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LOCAL PROPERTIES OF 
STABLY COMPLEX G-ACTIONS1 

K R Z Y S Z T O F PAWALOWSKI 

(Communicated by Julius Korbas) 

ABSTRACT. The paper studies local properties of stably complex finite group 
actions on disks, spheres, and Euclidean spaces whose fixed point sets are diffeo-
morphic, respectively, to disks, spheres, and Euclidean spaces . In particular, such 
smooth actions are constructed so that at different points with the same isotropy 
subgroup, the normal representations are inequivalent. 

Introduction 

For smooth G-actions on Euclidean spaces, the question of the equivalence of 
the slice representations at two points in orbits of the same type was raised by 
W.-C. H s i a n g and W.-Y. H s i a n g [5; Problem 16]. For smooth G-actions 
on spheres, in the special case when the two points are fixed under the action 
of G, this question was posed by P. A. S m i t h [18; p. 406, the footnote]. For 
G-actions on disks, spheres, and Euclidean spaces, the weaker question of the 
equality of the dimensions of any two G-fixed point set connected components 
goes back to G. E. B r e d o n [2; p. 58, the second remark]. 

A lot of the effort goes toward trying to answer the question posed by 
P. A. S m i t h for smooth G-act ions on spheres with exactly two G-fixed points. 
Also, a number of articles deal with the slice representations at G-fixed points 
for smooth G-actions on disks and Euclidean spaces, as well as, for smooth 
G-actions on spheres with at least three G-fixed points (see, e.g., [3], [4], [7], 
[11], [13], and [14] for systematic surveys of related results). 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 57S17, 57S25. 
K e y w o r d s : G-CW complex, G-vector bundle, equivariant thickening, stably complex 
G-action, slice representation, normal representation . 

1 The first draft of this paper was prepared when the author was visiting the Mathematisches 
Insti tut , Universitat Heidelberg while the final version of it was writ ten down during author 's 
visit to the SFB 170 "Geometrie und Analysis" at the Universitat Gott ingen . The support and 
hospitality of both institutions are warmly acknowledged. 
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It turns out that unlike a linear G-action, an arbitrary smooth G-action on 
a disk, sphere, or Euclidean space U can determine different H-actions locally 
around two different points with the same isotropy subgroup H. In the study 
of transformation groups, it is natural to impose some restrictions on general 
smooth G-actions on U, and ask similar questions. In this paper, we impose 
two restrictions for any smooth G-action on U. The first restriction says that 
the tangent bundle TU of U stably admits the structure of a complex G-vector 
bundle; we refer to such a G-action on U as to a stably complex action. The 
second restriction says that the G-fixed point set UG is diffeomorphic to a 
disk (resp., sphere; resp., Euclidean space) which is always the case when the 
G-action on U is linear. 

The goal of this paper is to show that smooth G-actions on disks, spheres, 
and Euclidean spaces fulfilling both restrictions may also have non-linear local 
behaviour. More precisely, we deal with the following problem related with the 
above questions. Let G be a finite group, and let H be a proper subgroup 
of G. Let m1,... ,mfc and W 1 ? . . . , Wfc be lists of non-negative integers m-
and complex H-representations W{ without trivial summands. Assume G acts 
smoothly on a disk, sphere, or Euclidean space U so that the submanifold U,H^ 
of U (consisting of all points in U with isotropy subgroup conjugate to H) 
contains smooth G-invariant submanifolds M 1 ? . . . , Mk of U such that, for i = 
1 , . . . , fc, the orbit space MJG is connected, mi = d imM ? , and Wi occurs as 
the normal representation over Mi. This implies that the following condition 
holds. 

DIMENSION CONDITION. For all 1 < i,j < fc, m- -f dimR(W i) = 
m • -j- dimR(W-). In particular, the integers m x , . . . , mk either all are even or all 
are odd. 

It follows from the Smith Theory, for any smooth G-action on a disk or 
Euclidean space, as well as, for any smooth G-action on a sphere with at least 
three G-fixed points, the H-fixed point set is non-empty and connected for each 
prime power order subgroup P of G. Therefore, the next condition (usually) 
also holds for stably complex G-actions (cf. [10; Propositions 7.1 and 7.2]). 

SMITH CONDITION. For each P e V(H), the set of all prime power order 
subgroups P of H, and for all 1 < i,j < fc, the nontrivial summands of the 
restricted representations ReSp(W i) and ReSp(W-) are equivalent as complex 
P -representations. 

Clearly, for a list of non-negative integers m 1 5 . . . , mk with m1 = • • • = mk 

and a list of complex H-representations W x , . . . , Wk without trivial summands, 
the Dimension Condition and the Smith Condition both hold if and only if 
the restricted representations Res p (W i ) and Resp(Wj) are equivalent for each 
P e V(H) and all 1 < ij < fc. 
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PROBLEM. Are the Dimension Condition and the Smith Condition also suf­
ficient for lists of non-negative integers m1,...,mk and complex iiI-represen-
tations Wx,..., Wk without trivial summands to occur, respectively, as the di­
mensions of the manifolds M x , . . . , Mk (described above) and the normal repre­
sentations over these manifolds? 

