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TWO ELEMENT DIRECT LIMIT CLASSES 
OF MONOUNARY ALGEBRAS 

E M Í L I A HALUŠKOVÁ 

(Communicated by Tibor Katriňák ) 

ABSTRACT. A class of algebras is said to be direct limit closed if it is closed 
with respect to direct limits. We describe all two element sets <S of monounary 
algebras such that *S, together with all isomorphic copies of elements of «S, is a 
direct limit closed class. 

Direct limit classes of algebras, i.e. classes of algebras which are closed with 
respect to direct linrts, were investigated in [3] and [6]. The class of all retracts 
of a finite algebra is a direct limit class, cf. [5]. 

The paper [3] contains a description of all monounary algebras A such that 
{A} is a direct limit class. 

The aim of the present paper is to describe all pairs A, B of monounary 
algebras such that {A, B} is a direct limit class. 

1. Preliminaries 

For the notion of a direct limit, cf. e.g. G r a t z e r [1; §21]. 
Let (P, <) be a directed partially ordered set, P / 0. For each p G P let 

A be an algebra of some fixed type. We assume that if p, q G P, p ^ q, then 
A n Aq = 0. Suppose that for each pair of elements p and q in P with p < q, 
there is defined a homomorphism <p of A into A such that p < q < s implies 
that ipps = cppq o ipqs. For each p G P let ippp be the identity on Ap. Then we 
say that {P,A,ip} is the direct family. 
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Assume that p,q G P and x G A , */ G A . Put j* = y if there exists 
.s G P with p < s, q < s such that ipps(x) = <pqs(y) • For each z G 1J .4 put 

2 = | f G IJ .A : z = t\ . Denote A = \z : z<E [j A) . 
1 pGP ) l PEP J 

Let / be a n-ary operation from the type of algebras A , p G P. Let 

x • G .4 , 1 < j < n, and let 5 be an upper bound of p.. Define f(x1,..., xn) 

/ ( ^ P I * ^ ) ' * • •' Vpns^n)) - Then A is an algebra which is said to be the direct 

limit of the direct family {P, A , <pvq) • 

We express this situation as follows 

{P,Av,<ppq}^A. (1) 

The operator L on classes of algebras was introduced in the textbook [1; §23]. 

By this definition, if /C is a class of algebras, then L(/C) is the class of all direct 

limits of algebras of /C. 

Let /C be a class of algebras. We denote by [/C] the class of all isomorphic 
copies of algebras of AC. Further, we denote by L/C the class of all isomorphic 
copies of direct limits of algebras of /C, i.e., L/C = [ L(/C)] . 

We put L2/C = LL/C, L3/C = LL2/C. 

A class /C is called a direct limit class, if L[/C] = [AC]. 

For algebras A{,..., An we will use [A1,..., An] instead of [{Ax,..., An}] . 

LEMMA 1. Let A, B be algebras and L[A] = [A,B], L[B] - [B]. 

Then L[A,B] = [A,B]. 

P r o o f . Let (1) be valid and A G [A, B] for every p G P. Put Q = {q G P : 

Aq .= B}. If Q is cofinal with P, then 3 .= 17. If P - Q is cofinal with P , then 

A ^ A O T A ^ B . D 

Let P be a subalgebra of A. Assume that there exists a homomorphism ip 

of A onto B such that (p(b) = /; for each b e B. Then P is said to be a retract 

of A and (/? is called a retract mapping corresponding to B. 

In view of [6; Lemma 1.1] we have that L[A] contains all retracts of A. We 

will often refer to this fact. 

LEMMA 2. Let A be an algebra and E be a retract of A. If F G L[P] . then 
F G L[A]. 

P r o o f . I f P = P , then the assertion is true. 

Assume that F is not isomorphic to E. Then there exists a direct limit family 
{P,A,ip} such that A = E for every p G P and the direct limit A of this 
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family is isomorphic to F. Suppose that i\) is an isomorphism of E onto A . 
According to [3; Lemma 7] the set P is not upperbounded. 

Let p e P. Then there exists A' such that A' = A and Ap C A'p. Further, 
let V;l be an isomorphism A onto A such that i/jp(e) = ipp(e) for every e e E. 

Let (p be a retract endomorphism of A corresponding to E. Let p,q e P, 
p < q. Put 

Then <pj,g(x) = <pw(x) for every a; G Ap and ^ ( - 4 ^ ) C A g . 

The family {P,A'p, (p'pq} is direct because (ppq o ̂ 'q~ o(poipq = cppq. Assume 

that {P,A' ,<p' } —> A*. For z G (J A' we denote by z' the corresponding 
peP 

element of A . 

Let us define the mapping ijj from A into A . Consider p e P and x G j 4 p . 

