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Abstract

We show in an additive inverse regular semiring (S, +, ·) with E•(S)
as the set of all multiplicative idempotents and E+(S) as the set of all
additive idempotents, the following conditions are equivalent:
(i) For all e, f ∈ E•(S), ef ∈ E+(S) implies fe ∈ E+(S).
(ii) (S, ·) is orthodox.
(iii) (S, ·) is a semilattice of groups.

This result generalizes the corresponding result of regular ring.
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semirings.
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1 Introduction

A semiring (S, +, ·) is a nonempty set S on which operations of addition, +,
and multiplication, ·, have been defined such that the following conditions are
satisfied:

(1) (S, +) is a semigroup.

(2) (S, ·) is a semigroup.
(3) Multiplication distributes over addition from either side.

149



150 M. K. SEN, S. K. MAITY

A semiring (S, +, ·) is called an additive inverse semiring if (S, +) is an inverse
semigroup, that is for each a ∈ S there exists a unique element a′ ∈ S such that
a+ a′ + a = a and a′ + a+ a′ = a′. Additive inverse semirings were first studied
by Karvellas [4] in 1974. Karvellas [4] proved the following: (Karvellas (1974),
Theorem 3(ii) and Theorem 7) Take any additive inverse semiring (S, +, ·).

(i) For all x, y ∈ S, (x · y)′ = x′ · y = x · y′ and x′ · y′ = x · y
(ii) If a ∈ aS ∩ Sa for all a ∈ S then S is additively commutative.

A semiring (S, +, ·) is called regular if for each a ∈ S there exists x ∈ S such
that axa = a. In a regular semiring S, for any element a ∈ S, V •(a) = {x ∈
S : axa = a and xax = x}. A regular semiring S contains element e such that
e · e = e. We denote the set of such elements by E•(S). If in a regular semiring
S, E•(S) is a subsemigroup of the semigroup of (S, ·), then the semiring S is
called an orthodox semiring.
Chaptal [1] proved the following result in 1966.

Result 1.1 For a ring (R, +, ·) the following conditions are equivalent.

(i) (R, ·) is a union of groups.
(ii) (R, ·) is an inverse semigroup.
(iii) (R, ·) is a semilattice of groups.

Latter J. Zeleznekow [5] proved the following result.

Result 1.2 In a regular ring (R, +, ·) the following conditions are equivalent.

(i) (R, ·) is orthodox.
(ii) (R, ·) is a union of groups.
(iii) (R, ·) is an inverse semigroup.
(iv) (R, ·) is a semilattice of groups.

These results do not hold in arbitrary semiring [see Example 2.1.]. The aim
of this paper is to generalize these results in an additive inverse semiring with
some conditions. For notations and terminologies not given in this note, the
reader is referred to the monograph of Golan [2] and Howie [3].

2 Orthodox additive inverse semiring

An additive inverse semiring S is called orthodox if (S, ·) is an orthodox semi-
group.

Example 2.1 [5] Let S be the set of all binary relations on a two element set.
Under the operations of union and composition of binary relations, S becomes
a semiring in which (S, ·) is regular but neither orthodox nor a union of groups.
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Example 2.2 Let (S, +) be a semilattice with more than one element. On S,
define the multiplication, ·, by a · b = a for all a, b ∈ S. Then (S, +, ·) is a
semiring such that (S, +) is an inverse semigroup, (S, ·) is orthodox. Hence this
semiring is an orthodox additive inverse semiring. In this semiring we find that
(S, ·) is not an inverse semigroup.

¿From the above example we find that J. Zeleznekow’s result is not true in
an orthodox additive inverse semiring. Let S be an additive inverse semiring.
We say that S satisfies conditions (A) and (B) if for all a, b ∈ S

(A) a(b + b′) = (b + b′)a.

(B) a + a(b + b′) = a.

Clearly rings, distributive lattices and direct products of distributive lattice
and ring are natural examples of such additive inverse semiring. We consider
the following example.

Example 2.3 Let S = {0, a, b}. Define addition and multiplication on S by
the following Cayley tables:

+ 0 a b
0 0 a b
a a 0 b
b b b b

· 0 a b
0 0 0 0
a 0 0 0
b 0 0 b

It is easy to see that (S, +, ·) is a semiring such that (S, +) is an additive inverse
semiring with conditions (A) and (B).