Earlier, the author obtained some results related with this problem in the 
case of smooth S^-actions and cyclic group actions (see [15] and [16]). In this 
paper, the author presents results concerned with the above problem for any 
finite group G with a proper subgroup H not of prime power order, such that 
any two Sylow subgroups of H intersect trivially (see [13] for similar results 
when H = G). As an example of H, one may take a finite nilpotent group not 
of prime power order, as well as, any extension of the form 

O^K ~^H ->L^0, 

where K is a finite nontrivial nilpotent group, and L is a finite group whose 
order is a prime, or a product of distinct primes, not dividing the order of K. 
It turns out that with such G and H, the Dimension Condition and the Smith 
Condition are (stably) also sufficient to give the affirmative answer to the above 
p>roblem. More precisely, the following two theorems hold provided G is a finite 
group, and H is a proper subgroup of G not of prime power order, such that 
any two Sylow subgroups of H intersect trivially. 

THEOREM A. Let mx,..., mk and Wx,..., Wk be lists of integers m. > 0 and 
complex H-representations Wi without trivial summands, such that mi = m 

and the restricted representations Resp(Wt) and R e s p ( W ) are equivalent for 
each P G V(H), 1 < i,j < k. Moreover, assume k > 1 and k = 0 (mod nH), 
vjhere nH is the Oliver integer of H (resp., assume k > 1). Then there exists a 
stably complex G-action on a disks (resp., Euclidean space) U with G-fixed point 
set UG diffeomorphic to a disk (resp., Euclidean space), such that the following 
two conditions hold. 

(1) U,H^ contains smooth G-invariant submanifolds Mx,..., Mk of U such 
that dimM^ = mi-\-2£ for some integer £ > 0, and the orbit space Mi/G 
is contractible for i = 1 , . . . k. 

(2) For some complex H-representation W without trivial summand, W^W 
occurs as the normal representation over M{ for i = 1 , . . . , fc. 

THEOREM B. Let m 1 , . . . , m f c and W^... ,Wk be lists of integers mi > 1 
and complex H-representations Wi without trivial summands, such that the Di­
mension Condition and. the Smith Condition both hold. Then there exists a sta­
bly complex G-action on a sphere (resp., disk; resp., Euclidean space) U with 
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G-fixed point set UG diffcomorphic to a sphere (resp., dish; c(sp.. Ewlidicn 
space), such that the following two conditions hold. 

(1) U,Hs contains smooth G-invariant submanifolds M{ Mk of I such 

that dimA/^ = mi -{- 2£ for some integer (. > 0 , Mf is closed and the 

orbit space MJG is connected for i = 1 , . . . , k. 

(2) For some complex H-representation W without trivial sum mand. IV II 

occurs as the normal representation over AE for i = 1 A'. 

If H is a finite group such t ha t each element of H has pr ime power order, it 
follows from character theory tha t two / / - r epresen ta t ions are equivalent if and 
only if the same holds for their restrict ions to each pr ime power order subgroup 
of H. Therefore, for such an H, lists of non-negative integers rnl:. . . , mk and 
complex H-representations VVp . . . , Wk (without trivial s u m m a n d s ) fulfill bo th 
the Dimension Condi t ion and the Smi th Condi t ion if and only if mi = m and 
Wi = W- for all 1 < i , j < k. Consequently, for such an / / in Theorems A 
and B, the normal representat ions are equivalent. On the o ther hand , if H 

is a finite group wi th a cyclic subgroup not of pr ime power order, t hen for a 
list of non-negat ive integers m1,..., mk either all even or all odd, one may 
const ruct complex H-representations W±,..., Wk wi thou t trivial s u m m a n d s , 
so t h a t the Dimension Condi t ion and the Smi th Condi t ion b o t h hold, and the 
H-representations Wi and W- are not equivalent whenever i / j (see [13; 
Commen t s (1) and (2)]; cf. [10; Example 7.5 and Remark 7.6]). As a result , 
Theorems A and B yield the following corollary. 

COROLLARY C. Let G and H be as in Theorems A and B, and assume 
further H has a cyclic subgroup not of prime power order. Then G has a stably 
complex action on a sphere (resp., disk; resp., Euclidean space) U with G-fixed 
point set UG diffeomorphic to a sphere (resp., disk; resp., Euclidean space) and 
inequivalent normal representations at two points (with isotropy subgroup / / ) 
in orbits which are in different connected components of U,HJG. Moreover, 
the connected components may have different dimensions, as well as, the same 
dimension. 

T h e mater ia l of this paper is organized as follows. In Section 1, we provide 
some background mater ia l needed in this paper . In Section 2, for a finite group 
G, we res ta te t he Equivar iant Thickening Theorem presented in [12] for any 
compact Lie group G. In Section 3, we briefly recall some results on construc­
t ions of contract ible G - C W complexes wi th prescribed G-fixed point sets. In 
Section 4, we s tudy some equivariant function spaces which we use for obta in ing 
of G-vector bundles wi th prescribed proper t ies . In Section 5, we provide the 
proofs of Theorems A and B. 
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1. Background material 

Let G be a compact Lie group acting smoothly on a smooth manifold M . 
Then, for any point x G M , the differential of the action of the isotropy subgroup 
Gv at x determines a linear G^-representation on the tangent space TX(M). 
This representation is orthogonal with respect to a chosen invariant Riemannian 
metric on M , and splits into the following two summands. The first summand 
is the trivial Gx-representation on the tangent space to the orbit G(x) passing 
through x. The second summand is an orthogonal G^-representation on the 
normal space of G(x) at x, called the slice representation at x and denoted 
here by Sx. 