Then x G A ' . Put ^ ( x ) = x'. 
Assume that p,q G P , x G .A , y e Aq and ^ (x ) = VK?/)- Then x ' = y ' . 

That means there exists s G P such that p,q<s and ^ 5 ( x ) = <p>qs(y). There
fore c/?p5(x) = <^s(y) and x = y. 

Now assume that p e P and a e A' Let q e P be such that p < q. Then 

O ) € Aq ( = £ ) . We obtain V > ( ^ > ) ) - a ' . 

Finally let p G P and x G A p . Then ^ ( / ( ^ ) ) = ^ ( / ( * ) ) = [ / (* ) ] ' = 
/ ( x ' ) = / ( ^ ( x ) ) . _ _ 

We have proved that A = A' and thus F eL[A]. • 

For monounary algebras we will use the terminology as in [9]. 
Denote by U the class of all monounary algebras. We will use the symbol / 

for the operation in algebras of U. 

Let A,B eU and A G U for every j G J• Denote by A + B and X] A > 

respectively a monounary algebra which is a disjoint union of A,B and of A-, 
j e J, respectively. 

The definition of a retract yields: 

LEMMA 3. Let A eU. Let algebras B- be components of A for all j G J. If 

B' is a retract of the algebra [j B-, then the algebra [A — \J B ) + B' is a 
jeJ v jeJ 3J 

retract of A. 

Retracts of monounary algebras was thoroughly studied by D. S t u d e -
n o v s k a , e.g. [7], [8]. 
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In this paper we will often need to say that a subalgebra of A is a retract 
of A. If it follows immediately from [7; Theorem 1.3], then we will not always 
refer to this fact. 

Denote by JV, JV0, Z the set of all positive integers, nonnegative integers 
and all integers, respectively. 

Let A G W and R C A. The set R is said to be a chain of the algebra A, if 
one of the following conditions is satisfied: 

(1) R = { a 0 , . . . , an}, n G M0, a- ^ CLJ for i ^ j and 
/ K ) = ^ _ i for z = l ,2 , . . . , r a ; 

(2) i? = {a?. : i G A/"0} , a- ^ a- for i ^ j and / ( a j = a?_-. for each i € Ar. 

NOTATION. Let us denote by N the monounary algebra defined on the set J\f 
with the successor operation. Further, let Z be the monounary algebra defined 
on the set of all integers with the successor operation. 

We denote 

T = {A G U : every component of A is a cycle and 

there are no components 27, C of A such that B / C and 

the length of B divides the length of C} ; 

Tx = {A G U : there exists a chain R of A such that 

A — R G T and 2? fails to be a subalgebra of ,4} ; 

T2 = {A G U : there exist 17 G T and fc, / G yV such that ,4 = 27 + C, 

where C is a cycle of length / , B contains a cycle of length k 

and / is a multiple of k} ; 

T3 = {AeU : there exists B G T such that .4 = B + Z} ; 

T4 = {A E U : A is connected and there exists a chain I? of 4̂ 

such that A- R^ Z} . 

For monounary algebras we have that L[A] = [,4] if and only if A G T U [Z], 
cf. [3; Theorem 1]. 

NOTATION. Let A be a monounary algebra and let {B : j G J} be the set 
of all components of A. If j G J and k E JV are such that 27 contains a cycle 
of the length fc, then let C- be a cycle of the length k. If j G J is such that 27 
contains no cycle, then put C • = Z. We denote A° = ]•_ C •. 

jGJ 

Remark that if every component of yl has a cycle, then A is isomorphic to 
a subalgebra of A. 
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The following result is proved in [2], cf. Lemma 4: 

L E M M A 4. Let AeU. Then A° e L[A]. 

DEFINITION. Let AeU. An element x e A is called a source of A if f(y) ^ x 
is satisfied for all y e A. We denote by S the set of all sources of A. 

2. Algebras with A° e T 

In this section assume that A is a monounary algebra such that A £ T and 
A° e T. We will prove that we can obtain an algebra of the class Tx via direct 
limits from A. 

Let B be a subalgebra of A. Then each component of B has a cycle in view 
of the fact that A° e T. We can suppose that B° C B. 

Let {B, : j e J} be the set of all components of A. Note that if ip is an 
endomorphism of A, then (p(B-) C B, for all j G J because by any homomor-
phism a cycle of the length k must be mapped into a cycle of the length / such 
that / divides k (cf. [10]). Further, there exists a component of A which is not 
a cycle. 

LEMMA 5. Let (1) be valid and Ap £ A for all p e P. Then (A)° £ A°. 

