Mathematic Slovaca

Ján Jakubík; Judita Lihová
Systems of intervals of partially ordered sets

Mathematica Slovaca, Vol. 46 (1996), No. 4, 355--361

Persistent URL: http://dml.cz/dmlcz/133014

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SYSTEMS OF INTERVALS OF PARTIALLY ORDERED SETS

Ján Jakubík* -. Judita Lihová**
(Communicated by Tibor Katriñák)

Abstract

Let Int P be the system of all nonempty intervals of a partially ordered set P, ordered by inclusion. In the present paper, we show that the characterization of partially ordered sets P with Int P selfdual given in [Czechoslovak Math. J. 44 (1994), 523-533] remains valid without assuming that each interval of P contains a finite maximal chain.

For a partially ordered set P we denote by $\operatorname{Int}_{0} P$ the system of all intervals of P including the empty set. Next we put Int $P=\operatorname{Int}_{0} P \backslash\{\emptyset\}$. Both $\operatorname{Int}_{0} P$ and Int P are partially ordered by inclusion.

In the case of a lattice L, the system $\operatorname{Int}_{0} P$ was investigated in the papers [1] [7], [9], [10]. In [1], it was proved that for a finite lattice $L, \operatorname{Int}_{0} L$ is selfdual if and only if either card $L \leqq 2$, or card $L=4$ and L has two atoms.

Also, in [1], the problem was proposed whether there exists an infinite lattice L such that $\operatorname{Int}_{0} L$ is selfdual.

A negative answer to this problem was given in [8] by showing that if P is any partially ordered set with card $P>4$, then $\operatorname{Int}_{0} P$ is not selfdual.

In [10], there is presented the characterization of partially ordered sets P satisfying the condition that every interval of P contains a finite maximal chain and having a selfdual system Int P.

In the present note, it will be shown that the characterization given in [10] remains valid without assuming that each interval of P contains a finite maximal chain.

[^0]
JÁN JAKUBÍK - JUDITA LIHOVÁ

The system of all convex subsets of a partially ordered set was dealt with in [12; the condition for this system to be selfdual was found.

1. Preliminaries

For a partially ordered set P we apply the same notation as in [10; Section 1].
Let U and V be equivalence relations on P. Consider the following conditions for U and V (cf. [10]):
(i) For every $a \in P$ there are elements $u_{1}, u_{2} \in \operatorname{Min} P$ and $v_{1}, v_{2} \in \operatorname{Max} P$ such that $u_{1} \leqq v_{1}, u_{2} \leqq v_{2}$ and $[a] U=\left\langle u_{1}, v_{1}\right\rangle,[a] V=\left\langle u_{2}, v_{2}\right\rangle$.
(ii) $U \cap V$ is the least equivalence on P (i.e., the equality).
(iii) For every $a, b \in P$ with $a \leqq b$ there exist $z_{1}, z_{2} \in\langle a, b\rangle$ satisfying $a U z_{1} V b, a V z_{2} U b$.
These conditions imply that
(ii') For any $a, b \in P,[a] U\ulcorner[b] V$ is either empty or a one-element set.
(ii") For each $a \in P,[a] U \cap \mid a] V=\{a\}$.
(iv) Given $a, b \in P$ with $a \leqq b$, the elements z_{1}, z_{2} from (iii) are uniquely determined.
1.1. Theorem. (cf. [10]) Let P be a partially ordered set satisfying the condition
$(*)$ every interval of P contains a finite maximal chain.
Then the partially ordered set $\operatorname{Int} P$ is selfdual if and only if there exist equivalence relations U and V on P such that conditions (i), (ii) and (iii) are valid.

Proof. Cf. [10; 2.7 and 3.8].
1.2. Theorem. Let P be a partially ordered set. Then the following conditions are equivalent:
(a) Int P is selfdual.
(b) There exist equivalence relations U and V on P satisfying conditions (i). (ii) and (iii).

The implication $(\mathrm{a}) \Longrightarrow(\mathrm{b})$ is contained in $[10 ; 3.8]$ (in the proof of 3.8 the condition (*) was not applied). The inverse implication will be proved below.

2. Proof of implication $(b) \Longrightarrow(a)$

In this section, we suppose that P is a partially ordered set, and that l. 1 are equivalence relations on P satisfying conditions (i), (ii) and (iii).