According to the Slice Theorem, the Gx-action around x is uniquely deter­
mined by two local invariants. The first invariant is the isotropy orbit type of 
G(x), that is, the conjugacy class (Gx) of Gx in G. The second invariant is 
the equivalence class of Sx. More specifically, the Slice Theorem asserts that 
there is an equivariant diffeomorphism of the twisted product G xH V onto 
some invariant neighborhood of G(x) which extends the natural embedding of 
G/H onto G(x), where H = Gx and V = Sx. For two orbits G(x) and G(y) 
in M with (Gx) = (G ) , one may choose the points x and y so that Gx = G 
and ask whether the slice representations Sx and S are equivcilent. By the 
Slice Theorem, this amounts to asking whether the natural equivariant diffeo­
morphism between G(x) and G(y) extends to an equivariant diffeornorphism 
between some invariant neighborhoods of G(x) and G(y) in M . 

For a closed subgroup H of G, consider the smooth invariant submanifold 
M(//) of M consisting of all orbits G(x) of the isotropy type (H), that is, with 
(Gx) = (H). Then, for any point x £ M,H^, the G^-nontrivial sumnicind of Sx 

occurs as the G^-representation on the normal space of M,H^ in M a t x, and it 
is called the normal representation at x. For two orbits G(x) and G(y) in M,H^, 
choose the points x and y so that Gx = G = H. Now assume M is connected. 
Then it follows from the Slice Theorem that the slice (equivalently, normal) 
representations at x and y are equivalent whenever, in the orbit space M/G, 
the orbits G(x) and G(y) are in the same connected component of M,HJG. In 
other words, if M0 is a smooth G-invariant submanifold of M such that MQ/G 
is a connected component of M,RJG, then all points x E M0 with Gx = H, 
determine (up to linear equivalence) just one normal representation. We refer 
to this H-representation as to the normal representation over M 0 . Clearly, if 
W0 is the normal representation over MQ, then for any x G MQ with Gx = H, 
as H-representations, TX(M) = Rm° ® W0, where ra0 = dim M0 and H acts 
trivially on Rm° . 

We refer the reader to B r e d o n ' s book [2], or K a w a k u b o ' s book [6] for 
background material on transformation groups that we use in this paper. For a 
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finite group G and a G-representation V, the product G-vector bundle X x V 
over a G-space X we denote by (V) provided the base space X is obvious from 
the context, and we write (Rn) (resp., (Cn)) when V is the real (resp., complex) 
vector space IRn (resp., C n ) with the trivial G-action. 

2. Equivariant thickening 

Let G be a finite group. For a smooth G-manifold M and a smooth G-vector 
bundle v over M, consider the problem of constructing a smooth G-manifold 
U of a given homotopy type, such that the following two conditions hold. 

(1) U contains M as a (closed) invariant smooth submanifold with equi-
variant normal bundle vMcU equivalent to v. 

(2) U \ M has the same isotropy subgroups as does N \ A/, where N is 
an open invariant tubular neighborhood of M in 17. 

According to the Equivariant Tubular Neighborhood Theorem (see, e.g., [2; 
Chapter VI, Theorem 2.2], or [6; Chapter 4, Theorem 4.8]), there exists an equi­
variant diffeomorphism from the total space E{v) of v onto TV which coincides 
with the identity on A/. Hence, the condition (2) amounts to saying that {/ \ 71/ 
has the same isotropy subgroups as does the total space S{v) of the invariant 
(unit) sphere bundle of v. 

Now, assume such a manifold U has been constructed. Then U has the 
structure of a finite dimensional, countable G-CW complex containing M as 
;i G-invariant subcomplex, and the tangent bundle TU has the structure of 
a G-vector bundle over U such that, as G-vector bundles, TU\J\J = TM (p v. 
Therefore, it follows that in order to construct such a manifold U, it is necessary 
to have a finite dimensional, countable G-CW complex X of the given homotopy 
type, containing M as a G-invariant subcomplex, and to have a G-vector bundle 
£ over X such that the following two conditions hold. 

NORMAL BUNDLE CONDITION. As G-vector bundles, f | A j = TM g. 
) i / , £>0. 

ISOTROPY SUBGROUP CONDITION. Each isotropy subgroup occurring in 
X \ M occurs also in S{v). 

It turns out that the existence of such a complex X and a bundle £ is also 
sufficient whenever v fulfills the following condition. 

G E N E R A L P O S I T I O N C O N D I T I O N . For each isotropy subgroup H occurring 
in X \ M, and for the Gx-representation on the fibre Fx{v) of v over any point 
x E M with Gx 2H, 

dim Fx{v)H > 2 • dim(X \ M)H , 
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and for any subgroup K of Gx with H Q K, 

dimFx(v)H - dimFx(v)K > dim(K \ M)H . 

2 .1 . THEOREM, (cf. [12; Theorem 2.2]) Assume G is a finite group, M is 
a smooth G-manifold, v is a smooth G-vector bundle over M without trivial 
summand, X is a finite dimensional, countable, connected G-CW complex, £ is 
a G-vector bundle over X such that the Normal Bundle Condition, the Isotropy 
Subgroup Condition, and the General Position Condition all hold. Assume fur­
ther that, if X \ M has infinitely many cells, M is without boundary. Then 
there exist a smooth G-manifold U and a G-equivariant map / : U —> X such 
that U contains M as a G-invariant smooth submanifold, and the following 
four conditions hold. 