P r o o f . In view of _4° G T it is sufficient to show that ( A ) ° is isomorphic 

to a subalgebra of A and A° is isomorphic to a subalgebra of A. 
Suppose that ipp is an isomorphism from A onto Ap for every p G P. Let 

C be a cycle of A. We have ^Ppq{^p(C)) = ipq(C) for every p, q G P, p < q. 
Thus A possesses a cycle which is isomorphic to C. Therefore A possesses a 
subalgebra which is isomorphic to A°. 

Assume that C is a cycle of A and k is the length of C. Choose p G P, 
x e Ap such that x G C. Then there exists q G P such that p < q and 
Vvq{fk(x)) = (Ppq(x)- We obtain that the algebra Aq has a cycle of the length 
k by A° e T. Thus C is isomorphic^ to a subalgebra of A and A possesses a 
subalgebra which is isomorphic to ( A ) . D 

NOTATION. Let G be a component of A such that G is not a cycle. 
The algebra G° is a cycle. Let k G M be length of the cycle G°. 
Choose a e G°. For n = 1,2, . . . , k put 

«„ = / » ; 
-Dn = {x e G — G° : there exists m G N such that 

Nn = {m G M : there exists i e f l „ such that fm(x) = a n , fm~l{x) $ G*} . 
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Further let 

7V(M) = {n e {1, . . . , k} : jVn has a maximal element} ; 

/V(E) = {nG{l , . . . , f c} : -Vn = 0} . 

We remark that G° = {a1 ? . . . , ak} and sets G°,D1,... ,Dk give a partition 
of G. Moreover jV(£;) ^ {1,2, . . . , k} is satisfied. 

LEMMA 6. Le* jY(M) U N^ = { 1 , . . . , k} . Then L[A] nT^Q. 

P r o o f . Put r = max{maxjVn : n G jY(M)}. Choose R C G - G° such 
that R is a chain of length r. Let D be a subalgebra of A such that D — R = A°. 
In view of [7; Theorem 1.3], we have that D is a retract of A. Thus D e L[A]. 

D 

LEMMA 7. Let n e { l , . . . ,k} - (jN(M) UjV(E)) and Dn contain a chain of 
infinite length. Then L[A] H Tx ^ 0. 

P r o o f . Let i? C L)n be a chain of infinite length. Let D be a subalgebra 
of A such that A° = D — R. Then D eTx. Moreover D is a retract of A and 
thus 29 e L[A]. D 

LEMMA 8. Let n e { 1 , . . . , k} - (jV(M) U jV(E)) and £>n contain no chain of 
infinite length. Let t e M'. Then there exists an algebra Et such that 

a) i ^ C o - U o , , , 
b) Et is a retract of G, 
c) fl(x) <£ G° for every xeEtnS. 

P r o o f . Recall that S is the set of all sources of A. Consider T = {x e 
DnC)S : ft(x)^G°}. We have T ^ 0 by the assumption. Put Et = {fm(x) : 
meN, xeT). D 

COROLLARY 1. Letn e {l,...,k}-(jV (M)ujV (£ ;)) and let the set Dn contain 
no infinite chain of A. Further, let t e N and let EtJtl be the algebra from 
Lemma 8. Then 

(i) (A — G) -F Et+1 is a retract of A. 
(ii) There exists a mapping et such that et is a retract mapping of A cor

responding to (A — G) + Et+1 and £t(Dn) C jDn . 

P r o o f . The claim (i) follows from Lemmas 8 and 3. The claim (ii) follows 
from the construction of all homomorphisms between two monounary algebras, 
cf. [10]. D 
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LEMMA 9. Let n e { 1 , . . . , k} - (jV(A/) U 1V(E)) and Dn contain no chain of 
infinite length. Then there exists an algebra D eL[A\ such that 

1. D«eT; 
2. D contains a chain of infinite length. 

P r o o f . Let p e M. Suppose that Ep+1 is an algebra from the previous 

lemma and that e is an endomorphism of A from the previous corollary (ii). 

Assume that algebras A are pairwise disjoint and isomorphic to A for all 
p e N'. Let p e N'. Suppose that i\)p is an isomorphism from A onto Ap. We 
put ip =idA . If p < q, then we put 

(D = lb~1 O £ O £ , 1 O • • • O £ , 0 7b . rpq Tp <-p p + 1 q—1 Yq 

The family {J\T,A,(p} is direct. Denote by D its direct limit. 

If u e G°, then u e (A — G)-\- Ep+l for all p e M according to Lemma 8a). 

Thus ep(u) = u by Corollary 1 (ii). We obtain <ppq(ipp(u)) — (ip o ^r"1 ° £p ° 

ep+i°''-°eq-io1>q)(u) = il>q(u). 

We have D e L[A], Assumptions of Lemma 5 are satisfied and thus D° = 
A« eT. 

Suppose that p e Af and x e ij) (Dn). We will show that there exist q e N 
and y e *Pq(Dn) such that f(y) = x. Then the proof will be ready. 