We apply the following construction from [10; Section 2].
Let $\langle a, b\rangle \in \operatorname{Int} P$. In view of (i), (ii) and (iii), there exist uniquely determined clements

$$
\begin{aligned}
& u \in \operatorname{Min} P \cap[a] V ; \\
& v \in \operatorname{Max} P \cap[b] U ; \\
& z_{1} \in\langle a, b\rangle \text { with } a U z_{1} V b ; \\
& c \in\left\langle u, z_{1}\right\rangle \text { with } u U c V z_{1} ; \\
& d \in\left\langle z_{1}, v\right\rangle \text { with } z_{1} U d V v .
\end{aligned}
$$

We put $\varphi(\langle a, b\rangle)=\langle c, d\rangle$. (Cf. Fig. 1.)
The following two lemmas have been proved in [10] without applying the condition ($*$).
2.1. Lemma. ([10; 2.2.]) The mapping φ is one-to-one.
2.2. Lemma. ([10; 2.3.]) The mapping φ is onto $\operatorname{Int} P$.
2.3. Lemma. The equivalence classes corresponding to the relations U, V are convex subsets of P.

Proof. Let us suppose, e.g., that $p \leqq s \leqq q, p U q$. By (iii), there exists $r \in\langle p, s\rangle$ such that $p V r$ and $r U s$. Using (iii) again we obtain that there exists $t \in\langle r, q\rangle$ satisfying $r V t, t U q$. Then, in view of $p U q$, we have $p U t$ and, clearly, $p V t$. Hence $p=t$. This implies $p=r, p U s$.

Let a, b and z_{1} be as above. There exists a uniquely determined element $z_{2} \in\langle a, b\rangle$ with $a V z_{2} U b$.
2.4. Lemma. Let $x \in\langle a, b\rangle$, $a V x$. Then $x \leqq z_{2}$.

Proof. There exists $x_{0} \in\langle x, b\rangle$ with $x V x_{0} U b$. Thus

$$
x_{0} U b U z_{2}, \quad x_{0} V x V a V z_{2},
$$

hence $x_{0}=z_{2}$. Therefore $x \leqq z_{2}$.
In the previous lemma, we can replace z_{2} and V by z_{1} and U
2.5. Lemma. Let $x \in\langle a, b\rangle$. There exist uniquely determined elements $x_{1} \in$ $\left\langle a, z_{1}\right\rangle, x_{2} \in\left\langle a, z_{2}\right\rangle, x_{1}^{\prime} \in\left\langle z_{1}, b\right\rangle, x_{2}^{\prime} \in\left\langle z_{2}, b\right\rangle$ with

$$
\begin{equation*}
a U x_{1} V x, \quad a V x_{2} U x, \quad x U x_{1}^{\prime} V b, \quad x V x_{2}^{\prime} U b . \tag{1}
\end{equation*}
$$

Proof The existence and uniqueness of $x_{1}, x_{2} \in\langle a, x\rangle, x_{1}^{\prime}, x_{2}^{\prime} \in\langle x, b\rangle$ satisfying (1) is a consequence of (i) - (iii). Then, in view of 2.4 and its dual, we have $r_{1} \in\left\langle a, z_{1}\right\rangle$ and $x_{2} \in\left\langle a, z_{2}\right\rangle, x_{1}^{\prime} \in\left\langle z_{1}, b\right\rangle, x_{2}^{\prime} \in\left\langle z_{2}, b\right\rangle$.
2.6. Lemma. Let $x \in\langle a, b\rangle$, and let $x_{1} \in\left\langle a, z_{1}\right\rangle, x_{2} \in\left\langle a, z_{2}\right\rangle . x_{1}^{\prime} \in\left\langle z_{1}, b\right\rangle$. $x_{2}^{\prime} \in\left\langle z_{2}, b\right\rangle$ be as in 2.5. Then $x_{1}=\inf _{\langle a, b\rangle}\left\{x, z_{1}\right\}, x_{2}=\inf _{\langle a, b\rangle}\left\{x, z_{2}\right\} \cdot x_{1}^{\prime}=$ $\sup _{\langle a, b\rangle}\left\{x, z_{1}\right\}, x_{2}^{\prime}=\sup _{\langle a, b\rangle}\left\{x, z_{2}\right\}, x=\sup _{\langle a, b\rangle}\left\{x_{1}, x_{2}\right\}, x=\inf _{\langle a, b\rangle}\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}$.

Proof. Let us prove $x_{1}=\inf _{\langle a, b\rangle}\left\{x, z_{1}\right\}, x=\sup _{\langle a, b\rangle}\left\{x_{1}, x_{2}\right\}$. The other relations can be verified analogously. Let \bar{x} be a lower bound of $\left\{x, z_{1}\right\}$ in $\{a, b\rangle$. Since $a \leqq \bar{x} \leqq z_{1}$ and $a U z_{1}$, we have $a U \bar{x}$ by 2.3 . In view of 2.4. the relations $\bar{x} \in\langle a, x\rangle, a U x_{1} V x, a U \bar{x}$ imply $\bar{x} \leqq x_{1}$.