(1) The bundles VM(-JJ and v are equivariant as G-vector bundles. 
(2) U \. M and S(v) have the same isotropy subgroups. 
(3) / is a (simple) G-homotopy equivalence coinciding with the identity 

on M. 
(4) The bundles /*(£) and TU 0 (R£) are equivalent as G-vector bundles. 

The idea of the proof is to take the total space D(v) of the (unit) disk bundle 
of v and then, by using the equivariant thickening technique, replace inductively 
all equivariant cells in X \ M by equivariant handles in a way prescribed by £ 
to obtain both U and / (see [12; Section 2] for the details of the proof). 

2.2. R e m a r k . Under the hypotheses of Theorem 2.1, assume further that X 
is finite (resp., infinite) and contractible. Then, the manifold U is diffeomorphic 
to the disk Dn (resp., Euclidean space IRn) with n = dim(£) — £ provided n > 6 
(resp., n > 5); see [12; Remark 2.5]. 

2 .3. R e m a r k . If X , £, M , and v occurring in Theorem 2.1 fulfill only the 
Normal Bundle Condition, and M contains a point left fixed under the G-action, 
then, by adding to £ and v the product bundle (V) over X and M , respectively, 
for a suitable (real or complex) G-representation V, we may assume that the 
Isotropy Subgroup Condition and the General Position Condition both also hold. 
For example, V may be taken as a sufficiently large multiple of the nontrivial 
summand of the (real or complex) regular representation of G. 

3. Contractible G-CW complexes 

In this section, we briefly recall some results on the existence of contractible 
G-CW complexes due to O l i v e r [8] and A s s a d i [1]. First, recall that, ac­
cording to [8], there exists an integer nG > 0 such that a finite CW complex 
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F is the G-fixed point set of a finite contractible G-CW complex if and only if 
the Euler characteristic x(F) = 1 (mod nG). We refer to nG as to the Oliccr 
integer of G (see the work of O 1 i v e r [9] for complete calculations of nG ). If 
x(P) -= 1 (mod n G ) , then a finite contractible G-CW complex X with A ( r = F 
is built up one orbit type at a time, adding cells G/H x DJ (for various j) until 
the H-fixed point set has the desired homology. More precisely, the construction 
is done in the following three steps. 

STEP 1. Cells G/H x DJ are added so that to produce from F a finite 
G-CW complex with G-fixed point set F, such that for any nontrivial sub­
group H of G, the II-fixed point set has the desired Euler characteristic and it 
is Z -acyclic whenever H is a p-group for a prime p dividing the order of G. 

STEP 2. Free orbits of cells G x DJ are added so that to obtain a finite 
1-connected G-CW complex with all of the reduced homology concentrated in 
one dimension. 

STEP 3. Again free orbits of cells are added so that to kill the reduced homology 
concentrated in one dimension and, as a result, to obtain a finite contractible 
G-CW complex X with XG = F. 

It follows from this construction that for any subgroup H of G not of prime 
power order, the H-fixed point set has only the desired Euler characteristic. 
Thus, we may assume that the following condition holds for subgroups H of G 
of composite (i.e., not of prime power) order. 

(CC) For each proper subgroup H of G of composite order, whenever an 
equivariant cell G/H x DJ occurs in X , it is added by an attaching map (defined 
on G/H x S-7'-1) which is constant on each copy {gH} x SJ~l of the sphere 
S*-1 (geG,j>l). 

It also follows that each time the P-fixed point set is made Z -acyclic for a 
p-subgroup P of G, the dimension of the P-fixed point set needs to be raised by 
at most 1. In order to perform Steps 2 and 3, the dimension of the G-CW com­
plex needs to be raised again by at most 1. Therefore, if we denote by £(P) the 
length of the longest chain P -= Px ^ P2 ^ • • • ^ Pk of p-subgroups Pt of G. 
we may assume that the following dimension condition also holds. 

(DC) For each P G P 0 (G) , the set of all nontrivial prime power order sub­
groups of G, 

d i m X p < m a x { l , d i m F } + -£(P) and 

d imX < m a x { l , d i m P } + max{^(P) | P G P 0 ( G ) } + 1. 
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3.1. THEOREM. ( O l i v e r [8]) Let G be a finite group not of prime power 
order. Let F be a finite CW complex with x(F) = 1 (mod nG), where nG is 
the Oliver integer of G. Then there exists a finite contractible G-CW complex 
X with XG — F, such that the conditions (CC) and (DC) both hold. 

By using results and techniques of A s s a d i [1; Chapter II, especially II.1.4 
and 11.7.2], we get a similar theorem on the existence of infinite contractible 
G-CW complexes with prescribed G-fixed point sets. Even, if not stated ex­
plicitly, each CW complex, as well as, G-CW complex is finite dimensional and 
consists of count ably many cells. 

3.2. THEOREM. ( A s s a d i [1]) Let G be a finite group not of prime power 
order. Let F be a CW complex. Then there exists an infinite contractible 
G-CW complex with XG — F such that the conditions (CC) and (DC) both 
hold. 

4. Equivariant function spaces 

In this section, we study properties of some equivariant function spaces that 
we use to construct G-vector bundles over contractible G-CW complexes. Let 
G be a compact Lie group, and let C(n) be one of the classical groups, either 
U(n) or SU (n), n > 1. Consider the neutral elements of G and C(n) as their 
base points, and take the space Map^ (G,G(n)) of pointed maps 6\ G —» C(n)^ 
equipped with the compact-open topology. This space admits the G-action de­
fined so that for g,h E G, 

(g6)(h) = e{hg)e{g)-1. 