Let x £ ipp(S). Then there exists y e Ap such that f(y) = x. Thus f(y) = x. 

Let x e ipp(S). Consider q e N such that fq(x) = xj) (an) and fq~1(x) £ 

il>p(G
0). Since an e G° , we have 

/%P,(*)) = ^M(/gW) = Pwtyp(0) = ^(an). 

Thus / 9 ( ^ " 1 K a ( ^ ) ) ) ^ G° . Further, ^q
l(ypq(x)) e Eq. That means 

^^{Vpqfa)) $ & according to Lemma 8c). Let z e A be such that f(z) = 
4\l {<Ppq(x)) • Corollary 1 (ii) and the definition of tppq yield that tj)'1 (<ppq(x)) € 
£>„. Thus * e Dn. Put y = rl>q(z). We have H E r/>q(DJ and /(j/) = 

/ (W)=^(/W)=^W=^ D 

PROPOSITION 1. If AeU-T and A° e T . ^ e n L2[A] n T ^ i 

P r o o f . If either J V ^ U N^ = { 1 , . . . , k} or there exists n e { 1 , . . . , k} 
such that Dn contains an infinite chain, then L[A\ H T{ ^ 0 according to Lem
mas 6 and 7. In the remaining case we take an algebra D from Lemma 9. This 
D satisfies all assumptions of Lemma 7 and thus L2[>1] n Tx ^ 0. • 
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3. Connected algebras without cycles 

In this section suppose that A is a connected monounary algebra without a 
cycle and A is not isomorphic to Z. 

We will prove that we can obtain from A an algebra of T4 or the algebra N 
via direct limits. 

We will analyse three cases: 

(1) the algebra A contains two distinct subalgebras isomorphic to Z ; 
(2) the algebra A contains exactly one subalgebra isomorphic to Z; 
(3) the algebra A contains no subalgebra isomorphic to Z. 

3.1. Case 1. 

LEMMA 10. Let A contain two distinct subalgebras isomorphic to Z. Then 

L[A]nr4 /0. 

P r o o f . Let B, D be subalgebras of A, B^D, B =- Z and D ^ Z. Let 
E be the subalgebra of A which has underlying set D U B. Then E G T4. The 
algebra E is a retract of A and thus E eL[A]. • 

3.2. Case 2. 

We suppose that A contains exactly one subalgebra isomorphic to Z. Let 
B = Z,B={an: neZ, f(an) = an+1}. 

For every z G Z we put 

D„ = [x € A — B : there exists m G J\f such that 

fm(x) = az, r-\x)iB}-, 
Nz = [m G M : there exists x G Dz such that fm(x) = a„} . 

Further, let 

^ ( M ) — {z £ z : N^ has a maximal element} ; 

Z^ = {neZ: Nz=®}. 

We remark that sets B and Dz for all z G Z give a partition of the set ,4. 

LEMMA 1 1 . Let ZW> / 0. Then L[A] n T4 / 0. 

P r o o f . Let n G Z ( A / ) . Suppose that R is a chain of A such that R contains 
maxjN?? elements of Dn. Then E = R U B is a retract of A. Thus E G L[A]. 
Moreover J5 G T4 • • 
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LEMMA 12. Let Z<M> = 0 . Then L2[A] C\TA f 0. 

P r o o f . Consider n £ Z^EK Such n exists because A is not isomorphic 
to Z. 

We will prove tree claims. The assertion follows from the third claim and 
Lemma 10. 

CLAIM 1, Let t G JV. Then there exists an algebra Et such that 

a) Et CDnUB, 
b) Et is a retract of A, 
c) ff(x) <fc B for every x G EtC\S. 

P r o o f . Consider T = {x G DnnS : fl{x)£B}. We have T £ 0 according 
to n ^ 2 ^ U Z ( M ) . P i i t Et = { / m ( x ) : meN, xeT}. D 

CLAIM 2. Let t G M and Et be an algebra from, the previous claim. Then 
there exists a mapping et such that et is a retract mapping of A corresponding 
toEi+l, et(B) = B andet(Dn)CDn. 

P r o o f . It follows from the construction of all homomorphisms between two 
monounary algebras, cf. [10]. • 

CLAIM 3 . There exists an algebra D G L[A] such that 

1. D is a connected algebra; 
2. D contains two distinct subalgebras isomorphic to Z. 

P r o o f . Let p G M. Suppose that -Bp+1 is an algebra from the first claim 
and that e is a retract endomorphism of A corresponding to -Bp+1 from the 
second claim. 