In the remaining part of this section we assume that S denotes an additive
commutative and additive inverse semiring satisfying conditions (A) and (B).
Also we assume that E+(S) = {a ∈ S : a+a = a}. Note that E+(S) is an ideal
of S.
We now prove the following Lemma.

Lemma 2.4 Let a, b ∈ S be such that a+ b′ ∈ E+(S) and a+a′ = b+ b′. Then
a = b.

Proof Since a + b′ ∈ E+(S) so we have

a + b′ = (a + b′) + (a + b′)′ = a + b′ + b + a′ = a + a′ + b + b′ = b + b′.

This leads to, a + b′ + b = b + b′ + b, i.e., a + a′ + a = b. Hence a = b. �

Nest we prove the following important lemma.

Lemma 2.5 If the semiring S is multiplicatively regular then the following con-
ditions are equivalent.

(i) For all e, f ∈ E•(S), ef ∈ E+(S) implies fe ∈ E+(S).
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(ii) For all e ∈ E•(S), for all x ∈ S, ex ∈ E+(S) implies xe ∈ E+(S).

(iii) For all n ∈ N, for all x ∈ S, xn ∈ E+(S) implies x ∈ E+(S).

(iv) For all x ∈ S, x2 ∈ E+(S) implies x ∈ E+(S).

(v) For all x, y ∈ S, xy ∈ E+(S) implies yx ∈ E+(S).

Furthermore, each is implied by

(vi) (S, ·) is orthodox.

Proof (i) ⇒ (ii): Let e ∈ E•(S) and x ∈ S be such that ex ∈ E+(S). Then
ex = ex + (ex)′ = ex + ex′. Now,

(e + xe′)2 = e(e + xe′) + xe′(e + xe′)
= e2 + exe′ + xe′e + xe′xe′

= e2 + exe′ + xe′e + xe′x′e
= e2 + exe′ + xe′e + x(e′)′xe
= e2 + exe′ + xe′e + xexe
= e + (ex + ex′)e′ + xe′ + x(ex + ex′)e
= e + (exe′ + ex′e′) + xe′ + x(e′x′ + e′x)e
= e + e(xe′ + xe) + xe′ + xe′(x′e + xe)
= e + xe′ (by condition (B)).

Thus e + xe′ ∈ E•(S). Let x∗ ∈ V •(x). Now,

(e + xe′)(xx∗) = exx∗ + xe′xx∗

= exx∗ + (xexx∗)′

= exx∗ + x′(ex)x∗ ∈ E+(S) (as E+(S) is an ideal of S).

But e + xe′, xx∗ ∈ E•(S). So by (i), xx∗(e + xe′) ∈ E+(S) and thus xx∗e +
xx∗xe′ = xx∗e + xe′ ∈ E+(S). Also,

xx∗e + xx∗e′ = xx∗e′ + xx∗e
= xx∗e′ + xx∗e + xx∗e(x + x′) (by condition (B))
= xx∗(e′ + e) + xx∗(x + x′)e (by condition (A))
= x(e′ + e)x∗ + xx∗x(e + e′) (by condition (A))
= x(e′x∗ + ex∗) + xe + xe′

= xe(x∗′ + x∗) + xe + xe′

= xe + xe′ (by condition (B))

Hence by Lemma 2.4., we have xx∗e = xe. Now, exx∗ ∈ E+(S) [ as ex ∈ E+(S)]
and hence xe = xx∗e ∈ E+(S).
(ii) ⇒ (iii): Take any x ∈ S with xn ∈ E+(S) for some n > 1. Let x∗ ∈

V •(x). Then x∗xn ∈ E+(S) and so (x∗x)xn−1 ∈ E+(S). But x∗x ∈ E•(S) and
thus xn−1x∗x ∈ E+(S). This leads to xn−2xx∗x = xn−1 ∈ E+(S). Continuing
this process, we have x ∈ E+(S).
(iii) ⇒ (iv): This is obvious.
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(iv) ⇒ (v): Let x, y ∈ S be such that xy ∈ E+(S). Now (yx)2 = y(xy)x ∈
E+(S). Hence by given condition we have yx ∈ E+(S).
(v) ⇒ (i): This is obvious.
Thus (i), (ii), (iii), (iv) and (v) are equivalent.
(vi) ⇒ (i): Let e, f ∈ E•(S) be such that ef ∈ E+(S). Because (S, ·) is

orthodox we have fe ∈ E•(S). Then fe = (fe)2 = f(ef)e ∈ E+(S). Thus the
proof is completed.
We now generalize Chaptal’s Theorem in S.
Theorem 2.6 In a semiring S the following conditions are equivalent.