Now we wish to describe unitary (resp., special unitary) G-vector bundles whose 
underlying non-equivariant bundles are just the product bundles (cf. [2; Chap­
ter VI, Proposition 11.1] and [10; Proposition 4.1]). 

4.1. PROPOSITION. FOT any G-space X, there is a natural one-one corre­
spondence between unitary (resp., special unitary) G-vector bundle structures on 
X x C n over X and G-maps 

K-+Map^ ( G , G ( n ) ) , x H-> 9X , 

with C(n) -- U(n) (resp., C(n) = SU(n)). For a given G-map 
corresponding G-action on X x C n is defined so that for all g E G. 

v e Cn, 
g(x,v) = (gx, 0x(g)-v) . 

4.2. Remark. For two G-maps X —> Map^ (G, C(n)) , x i-> 0X 

a G-homotopy between the two G-maps yields a G-vector bundle structure on 
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X x [0,1] x C n over X x [0,1], so that G-homotopic maps yield equivalent 
G-vector bundles. In general, the G-vector bundles given by the two G-maps 
are equivalent if and only if there is a map cp: X —> U(n) such that for all x G X 
and g G G, 

9'x(g) = ^(gx)0x(9Mxr1 . 

It follows from the definition of the G-action on Map^ (G, C(n)) that the 
G-fixed point set is just the space Hom(G, C(n)) of homomorphisms from G to 
C(n), i.e., representations of G in C(n). 

4 .3 . Remark . The connected component of Hom(G,G(n)) containing a rep­
resentation p: G —» C(n) is just the U(n)-equivalence class of p. In fact, if a 
representation p': G —» G(n) lies in the same connected component as does p. 
then there is a homotopy between the maps sending a point to p and p' in 
Hom(G,G(n)) . Hence, p and p' are equivalent (cf. Remark 4.2). Conversely, if 
there exists a matrix A G U(n) such that p'(g) = Ap(g)A~l for all g G G, take 
a path [0,1] —> U(n), £ i—> v4t, from the identity (n x n)-matrix to A. Then, the 
map 

[ 0 , l ] ^ H o m ( G , C ( n ) ) , t^pt; pt(g) = Atp(g)A;\ geC. 

is a path in Hom(G,G(n)) from p to p'. On the other hand, the Lr(O)-equiv-
alence class of p is the orbit of p under the c7(n)-action on Hom(G. G(t?)) 
given by (Ap)(g) = Ap(g)A~l. Hereafter, we denote by U(p) the isotropy sub­
group at p under this action. Hence, it follows that the connected component of 
Hom(G,G(/i)) containing p: G —> C(n) is homeomorphic to the homogeneous 
space U(n)/U(p). Clearly, U(p) is just the centralizer of p(G) in U(n). and 
it can be identified with the group of unitary G-equivariant automorphisms of 
Cn(D), the space Cn with the linear G-action given via p. 

Let G be a finite group. Let o~0: G —> U(l) be the trivial G-representation. 
and let ai: G —> U(di)1 i = 1,. .. ,^, be a complete list of nontrivial complex 
irreducible G-representations. For a G-representation p: G —+ C(n), consider 
the decomposition of p into the irreducible summands, 

P = ©^^» X)Vi = ri» 3 C { 0 , 1 , . . . , < } , 

where ni > 0 for each i G 3 . We write c(p) for the greatest common divisor of 
the integers di, z G 3 , and we refer to c(p) as to the cyclic loop number of p. 
The motivation of this notion is provided by the following proposition which is 
a generalization of author's result [10; Proposition 4.4]. 

4.4. PROPOSITION. Let G be a finite group. For a representation p: 
G —+ C(n), the connected component of Horn(G,G(n)) containing p has the 
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fundamental group isomorphic to the cyclic group rL/c(p)rL. In particular, this 
connected component is simply connected if and only if the cyclic loop number 
c(p) = l. 

P r o o f . As above, for a representation p: G —> C(n), consider the decom­
position of p into the irreducible summands, 

P-®niai> J2nidi = n> 3C {0,1,... ,*}, 
i€3 ie3 

where n% > 0 for each i G X Since U(p) defined in Remark 4.3 can be identified 
with the group of unitary G-equivariant automorphisms of C n (p), thus 

U(P) = ®U(Пi), 

ІЄЗ 

and the embedding of U(p) into U(n) upon restricting to any component U(nx) 
induces on the fundamental groups Z = 7r 1 (^(^ i )) —» 7r1(U(n)) = Z multiplica­
tion by dt. Consequently, 

Imaged(C/(p)) - ^ ( [ / ( n ) ) ) =Y,diZ c Z' 
ie3 

Thus, it follows from the exact sequence of the fibration U(p) —> U(n) —> 
U(n)/U(p) that irl (U(n)/U(p)) ^ Z/c(p)Z, which shows the result by Re­
mark 4.3. • 

Now, for a subgroup H of G consider the H-fixed point set of Map^ (G, C(n)), 

Map^ (G, C(n))H = {9: G - • C(n) | 6(gh) = 6(g)9(h), gGG, h e H} . 

Recall from [10; Proposition 4.2], that each choice of representatives a H of 
cosets OH, g G G, with aH = e, yields the homeomorphism 

Map^(G,C(n)) H -> Horn(H,G(n)) x Map^ (G/H, G(n)) 

6 9 ^ ( ^ ^ , ( 7 ) , O-(sH) = 0 ( % i / ) . 