Assume that algebras A are pairwise disjoint and isomorphic to A for all 
p e Af. Let p G M. Suppose that Vp is an isomorphism of A onto Ap. We put 
Vpp ~ l(^A • If V < Q, tlieri we put 

(D = ib oe o e , - o • • • o «s + o ib . 
rpq f p

 <-p ^ p + 1 q— 1 ^Q 

The family {J\f,A,ip} is direct. Denote by D its direct limit. 
We have D G L[A]. In view of [3; Proposition 1] the algebra D is connected. 

In view of [3; Lemma 10] the algebra D has no cycle. 
Let p G M and E = { ipp(ak) : k G Z} . 

For every keZ we have f{^p{ak_x)) = ^ p ( / ( % _ 1 ) ) = ^ p ( a J . Thus E is 
a subalgebra of D isomorphic to Z. 
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Suppose that x G 4>p(Dn). Then x <£ E according to Claim 2 and the defi
nition of (ppq. We will show that there exist q G M and y G ^q(Dn) such that 
f(y) = x. Then the proof of this claim will finished-

Let x <£ ipp(S). Then there exists y G Ap such that f(y) = x. Thus f(y) = x. 

Let x G ipp(S). Consider g G JV such that /^(a,) = V p ( 0 > f9'1^) £ V ;
p(5)-

Since an G ^ for every p < £ < rl, we have 

/</K,7W)=^(7(/'
?W)=^(^(an)) 

= ('0P ° V'p"1 o ep o £ p + 1 o • • • o £ g _ 1 o 4>q)(an) = 0 f / (a n ) . 

Thus fty-^Vnix))) = a„ € B . The definition of Vpq yields ^ (ppq(x)) 

G i? . That means V'J1 (</>,,g(;r)) ^ ^ according to Claim lc) . Let z G A be such 

that / ( z ) = ,09"1((/'p(/(a;))- The Claim 2 and the definition of ip imply that 

^ " ' ( V M ^ ) € Dn • Thus z G Dn. Put y = ^ ( ~ ) . Wc have y G %(Dn) and 

/(y) = /(^W)=V'g(/W)=^M = .̂ • 
LEMMA 13. Let A contain exactly one subalgebra isomorphic to Z. Then 

L 2 L 4 ] n T 4 ^ 0 . 

P r o o f . It follows from Lemmas 11 and 12. • 

3 .3. Case 3 . 
In Lemmas 14-17 we will suppose that A contains no subalgebra isomorphic 

to Z. Then 5 ^ - 0 . 

NOTATION. Let ae S. Put B = {fn(a) : n G M0}. 
For n G M let us denote 

a„ = / " ( « ) ; 
Dn = {x G A - B : there exists m G JV such that 

JVn = {ra G A/*: there exists x e Dn such that / m ( x ) = an} . 

Further, let 

jV(M) = {n G JV" : JVn has a maximal element} . 

For n G 1V(M) put j n = maxjVn. 
Denote 

N<<E) = {nG fV: 1Vn=0} 

and 

N^ = Af - {N^ u N^). 

We remark that B is a subalgebra of ^ . Sets B and D n for all n G N give 
a partition of the set A. 
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LEMMA 14. Suppose that jV(M) U N^E) = M and {jn : n e 1V(M)} has a 
maximum. Then the algebra N e L[^4]. 

P r o o f . Denote j = max{jA. : k e jV(M)}. Suppose that n e jN(M) is such 
that j n = j . Then there exists x e Dn such that P(x) = a n , fi~l(x) £ B. 

Let j > n. Put D = {fm(x) : m e Af0}. The algebra D is a retract of A 
and D is isomorphic to TV. Thus N e L[A\. 

If j < n, then B is a retract of A. • 

The proof of the following lemma will be similar to the proof of Lemma 9. 

LEMMA 15. Let jV(/) 7- 0. Then L3[A] n 7^ ?- 0. 

P r o o f . Let n be the least number from jV(/). 
Since A does not contain a subalgebra isomorphic to Z, the set Dn n 5 is 

infinite. 
We will prove tree claims. The assertion follows from the third claim and 

Lemmas 10 and 13. 

CLAIM 4. Let t e N. Then there exists an algebra Et such that 

a) Et CDnU {ak : k>n), 
b) Et is a retract of A, 
c) fl(x) <£ B for every x e EtC\ S. 

P r o o f . Consider T = {x e DnHS : ff(x) <£B}.Wehave T ± 0 according 

to neN^K Put Et = {fm(x) : m e Af, xeT). • 

CLAIM 5. Let t e M and Et be an algebra from the previous claim. Let e be 
a retract mapping corresponding to Et. Then s(Dn) C Dn. 

P r o o f . Suppose that x e Dn. Then there exists m e M such that 
fm(x) = an. We have 

fm(e(x))=e(fm(x))=e(an) = an. 