(i) (S, ·) is a union of groups.
(ii) (S, ·) is an inverse semigroup.
(iii) (S, ·) is a semilattice of groups.

Proof (i) ⇒ (ii): Let (S, ·) be a union of groups (Gα, ·)(α ∈ I) where I is an
index set. Let e ∈ E•(S) and y ∈ S. Then,

(ye + ey′e)2 = ye(ye + ey′e) + ey′e(ye + ey′e)
= yeye + yey′e + ey′eye + ey′ey′e ∈ E+(S).

Let (ye + ey′e)2 be in the group Gα for some α ∈ I and let z be the inverse
of (ye+ ey′e) in Gα. Then ye+ ey′e = (ye+ ey′e)(ye+ ey′e)z = (ye+ ey′e)2z ∈
E+(S), because E+(S) is an ideal of S. Also, eye + ey′e = e(ye + y′e) =
(ye + y′e)e (by condition (A)) = ye + y′e. Thus, by Lemma 2.4., we at once
have ye = eye. Similarly, we have ey = eye. Hence ey = ye. Thus idempotents
in (S, ·) are central. Hence, (S, ·) is an inverse semigroup.
(ii) ⇒ (iii): Let (S, ·) be an inverse semigroup. Let e ∈ E•(S) and y ∈ S.

Now,
(ye + ey′e)2 = ye(ye + ey′e) + ey′e(ye + ey′e)

= yeye + yey′e + ey′eye + ey′ey′e ∈ E+(S).

So by (iv) of Lemma 2.5., we have ye + ey′e ∈ E+(S). Also, eye + ey′e =
e(ye + y′e) = (ye + y′e)e = ye + y′e. Hence by Lemma 2.4., we at once have
ye = eye. Similarly, ey = eye. Hence ey = ye. Thus idempotents in (S, ·)
are central. Thus (S, ·) is a Clifford semigroup. Hence (S, ·) is a semilattice of
groups.
(iii) ⇒ (i):This is obvious. �

We now prove the following theorem.
Theorem 2.7 If the semiring S is multiplicatively regular then the following

conditions are equivalent.

(i) (S, ·) is orthodox.
(ii) (S, ·) is an inverse semigroup.

Proof (i) ⇒ (ii): Let (S, ·) be orthodox. Let e, f ∈ E•(S). Then e(f + e′f) =
ef + ee′f = ef + eef ′ = ef + ef ′ ∈ E+(S). So by (ii) of Lemma 2.5., we have
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(f + e′f)e ∈ E+(S), i.e., fe + e′fe ∈ E+(S). Also, efe + e′fe = efe + ef ′e =
e(fe + f ′e) = (fe + f ′e)e (by condition (A)) = fe + f ′e. Thus, by Lemma 2.4.,
we have efe = fe. Similarly, we can show that efe = ef . Thus, ef = fe. So
idempotents in (S, ·) commutes. Hence, (S, ·) is an inverse semigroup.
(ii) ⇒ (i): This is obvious. �

We now generalize Zeleznekow’s Theorem in a semiring S.
Theorem 2.8 If the semiring S is multiplicatively regular then the following

conditions are equivalent.

(i) (S, ·) is orthodox.
(ii) (S, ·) is a union of groups.
(iii) (S, ·) is an inverse semigroup.
(iv) (S, ·) is a semilattice of groups.

Proof Follows from Theorem 2.6. and Theorem 2.7. �

References

[1] Chaptal, N.: Anneaux dont le demi groupe multiplicatif est inverse. C. R. Acad. Sci.
Paris, Ser. A-B, 262 (1966), 247–277.

[2] Golan, J. S.: The Theory of Semirings with Applications in Mathematics and Theoretical
Computer Science. Pitman Monographs and Surveys in Pure and Applied Mathematics
54, Longman Scientific, 1992.

[3] Howie, J. M., Introduction to the theory of semigroups. Academic Press, 1976.

[4] Karvellas, P. H., Inverse semirings. J. Austral. Math. Soc. 18 (1974), 277–288.

[5] Zeleznekow, J.: Regular semirings. Semigroup Forum 23 (1981), 119–136.


		webmaster@dml.cz
	2012-05-04T00:27:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




