) if and only if 
®P(A) I 0 / 3 ( 5 ) for every /3. Suppose that n(A) o n(B) = 0. Then ®/3(A) o 
0 / 9 ( 5 ) = 0 so that ©/?(A) | ©/3(B ) for every p and hence n(A) | ?r(B). 
Thus, (S3) holds. If TT(A) ± ir(B), then © £ ( A ) | ©/5(B) and it follows that 
ir(A) | 7r(J5)'. Moreover, for every C € £(/C) and every /? we have that 

© P(A) o [© ̂ ) o ® 13(C)] = [© /?(A) o 0 /?(£)] o 0 /3(C) • 
Hence, 

7T(A) O [K(B) O 7T(C)] = [7T(i4) O TT(B)] O 7T(C) 

and (S4) holds. The last property (S5) is similar. We conclude that 
( T T ( / C ) , O , 1 , 0 , O ) is a SEA. 

Notice that for every (a,b) G E x F we have that {(a, b)} G £(/C). This is 
because 

{ (a ,b ) , (a ,b , ) , (aM)}G/C . 

Define T: E x F -* TT(/C) by r (a ,b ) = 7r[{(a,b)}]. Clearly, r ( l , 1) = 1 . For 
b J_ c, we have {(a, bffi c)} ~ {(a, b), (a,c)} . Hence, 

T(a, b © c) = r(a , b) © r(a , c) 

and similarly 

T(a © d, b) = r (a , b) © r(d, b). 

For (a, b),(c,d) e E x F we have 

/?(a, b) o /3(c, d) = /3(a o c, b o d) 

for every /?. Hence, 

7r[{(a,6)}]o7r[{c,d)}]=7r[{aoC ,6o«i)}] 

and we have 

T(a, b) o r(c, d) = r ( a o c, b o d). 

Thus, r is a SEA-bimorphism. Any element in ir(JC) has the form 

7 r [{ (a 1 ,b 1 ) , . . . , ( a n ,b n )} ] = 7r[{(al5 &-_)}] 0 • • • 0 7r[{(an, bn)}] 

= r ( a 1 , b 1 ) © - - . © r ( a n , b n ) 

for { ( a 1 , b 1 ) , . . . , ( a n , b n ) } G £(/C). Finally, let /?: £ x F -> G be a SEA-bi­

morphism. Define 0: 7r(/C) -> G by < [̂7r(.A)] = 0 /? ( -4 ) . Then </> is well defined 

and it is easy to check that cj> is a SEA-morphism. Moreover, 

/3(a,b) = 0 [ 7 r ( { ( a , b ) } ) ] = ^ o r ( a , b ) 

for every (a,b) e E x F so that /? = 0 o r . D 

It is shown in [4] that the effect algebra tensor product of two effect algebras 
exists if they admit an effect algebra bimorphism. The following corollary is the 
analogous result for commutative SEA's. 

9 
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COROLLARY 3.4. If E and F are commutative SEA}s satisfying Condi­
tion (1). then the SEA tensor product of E and F exists. 

E X A M P L E 1. Define /?: [0,1] x [0,1] -> [0,1] by /3(a, b) = ab. It is easy to check 
that P is a SEA-bimorphism so by Corollary 3.4, the SEA tensor product of 
[0,1] with itself exists. 

E X A M P L E 2. For fuzzy set systems T C [0, l]x, Q C [0, l ] y define (3: T*Q -> 
[0, l ] X x y by (3(f,g)(x,y) = f(x)g(y). It is easy to check that /3 is a SEA-bi­
morphism so by Corollary 3.4, the SEA tensor product of T and Q exists. 

E X A M P L E 3. Let £{H^) ® £(H2) be the standard Hilbert space tensor product 
and define A o B = All2BAll2 as usual in both £(#-_) and £ (H 2 ) . Define 

/?: 5(H i ) x £(H2) -> £(.»!) ® S(H2) 

by /^(AT, A2) = Ax ® A2. Then /? is an effect algebra bimorphism and 

(3(Al, A2) o p(B1, H2) = i4x ® A2 o J5! ® B 2 

= (A1 ® -42)1 /2B1 ® B ^ ^ ! ® A , ) 1 / 2 

= A x
/ 2 ® A\,2Bl ® B 2-4i / 2 ® A 2

/ 2 

= A1
/2B1A1

/2®4 / 2B24 / 2 

= / ? ( A 1 o J B 1 , A 2 o B 2 ) . 

Hence, /? is a SEA-bimorphism so Condition (1) holds. We do not know 
whether Condition (2) holds; i.e., whether the SEA-tensor product of S(HX) 
with £(H2) exists. 

It is shown in [10] that the effect algebra tensor product of two effect algebras 
need not exist. We do not know the corresponding state of affairs for the SEA 
tensor product of two arbitrary SEA's. 
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