Therefore e(x) e Dn according to a) in the previous claim. ---

CLAIM 6. There exists an algebra D G L[ i ] such that 

1. D is a connected algebra without a cycle; 
2. D contains a subalgebra isomorphic to Z. 

P r o o f . Let p e M. Suppose that Ep+X is an algebra from the first claim 

and that ep is a retract endomorphism of A corresponding to Ep+i • 
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Assume that algebras A are pairwise disjoint and isomorphic to A for all 
p € Af. Let p G Af. Suppose that ipp is an isomorphism from A onto Ap. We 
put ip = id4 . If p < q, then we put 

ip = ib O £ O £ . i o • • • o e ^ o ?h . 

The family {Af,Ap,tppq} is direct. Denote by D its direct limit. 
We have D G L[A]. In view of [3; Proposition 1], the algebra D is connected. 

In view of [3; Lemma 10], the algebra A contains no cycle. 
Suppose that p € Af and x G ipp(Dn). The proof that there exists q e Af 

and y G ^g(-Dn) such that f(y) = x is analogous to the end of the proof of 
Claim 3. • 

In the next notation and in Lemmas 16 and 17 we suppose that JV(A/) u 
jV<E) = Af and the set {jn : n G JV(M)} has no maximum. 

NOTATION. We define a mapping u of Af into JV(M) by the following way: 
Let u(l) be the least element of JVW. By induction for i G Af let u(i + 1) be 
the least number such that u(i +1) G 1V(M), u(i + l) > u(i) and j u ( i + 1 ) > j l l ( i ) . 

For n G AMet en be an element of Du{n) such that 

/ i" (n>(en) = a t t (n). 
Remark that en e S. 
Let i e Af. Define the mapping ^ of .4 into A by the following way: 

, fu{i+i)-u{i){x) ifx£Du{i)J 

Ш if x G -D,.m a n c -
7 V * + i ; m G AT is such that /m(rr) = a t t ( i ) 

LEMMA 16. Let i £ Af. Then the mapping ^ is an endomorphism of A such 
that 

(a) ti(Du(i))CD<i+1); 
(b) UB)CB. 

P r o o f . Let x € A. 
If either f(x) G Du(i) and x € D t t ( i ) or x $ Du(i) and /(*) £ £>tt(i), then it 

is easy to verify that ^(f{x)) = / ( ^ ( s ) ) . The case z £ o„(.) and f{x) e D t t ( i ) 

cannot occur. 
Suppose that re e Dtt(i) and / ( - ) £ Du(i). Then / (") = a«(i) = / ^ ( e . ) -

Thus we have £j(.c) = pu(<+1)_1(ei+1) and 

*,(/(*)) = r<<+1>-«<<> (/<*» = r ( i + 1 ) - ^ k w ) = r(':+1,-"(i)(/"(i)(a)) 
= o„(i+i) = / J u ( i + 1 , (e i + 1 ) = / ( / j"C+ I ) _ 1 (^+i)) - / f e ( x ) ) • 

Assertions (a), (b) follow from the definition of &• 
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LEMMA 17. There exists an algebra F G L[.A] such that F is connected, F 
contains a subalgebra isomorphic to Z and the algebra F is not isomorphic 
to Z. 

P r o o f . For i G M let Ai be pairwise disjoint algebras, which are isomor
phic to A. Let ipi be an isomorphism of the algebra A onto A{. Let ipu = id^. 
and for i < j let 

<p.. = ^ r 1 o £. o f .+1 o . . . o ^ _ 1 o if,. . 

Then {J\f1Ai,{pij} is a direct family of algebras. Denote by F its direct limit. 
In view of [3; Proposition 1], the algebra F is connected. 
According to [3; Lemma 10], the algebra F has no cycle. 
Let z € F. Choose i G M and y G A{ such that y G z. Then 

^•,+1(y) = ^+1fe(VT1(?/)))-

if vr' (») .-D„(.).thenfor 

* = ̂ :+1(r(m)-uW-1(^r1(2/))) 
we have x G Ai+l and 

/(of) = / (^+ 1 ( /" ( i + 1 ) - u ( i ) - 1 (VT 1 (2 / ) ) ) ) 

= ~~Jf~~~~~W^=~7~¥) = z. 
If V'r'd!) G ^.(i) a n d "i € N is such that fm(ip~l{y)) = fl„(i), then for 

x = i>i+1(P«^-m-l{ei+1)) 

we have x G Ai+l and 

/ (x) = / ( ^ + 1 ( p « c + ' ) — Ҷ e i + 1 ) ) ) 

= ^ + i ( / ^ - + 1 > - m ( e m ) ) = i>i+1(^(i>il(y))) = <Piti+1(y) = z. 
We conclude that the algebra F contains a subalgebra isomorphic to Z. 
Now we will prove that the operation of F is not injective. 
Let w = / J u ( 2 ) ~ 1 ( e 2 ) . Since j u ^ > 1, we have w G -Du/2) • Further, 

f(~~~) = ^ 2 ( / ^ ) ( e 2 ) ) =i>2(au(2)) = V2(/"(2)(«)) = / ( V ' 2 ( / " ( 2 ) - 1 ( a ) ) ) . 