To prove the second relation, take any $y \in\langle a, b\rangle$ with $y \geqq r_{1} . y \geqq r_{2}$. By 2.5, there exist $y_{1} \in\left\langle a, z_{1}\right\rangle, y_{2} \in\left\langle a, z_{2}\right\rangle$ satisfying aU $y_{1} \Gamma y$. aV y_{2} [y. But $x_{1} \in\langle a, y\rangle$ and $a U x_{1}$, therefore $x_{1} \leqq y_{1}$ by 2.4. Similarly. $x_{2} \leqq y_{2}$. Since $x_{1} \leqq y$, there exists p such that $x_{1} V p U y$. However, $p \in\langle a, y\rangle$ and $p<y$. s that $p \geqq y_{2}$ by the dual of 2.4 . Analogously, there exists $q \in\left\langle y_{1}, y\right\rangle$ satisfying $r_{2} U q$. Further, let us take $r \in\left\langle x_{1}, q\right\rangle$ such that $x_{1} V r U q$ and $s \in\left\langle r_{2} \cdot p\right\rangle$ with $x_{2} U s V p$. As $r \in\left\langle x_{1}, y\right\rangle$ and $x_{1} V r$, in view of 2.4 , we have $r \leqq p$. Analogonsls. $s \leqq q$. Now $r U q U s, s V p V r$, which yields $r=s$. Finally, the relations st $r r_{2}, r$. $r V x_{1} V x, r=s$ imply $r=x$. But $y \geqq r$, and the proof is complete.
2.7. Lemma. Under the notation as above, let $a^{\prime} \in\langle a, b\rangle$. Then $\hat{\sim}\left(\left\langle a^{\prime} . b\right\rangle\right)=$ $\varphi(\{a, b\rangle)$.

Proof. In view of 2.6 , there exists

$$
a_{1}^{\prime}=\inf _{\langle a, b\rangle}\left\{a^{\prime}, z_{1}\right\}
$$

(Ci. Fig. 2.) Next, if we consider the elements c, a, u, z_{1} and a_{1}^{\prime}. then 2.6 yields that there exists

$$
p_{1}=\inf _{\left\langle u, z_{1}\right\rangle}\left\{a_{1}^{\prime}, c\right\}
$$

We have $p_{1} V a_{1}^{\prime} V a^{\prime}$.
There exists $u^{\prime} \in \operatorname{Min} P \cap\left[p_{1}\right] V$. Next there exists $c^{\prime} \in\left\langle u^{\prime} . c\right\rangle$ such that u^{\prime} U $c^{\prime} V c$.

By 2.6, there exists $q_{1} \in\left\langle z_{1}, b\right\rangle$ with

$$
q_{1}=\sup _{\langle a, b\rangle}\left\{a^{\prime}, z_{1}\right\} .
$$

By considering the elements d, b, z_{1}, r and q_{1} and by applying 2.6 . we wet that there exists $q_{2} \in\langle d . c\rangle$ with

$$
q_{2}=\sup _{\langle=1, \cdots\rangle}\left\{q_{1} \cdot d\right\} .
$$

In view of the definition of the mapping φ, we have

$$
\varphi\left(\left\langle a^{\prime}, b\right\rangle\right)=\left\langle c^{\prime}, q_{2}\right\rangle .
$$

Hence, $\varphi\left(\left\langle a^{\prime}, b\right\rangle\right) \supseteq \varphi(\langle a, b\rangle)$.
By analogous consideration, we obtain:
2.7'. LEMMA. Under the notation as above, let $b^{\prime} \in\langle a, b\rangle$. Then $\varphi\left(\left\{a, b^{\prime}\right\rangle\right) \supseteq$ $q(\langle a, b\rangle)$.
2.8. Lemma. Let $\left\langle a^{\prime}, b^{\prime}\right\rangle \subseteq\langle a, b\rangle$. Then $\varphi\left(\left\langle a^{\prime}, b^{\prime}\right\rangle\right) \supseteq \varphi(\langle a, b\rangle)$.

Proof. This is an immediate consequence of 2.7 and 2.7'.
By considering the mapping φ, we can give an explicit description of φ^{-1} as follows.

Let $\langle r, d\rangle$ be an interval of P. Then there exist uniquely determined elements (cf. Fig. 1)

$$
\begin{aligned}
& u \in \operatorname{Min} P \cap[c] U \\
& v \in \operatorname{Max} P \cap[d] V \\
& z_{1} \in\langle c, d\rangle \text { with } c V z_{1} U d \\
& a \in\left\langle u, z_{1}\right\rangle \text { with } u V a U z_{1} ; \\
& b \in\left\langle z_{1}, v\right\rangle \text { with } z_{1} V b U v .
\end{aligned}
$$

From the definition of φ, we obtain:

2.9. Lemma. $\varphi^{-1}(\langle c, d\rangle)=\langle a, b\rangle$.

In other words, the construction of φ^{-1} is the same as the construction of φ with the distinction that the roles of U and V are interchanged.