Therefore, in order to study the connected components of Map^ (G, G(n)) , it 

suffices to study the connected components of Horn(H,G(n)) because 

Map^(G/H, C(n)) *. C(n) x • • • x C(n), (G : H) - 1 times . 

In particular, the following corollary holds (cf. [10; Corollary 4.3]). 
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4.5. COROLLARY. Let G be a finite group, and let H be a subgroup of G . 

Then, for two maps 0,0': G — -> C(n) in Map^(G,G(n)) . the representations 

0\jj and 0'\pp are equivalent if and only if 0 and 0' are in the same connected 

component of Map^ (G,C(n)) . 

Since SU(n) is 2-connected, so is Map^(G, SU(n)) . Moreover, by Propo­
sition 4.4 and the above product decomposition of Map^(G, SU(n)) into 
Hom(G, SU(n)) and Map^ (G/H, SU(n)) , the following corollary also holds 
(cf. [10; Corollary 4.5]). 

4.6. COROLLARY. Let G be a finite group, and let H be a nontrivial subgroup 
of G . Then, a connected component of Map^ (G, SU(n)) is simply connected 
if and only if it contains a map 0: G —> SU(n) such that the H-representation 
Olpj has the cyclic loop number c{0\jj) = 1. 

Now we can prove a proposition which we will use to get G-vector bundles 
over G-CW complexes with prescribed G-fixed point bundles. The proposition 
is a generalization of author's result [10; Proposition 4.6]. 

4.7. PROPOSITION. Let G be a finite group, and let X be a G-CW complex 
with G-fixed point set F, fulfilling the condition (CC) of Section 3, such that for 
any P G V0(G), each equivariant cell of type (P) in X \ F has dimension less 
than or equal to 2. and each free cell in X \ F has dimension less than or equal 
to 3 . Let F±1..., Fk be all connected components of F, and for i — 1,. . . . k. let 
p-: G —> SU(n) be a representation with cyclic loop number c(p2) = 1 such that 
p-\p and pAp are equivalent for all P G V(G), 1 < i,j < k. Then there exists 
a complex G-vector bundle £ over X such that £ Ip = (V )̂ with Vi — Cn(p-) 

i 

for i = l , . . . , f c . 
P r o o f . Consider the map F -> Hom(G, SU(n)) C Map^(G, SU(n)) . 

xi l_^ Pit f° r a n xi £ F{i i = 1 , . . . , & . We claim that this map extends to 
an equivariant map X —> Map^(G, SU(n)). Once such an extension has been 
obtained, the proof is completed by using Proposition 4.L 

First, we get an extension of this map on all equivariant 0-cells in X \ F by 
mapping each 0-cell G/H from X \ F into the set {px, . . . , p j . 

Now, note that X is built up from F and all equivariant 0-cells in A" \ F 
by attaching a sequence of equivariant cells of the form G/H x DJ via equi­
variant maps a defined on G/H x /3-7 ' -1, where H ^ G, j > 1. In order to 
obtain an extension on a cell G/H x D J , it suffices to show that a composed 
with the previous extension when restricted to {H} x S ^ - 1 is null-homotopic in 
Map^(G,5U (n ) ) H . 

For H £ 'P(G), a is a constant map on {H} x SJ_1 because the condition 
(CC) holds, and we choose the extension so that it is the constant map on 
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{//} x Dj . For H = P E V0(G), an extension on cells G/P x D1 exists due 
to Corollary 3.5 because pt\p = P 7 | p , and it does on cells G/P x D2 due to 
Corollary 3.6 because c(pi) = 1. Finally, an extension on free cells G x D] , 
G x /> ' , and G x Z>* exists because Map^(G, SU(n)) is 2-connected. • 

5. Proofs of Theorems A and B 

In this section, we wrish to prove Theorems A and B. First, we state the 
following three remarks. 

5 .1 . Remark. Let G be a finite group. For a representation p: G -—> C(n), 
where C(n) = U(n) or SU(n), consider the decomposition of p into the irre­
ducible summands, 

P = © ¥ i . 5 > A = n ' ^C {0,1,...,£}, 

where nj > 0 for each i G 1 Recall that the cyclic loop number c(p) is the 
greatest common divisor of all di 's, i E 3 . We claim that by adding to D, 
if necessary, some irreducibles a•: G —> U(d-), 1 < j < f, we may assume 
that c(p) = 1. In fact, assume di > 1 for each i G 3 (otherwise, there is 
nothing to prove) and recall from S e r r e ' s book [17; Section 2.4, Corollary 2 
and Section 6.5, Corollary 2] that d2 + d2 A Yd2 = \G\ — 1 a n d d±-d2-. . .-d£ 

divides \G\ . Hence, the integers d1,d2,... ,d£ are relatively prime, proving the 
claim. Similarly, we see that if 

p{:G —> C(n), i = l , . . . , f c , 

is a list of representations, then by adding the same irreducibles a •: G —• U(O^) 
to each p . , we may assume that each cyclic loop number c(p{) = 1. 

5.2. Remark. Let G be a finite group. Let pt: G —> U(n), i = 1, . . , /c, be a 
list of representations such that p{\p and pAp are equivalent for all P E V(G), 
l<ij <k. Then 

detp.(O) = d e t p j ( a ) for all f jGG, I < ij < k . 