Let k E N, k > 2. In view of Lemma 16(a) we have 

^2*(V;2M) = (& ° £s ° • * * ° Cfc-i ° ^ ) M € il>k(Du(k)) . 
In view of Lemma 16(b) we have 

V2fc(V'2(r
(2)-1(a))) = fe°e30---o^-ioVfe)(r

(2)-1(a))e^(i?). 
Since £ n £>„(..) = 0 , we have <^2fc(^W) = <P2k{MfuW~l(«)))• T h u s 

^ » - £ ^ 2 (/«(-)-! (a)). 
• 

189 



EMiLIA HALUSKOVA 

LEMMA 18. Let A do not contain a subalgebra isomorphic to Z. Then 

L 3 [ A ] n ( T 4 u [ J V ] ) ^ 0 . 

P r o o f . HA satisfies assumptions of Lemma 14 or Lemma 15, then L3[A]n 

(r4u[/v])/0. 
The remaining case is that jN(M) U jN(E) = M and the set {jn : n G jN(M)} 

has no maximum. Then an algebra F from Lemma 17 satisfies either the as
sumptions of Lemma 10 or Lemma 13. That yields L2[F] n T4 / 0. Thus 

L3[A]nr4^0. • 
We summarize the results of Lemmas 10, 13 and 18: 

PROPOSITION 2. If A is a connected monounary algebra without cycle and 
A is not isomorphic to Z. then 

L3[A]n(r4u[/v])^0. 

4. The main result 

In this section we describe all monounary algebras A, B such that L[A, B] = 
[A,B]. 

Next two theorems show that from every monounary algebra A such that 
A ^ T U [ Z ] we can obtain an algebra of the class Tx U T2 U Tz U TA U [iV, Z + Z) 
via direct limits. 

PROPOSITION 3 . Let A be a monounary algebra such that A <£ T U [Z]. If 
every component of A has a cycle, then 

L2[A]n(rxur2) / 0 . 

P r o o f . Let B be a subalgebra of A. We will suppose that B° is a sub-
algebra of B. 

If A° G r , then L2[A] n Tx / 0 according to Proposition 1. 
Assume that A° £ T. Let {B, : j G J } be the set of all components of .4. 

Then {B° : j G J } is the set of all components of .4°. Let k(j) be the length 
of the cycle B°. for every j G J . There exists a subset I of the set J such that 

(1) if i,j G / , then k(i) does not divide fc(j); 
(2) if j G J — / , then there exists i G I such that k(i) divides k(j). 

Consider a set / with these properties. 
Let E be an algebra which has the set of all components equal to {B 

ie I}. Then E eT. Consider m G J - I. Put D = E + B1X. The algebra F> 
is a retract of A and F> G r>. We have L[A] n 7^ ^ 0. 
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PROPOSITION 4. Let A be a monounary algebra such that A<£TU [Z]. If A 
contains a component without a cycle, then 

L3[A] n (r3 u r4 U [TV, Z + Z]) ^ 0 . 

P r o o f . Let A contain a cycle. Then A° possesses a cycle. 
Consider an algebra T such that T is a retract of A° and T G T. Such T 

exists in view of [3; Lemma 20]. Since A contains a component without a cycle, 
the algebra A° contains a component D isomorphic to Z . Denote E = T + D. 
We have E G Ts and E is a retract of A° . In view of Lemma 4 we obtain 
L 2 [ - 4 ] n r 3 7 - 0 . 

Assume that A has no cycle. If A is not connected, then Z + Z is isomorphic 
to a retract of A°. We have Z + Z G L2[A] according to Lemma 4. If A is 
connected, then the class L3[A] contains an algebra from T4 U [1V] according to 
Proposition 2. • 

For A G 7[ U 7̂> U 7^ we denote the algebra A* by the following way: 

If A G Tx and I? is a chain of A from the definition of Tx, then we put 
A* = A-R. 

If A G T2 and B G T satisfies the conditions from the definition of T2, 
then we put A* = B. 

If A G Tz and B e T satisfies the conditions from the definition of Ts, 
then we put A* = B. 

Let us remark that A* is a retract of A. Thus A* G L[A]. Further, A* ^ A. 

PROPOSITION 5. If A G Tx U T2 U Tz , JAen L[A] = [A, .4*]. 
I/ A G r4 U [Z + Z, IV], tfien L[A] = [A, Z]. 