Hence, by the same method as we used for φ, we obtain
2.10. Lemma. Let. $\langle c, d\rangle$ and $\left\langle c^{\prime}, d^{\prime}\right\rangle$ be intervals in P such that $\left\langle c^{\prime}, d^{\prime}\right\rangle \subseteq$ $\langle c \cdot d\rangle$. Th $n \cdot \varphi^{-1}\left(\left\langle c^{\prime}, d^{\prime}\right\rangle\right) \supseteq \varphi^{-1}(\langle c, d\rangle)$.

Proof of 1.2. As we already remarked above, the implication (a) \Longrightarrow (b) was proved in [10].

Let (b) he valid, and let φ be as above. Then, in view of 2.1, 2.2, 2.8 and 2.10, we infer thët φ is a dual isomorphism of Int P.

The following example shows that a partially ordered set P with Int P selfdual need not satisfy the condition (*).

Let \mathbb{R}, be the set of all reals with the natural linear order, $X=\mathbb{R}$, and let Y be the interval $\langle 0,1\rangle$ of X. Put $P=X \times Y$. For $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in I we
put $\left(x_{1}, y_{1}\right) \leqq\left(x_{2}, y_{2}\right)$ if $y_{2}-y_{1} \geqq\left|x_{2}-x_{1}\right|$. Next we define binary relations C and V on P by

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) U\left(x_{2}, y_{2}\right) \Longleftrightarrow y_{1}-x_{1}=y_{2}-x_{2}, \\
& \left(x_{1}, y_{1}\right) V\left(x_{2}, y_{2}\right) \Longleftrightarrow y_{1}+x_{1}=y_{2}+x_{2} .
\end{aligned}
$$

Then U and V are equivalence relations on P satisfying conditions (i). (ii) and (iii). Hence, P is selfdual. P does not satisfy (*); in fact, there does not exist any prime interval in P.

REFERENCES

1] IGOSHIN, V. I. : Selfduality of laitices of intervals of finite lattices. In: International conference on algebra dedicated to the memory of A. I. Maltsev, Summaries of lectures on model theory and algebraic systems, Inst. matem. Sibir. otdel. AN SSSR. Norosibirsk. 1989, p. 48. (Russian)
[2] IGOSHIN, V. I.: Lattices of internals and lattices of conver sublattices of lattices. (poryad. Mnozhest va Reshetki (Saratov) 6 (1980). 69 76. (Russian)
3) ICOSHIN. V. I.: Identities in interval lattices of lattices. In: Contributioms to Lattice Theory Collog, Math. Soc. Janos Bolyai 3:3, Szeged. 1980(1983) pp. t9] 501 .

SYSTEMS OF INTERVALS OF PARTIALLY ORDERED SETS

[5] IGOSHIN, V. I.: Algebraic characterization of interval lattices, Uspekhi Mat. Nauk 40 (1985), 205-206. (Russian)
[6] IGOSHIN, V. I.: Interval properties of quasivarieties of lattices. XVII. Vsesoyuz. algebr. konf. Summaries of lectures, Kishinev. (Russian)
[7] IGOSHIN, V. I. : Semimodularity in interval lattices, Math. Slovaca 38 (1988), 305-308. (Russian)
[8] JAKUBIK, J.: Selfduality of the system of intervals of a partially ordered set, Czechoslovak Math. J. 41 (1991), 135-140.
[9] KOLIBIAR, M.: Intervals, convex sublattices and subdirect representations of lattices. In: Universal Algebra and Applications. Banach Center Publ. 9, Polish Acad. Sci., Warsaw, 1982, pp. 335-339.
[10] LIHOVÁ J.: Posets having a selfdual interval poset, Czechoslovak Math. J. 44 (1994), 523-533.
[11] SLAVÍK, V.: On lattices with isomorphic interval lattices, Czechoslovak Math. J. 35 (1985), 550-554.
[12] ZELINA, M.: Selfduality of the system of convex subsets of a partially ordered set, Comment. Math. Univ. Carolin. 34 (1993), 593-595.

Received December 9, 1994
Revised February 27, 1995

* Mathematical Institute

Slovak Academy of Sciences
Grešákova 6
SK-040 01 Košice
SLOVAKIA
** Department of Geometry and Algebra
Faculty of Science
Šafárik University
Jesenná 5
SK-04154 Košice
SLOVAKIA

[^0]: AMS Subject Classification (1991): Primary 06A99.
 Key words: interval of a partially ordered set, selfdual partially ordered system.
 Supported by Grant GA SAV 1230/94.