Consider the representation 6: G —> U(l) given by 5(^) = (detp.(tf)) for 
a E G. Then each L^®<5 is a special unitary representation (cf. [10; Lernma 7.3]). 

5.3. Remark. Let G be a finite group, and let H be a proper subgroup of G. 
Let W be a (complex) H-representation without H-trivial summand. Then 
there exists a (complex) G-representation V without G-trivial summand such 
that W occurs as a direct summand of the restricted representation Res K (V) . 
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For example, set V = IndH(W), the induced G-representation. Then it follows 
(e.g., from [17; Section 7.3, Proposition 22]) that W occurs as a direct summand 
of Res i / (V ) , and clearly VG = WH = {0}. If there exists an epimorphism from 
G onto H, then one may also take V to be W with the linear G-action given 
via the given epimorphism (to deal with the effective G-actions, just add to V 
a faithful G-representation without trivial summand). 

P r o o f of T h e o r e m A . Let G and H be as in the hypotheses of The­
orem A. Let VV0, Wx,..., Wk be complex H-representations without H-trivial 
summands, such that ReSp(VV-) =• ResH(Wj) for all P <E V(H) and 0 < i, j < k. 
According to Remarks 5.1 and 5.2, we may assume that each W{ = Cn (px), where 
p{: H —> SU(n) has the cyclic loop number c(p{) = 1. 

Assume fc > 1 and fc = 0 (mod n ^ ) , where nH is the Oliver integer of H 
(resp., assume fc > 1). Then it follows from Theorem 3.1 (resp., Theorem 3.2) 
that there exists a finite (resp., infinite) contractible H-CW complex Y with YH 

consisting of exactly fc-f 1 points b0, bx,..., bk , such that the conditions (CC) and 
(CD) both hold. Due to (CD), d i m F p = 2 for each P G V0(H), and dim Y = 3 
because any two Sylow subgroups of H intersect trivially. Let N1, . . . , Nk be 
compact contractible smooth manifolds (resp., contractible smooth manifolds 
without boundary) with the trivial H-action, all of the same dimension. Consider 
B = {6 1 , . . . ,b / c} as a subset of the disjoint union N = Nx U • • • LJ Nk by 
identifying b{ with an interior point of Ni for i = 1,. . . , fc. Since N{ contains 6-
as a deformation retract, the sum YUB N of Y and N along B is contractible. 
Clearly, it has the obvious structure of an H-CW complex with 

(YUBN)H = {bQ}UN. 

According to Proposition 4.7, there exists a complex H-vector bundle r\ over 
Y \JB N such that 

n o (^) = Wo a n d ^|j\r. = TO for 2 = 1 , . . . , fc. 

Clearly, the twisted product Gx H(YUBN) is a finite (resp., infinite) G-CW com­
plex whose connected components all are contractible. By adding to 
Gx H(Y UB N) the cone C0 over the orbit G(bQ) with the cone Gr-action, 
we obtain a finite (resp., infinite) G-CW complex X with XG = {U0}, where 
v0 is the vertex of G0 . Moreover, 

*(H) = K ^ K l ) U (G/H x N). 

Let V0 be a complex G-representation without G-trivial summand, such that 

Res%(V0)^W0(&W(BCr , 

where W is a complex H-representation without H-trivial summand, and H 
acts trivially on C r , r > 0 (cf. Remark 5.3). Then, it follows that the G-vector 
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bundle GxH(WQ 0 V V 0 C r ) over G(bQ) extends to a complex G-vector bundle 
over G0 with V0 occurring as the fiber over vQ (cf. Corollary 4.5). Hence, the 
G-vector bundle 

GxH(n®(W®Cr)) over GxH(YUBN) 

extends to a complex G-vector bundle £ over X such that Fv (£) == V0. By 
contracting the cone CQ to its vertex vQ , we may assume that X,H^ = G/H x N. 
Now, choose N{ so that dimjY,. = 2T, and set M = {vQ} U (G/H x N). Let v 
be the complex G-vector bundle over M defined by 

f » = ^o a n d v\(G/HxNi)
=G*H(Wi®w) for i = l,...,fc. 

Then, as complex G-vector bundles, £ hrT — TM 0 v, and thus, the Normal 
Bundle Condition (stated in Section 2) holds for X, £, M , and v. By adding to 
£ and zv a suitable product bundle over X and M respectively, we may assume 
that the Isotropy Subgroup Condition and the General Position Condition both 
also hold (cf. Remark 2.3). Then, according to Theorem 2.1 and Remark 2.2, 
there exists a smooth action of G on a disk (resp., Euclidean space) U such 
that U contains M as an invariant smooth submanifold with equivariant normal 
bundle v. Moreover, 

UG = {v0} and U{H) = MQ U Mx U • • • U Mk 

with MQ = D(V0){H) and M- = G/H x N. for i = 1 , . . . , k. Clearly, W. ® W 
occurs as the normal representation over Mi for i = 1 , . . . , k. • 

P r o o f of T h e o r e m B . Let G and H be as in the hypotheses of The­
orem B. Moreover, let ra0,m1?..., mk and WQ, W 1 ? . . . , TVfc be lists of integers 
ra- > 1 and complex H-representations Wi without H-trivial summands, such 
that the Dimension Condition and Smith Condition both hold. For i = 1 , . . . , k, 
put n- = \(mi -h l ) /2] , the greatest integer in (mi + l ) / 2 , and consider the 
H-representation Cni ® Wi, where H acts trivially on Cn i . It follows from 
the Dimension Condition that the representations Cni 0 Wi all have the same 
(complex) dimension, say n , and it follows from the Smith Condition that 

Res£(C n i 0 W{) r= Res£(C n ' 0 W^ 

for all P G V(H) and 0 < i, j < k. According to Remarks 5.1 and 5.2, we may 
assume that each Cni ©W^ = Cn(pi), where p{: H —> SU(n) has the cyclic loop 
number c(p{) = 1. 