P r o o f . It is a consequence of Lemma 4 and [3; Theorems 1, 2, 3]. • 

COROLLARY 2. If A G Tx U T2 U 7^, tfien L[.A, A*] = [-4, A*]. If A £ T4 U 
[TV, Z + Z] , tfien L[A, Z] = [A, Z ] . 

P r o o f . Let A G 7 ^ 7 ^ ? ^ . Then L[A] = [A,A*]. Since A* G r , we have 
L[A*] = [A*]. Therefore L[A, A*] = [A, A*] by Lemma 1. 

Now let A G T4 U [1V, Z + Z] . Then L[A] = [A, Z] . In view of Lemma 1 we 
have L[A,Z] = [A,Z]. • 

In Theorem G we will use the following notation. If (p) is a condition for 
algebras A, B, then the symbol (p') denotes the condition, which arise from (p) 
in such a way that we change algebras A, B\ further, the symbol (p*) denotes 
the condition which requires that either (p) or (p') is valid. 
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Consider conditions 

(i) A,BeT; 
(ii) A€T, B^Z; 

(iii) A^N, B^Z; 
(iv) A^Z, B^Z + Z; 
(v) A*Z, B€T4; 

(vi) AeT, BGTUTUT, B* ^A; 
(vii) A*LZ, B*LZ. 

T H E O R E M l . Let A,B eU. Then 

L[A,B} = [A,B} 

if and only if one of conditions (i). (ii*). (iii*), (iv*). (v*), (vi*). (vii) Z5 valid. 

P r o o f . If one of (i), (ii*), (vii) holds, then [3; Theorem 1] implies that 
L[A] = [A], L[B] = [B]. Thus L[A,B] = [A,B] according to [3; Lemma 15]. 

If one of conditions (iii*) (vi*) holds, then L[,4,F?] = [A,B] according to 
Corollary 2. 

Suppose that none of conditions (i), (ii*) (vi*), (vii) holds for A, B. 

We have [A,B] C L[A,B] C L2[A,B] C L*[A,B] according [3; Lemma 12], 
We will prove that the class LS[A, B] contains an algebra which does not belong 
to [A, B]. Then L[A, B] ^ [A, B] will be proved. 

We will discuss the following cases: 

(1) AeT; 
(2) A^Z; 
(3) A$TU[Z]. 

(1) In view of invalidity of (i) and (ii) we have B £ Tu[Z]. Propositions 3 
and 4 imply that the class L3[I?] contains an algebra D such that 

D e 7J u T2 u Tz u T4 u [N, Z + Z]. 

If D is not isomorphic to B, then D e L3[A,B] - [A,B]. Thus D has the 
required property. 

Let B ̂  D. Then B e Tx U T2 U T3 U TA U [N, Z + Z]. 
Assume that there exists i e {1,2,3} such that B eTt. Thus B* G T and 

B* ^ B. Since the condition (vi) does not hold, the algebra B* is not isomorphic 
to A. We have B* e L[B] C L[A,B]. We conclude that B* has the requiied 
property. 

If either B ^ N or B ^ Z + Z ov B e T4, then Z e L[B] C L[A,B] 
according to Lemma 4 and [4; Theorems 2, 3]. We have that Z has the required 
property. 
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(2) Since (ii') fails to hold, we have B fi T.In view of the fact that (vii) is 
not valid, we obtain B £ [Z]. Thus the algebra B satisfies assumptions of either 
Proposition 3 or Proposition 4. Therefore the class L3[J5] contains an algebra 
D such that 

D e Tx u T2 u T3 u T4 u [N, Z + Z]. 

If D ^ B, then the proof can be finished analogously as in the case (1). 
Let D^ B. Since (in'), (iv), (v) do not hold, we have B $T4U[N,Z + Z]. 

That means that there exists i G {1,2,3} such that B G T{. The algebra 
B* $ [A,B] and B* G L[B] C L[A,B]. Thus B* has the required property. 

(3) The algebra A satisfies assumptions either Proposition 3 or Proposition 4. 
Therefore L3[A] contains an algebra D such that 

D G 7i U T2 U T3 U T4 U [TV, Z + Z]. 

If D ^ A and D ^ B, then D has the required property. 
Let D ¥ A and D £- B. If B G Tx U T2 U Ts, then B* has the required 

property. If B G T4 U [Z], then Z has the required property. 
Let A = D. If A G T{ for i = 1,2,3, then A* is not isomorphic to B, 

because (vi) does not hold. Further, A* ^ A and A* G L[A]. Thus A* has the 
required property. 

If A G T4 U [Z + Z], then Z G L[A], because Z is a retract of 4 . If A =* 1Y, 
then Z G L[.A] according to Lemma 4. The algebra 2? is not isomorphic to Z 
since no condition (iii), (iv'), or (v') is satisfied. • 
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