Let Bx, .. ,Bk be CW complexes such that each Bi is either a point or a 
circle, or a wedge of finitely many circles. Arrange the Bi 's so that for the disjoint 
union B = Bx U • • • U Bk, the Euler characteristic x(B) = 0 (mod nH), where 
nH is the Oliver integer of H. Then, it follows from Theorem 3.1 that there 
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exists a finite contractible II-CW complex Y with YH = {b{)} U B, such that 
the conditions (CC) and (CD) both hold. Due to (CD), d imV p = 2 for eacii 
P G V0(H), and dim!" = 3 because any two Sylow subgroups of II intersect 
trivially. Now, take compact smooth parallelizable manifolds IV-,, . . . , Nk all with 
the trivial II-actions, such that Ni contains Bi as a deformation retract and 
dim IV- = m- for i = 1 , . . . , k. Pu t N = N±U - - • U Nk. Then the sum Y UB N 
of Y and TV along B is a finite contractible II-CW complex with 

(X UB N)H = {bn} U N . 

By arguing as in the proof of Theorem A, there exists a complex H-vector 
bundle r\ over Y UB N such, that Fb (rj) = Cn° 0 W0 and rjI N = (Cn< 0 IV,) 

0 u ^ 

for ?' = 1 , . . . , k. Moreover, for a complex G-representation V0 with V0
 T = Cn° . 

Res£(V0) = Cno 0 VV0 0 vV e c r , 
where TV is a complex H-representation without H-trivial sumrnand and II acts 
trivially on C r (cf. Remark 5.3). Also, the G-vector bundle GxH(rj®(W 0 C r)) 
over GxH(Y UB N) extends to a complex G-vector bundle £ over X , where X 
is obtained from GxH(Y UB N) by adding the cone CQ over the orbit G(b0), 
and V0 occurs as the fibre over the vertex v0 of C0. By identifying U0 with the 
origin in the disk Dm°, we may assume that XG = Dm°. Now, by contracting 
the cone G0 to v0 and replacing each IV^ by jV^ x D2r, where II acts trivially 
on D2r, we may assume that 

X{H) = G/H xN xD2r . 

Set M = XG U X,H\. Let v be the complex G-vector bundle over M defined 
by 

AxG = (Vo e Vo) a n d v\(G/H x IV. x D2r) = G xH(W , © w) 

for i = l,...,k, where V0 © V0
G denotes the G-nontrivial sumrnand of VQ. 

Then, as G-vector bundles, £|JLJ = TM 0 v when the m-'s all are even, and 
£\M =" T M 0 (R> 0 v when the m-'s all are odd. Thus, the Normal Bundle 
Condition holds for X, £, M, and */. Again, by adding to £ and v a suitable 
product bundle over X and M , respectively, we may assume that the Isotropy 
Subgroup Condition and the General Position Condition both also hold (cf. 
Remark 2.3). Therefore, according to Theorem 2.1 and Remark 2.2, there exists 
a smooth action of G on a disk Dm containing M as an invariant smooth 
submanifold with equivariant normal bundle v, such that 

(Dmf=XG=Dm° and D?H} = D(y\xa)(H) U X(H). 
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Note that the bundle TDm (resp., TDm®(R)) admits the structure of a complex 
G-vector bundle when the mi \s all are even (resp., odd). Now, consider the 
equivariant double of Dm, i.e., first take Dm x D1 with the diagonal action of 
G, wdiere G acts trivially on Dl, and then restrict the G-action to the boundary 
()(Dtn x Dl) = S7rl. As a result, we get a smooth action of G on Sm such that 

(Sm)G = Smo and Sm

H) = M 0 U M 1 U - - U M f c , 

where M(} == d(Dm°+1 x D(V0 Q VG)) and M% = G/H x d(Ni x D2r+1) 
for z = 1,... , k. Clearly, Wi 0 VV occurs as the normal representation over M%-
for z = 1, . . . , k. Since mi = dim AT > 1, the orbit space MJG is connected. 
Choose a point x G Sm° (which is fixed under the G-action on Srn) and using 
the Slice Theorem, identify an invariant neighborhood of x in Sm with the 
closed unit disk Dx of the slice representation Sx. Since Sm \ Int Dx = Dm, 
we get a smooth action of G on Dm such that 

(Dm)G = Dm° and D^H) = (M 0 \ Int Dx) LI M x U • • • LI Mk 

with VV? 0 VV occurring as the normal representation over Mi for i = 1 , . . . , k. 
Finally, by adding to Dm an open equivariant collar along dDm, or by iden­
tifying Dm x dDm with R m , or by identifying Sm \ {x} with R m , we get a 
smooth action of G on E m such that 

(IR m ) G = R m o and Rm

H) = (MQ \ D J U M J U - U Mk 

with W% 0 VV occurring as the normal representation over M{ for i = 1, . . . , k. 

• 
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