Mathematic Slovaca

Ján Seman

Oscillation theorems for second order nonlinear delay inequalities

Mathematica Slovaca, Vol. 39 (1989), No. 3, 313--322

Persistent URL: http://dml.cz/dmlcz/133015

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

OSCILLATION THEOREMS FOR SECOND ORDER NONLINEAR DELAY INEQUALITIES

JÁN SEMAN

Consider the differential inequality

$$
\begin{equation*}
x(t)\left[\left(r(t) x^{\prime}(t)\right)^{\prime}+f(t, x(t), x(g(t)))\right] \leqslant 0 \tag{1}
\end{equation*}
$$

and the corresponding differential equation

$$
\begin{equation*}
\left(r^{\prime}(t) x^{\prime}(t)\right)^{\prime}+f(t, x(t), x(g(t)))=0 \tag{2}
\end{equation*}
$$

on some $\left\langle t_{0}, \infty\right) \subseteq(0, \infty)$, where the functions r, g, f satisfy the assumptions
(i) $r \in C\left\langle t_{0}, \infty\right), r(t)>0$ for $t \geqslant t_{0}$ and $\lim _{t \rightarrow \infty} R(t)=\infty$,
where $R(t)=\int_{t_{0}}^{t} \frac{\mathrm{~d} s}{r(s)} \quad$ for $t \geqslant t_{0}$,
(ii) $f \in C\left(\left\langle t_{0}, \infty\right) \times R \times R\right), f\left(t, x_{1}, y_{1}\right) \geqslant f\left(t, x_{2}, y_{2}\right) \geqslant 0$ for $t \geqslant t_{0}, x_{1} \geqslant x_{2} \geqslant 0$, $y_{1} \geqslant y_{2} \geqslant 0$ and the function $h(t, x, y)=-f(t,-x,-y)$ has the same properties,
(iii) $\left.g \in C<t_{0}, \infty\right), 0<g(t) \leqslant t$ for $t \geqslant t_{0}$ and $\lim _{t \rightarrow \infty} g(t)=\infty$.

We shall also consider the differential equation

$$
\begin{equation*}
\left(r(t) x^{\prime}(t)\right)^{\prime}+a(t) F(x(g(t)))=0 \tag{4}
\end{equation*}
$$

where the functions r, g satisfy the assumptions (3) (i) and (3) (iii) and the functions a, F satisfy
(i) $a \in C\left\langle t_{0}, \infty\right)$ and $a(t) \geqslant 0$ for $t \geqslant t_{0}$,
(ii) $F \in C(R)$ is nondecreasing and $x F(x)>0$ for $x \neq 0$.

We shall consider only these solutions of (1) defined on some $\left\langle t_{1}, \infty\right) \subseteq$ $\subseteq\left\langle t_{0}, \infty\right)$ such that $\sup \left\{t \geqslant t_{1}, x(t) \neq 0\right\}=\infty$. Such solution x of (1) is said to be oscillatory if $\sup \left\{t \geqslant t_{1}, x(t)=0\right\}=\infty$, otherwise it is said to be nonoscillatory. The inequality (1) is said to be oscillatory if it has only oscillatory solutions, otherwise it is said to be nonoscillatory. The same definitions can hold for the equations (2) and (4).

In this paper we shall show that the oscillatoriness of (1) and (2) is equivalent, then we shall prove some analogy of Sturm's comparison theorem and give some oscillatory criteria for the equations (2) and (4). These results will be the generalization of those given in [1] and [2], where the authors assumed $r(t)=1$ or $r(t)$ to be bounded. Some of our results will be better even in these cases.

In the proofs of the existence of the nonoscillatory solutions of the equation (2) or (4) we shall use one very simple algebraic fixed point theorem.

Fixed point theorem. Let Y be a complete lattice and $\Phi: Y \rightarrow Y$ be an isotonous operator. Then Φ has at least one fixed point in Y.

Proof. See the theorem II.3.3 in [3].
Lemma 1. Let the assumptions (3) hold and x be the nonoscillatory solution of (1). Then there exists $t_{1} \geqslant t_{0}$ such that

$$
x(t) x(g(t))>0, \quad x(t) x^{\prime}(t) \geqslant 0, \quad x(t) x^{\prime}(g(t)) \geqslant 0 \quad \text { for } t \geqslant t_{1}
$$

The same is valid for the equations (2) and (4).
Proof. Suppose that $x(t)>0$ for all sufficiently large t (the proof for $x(t)<$ <0 is analogous). Then there exists $t_{1} \geqslant t_{0}$ such that $x(t)>0$ and $x(g(t))>0$ for $t \geqslant t_{1}$. Then by (1) $\left(r(t) x^{\prime}(t)\right)^{\prime} \leqslant 0$ and the function $r(t) x^{\prime}(t)$ is nonincreasing in $\left\langle t_{1}, \infty\right)$. If there exists $t_{2} \geqslant t_{1}$ such that $r(t) x^{\prime}(t) \leqslant r\left(t_{2}\right) x^{\prime}\left(t_{2}\right)<0$ for $t \geqslant t_{2}$, then dividing this inequality by $r(t)$ and integrating it from t_{2} to $t \geqslant t_{2}$ we get

$$
x(t) \leqslant x\left(t_{2}\right)+r\left(t_{2}\right) x^{\prime}\left(t_{2}\right) \int_{t_{2}}^{t} \frac{\mathrm{~d} s}{r(s)} \quad \text { for } t \geqslant t_{2}
$$

and the assumption (3) (i) leads to the contradiction with the positivity of x. Hence $t_{1} \geqslant t_{0}$ can be chosen so that $x^{\prime}(t) \geqslant 0$ and $x^{\prime}(g(t)) \geqslant 0$ for $t \geqslant t_{1}$. The proof for the equations (2) and (4) is analogous.

Lemma 2. Let the assumptions (3) hold and there exists the function x defined positive and nondecreasing on some $\left\langle t_{1}, \infty\right) \subseteq\left\langle t_{0}, \infty\right)$ and such that

$$
\begin{equation*}
x(t) \geqslant x\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{1}{r(s)} \int_{s}^{\infty} f(\xi, x(\xi), x(g(\xi))) \mathrm{d} \xi \mathrm{~d} s \quad \text { for } t \geqslant t_{2} \tag{6}
\end{equation*}
$$

where $t_{2} \geqslant t_{1}$ is such that $g(t) \geqslant t_{1}$ for $t \geqslant t_{2}$. Then the equation (2) has at least one nonoscillatory solution y such that $0<y(t) \leqslant x(t)$ for $t \geqslant t_{1}$. The same is valid for the equation (4) changing the assumption (3) (ii) by (5) and $f(\xi, x(\xi), x(g(\xi)))$ in (6) by $a(\xi) F(x(g(\xi)))$.

Proof. Define Y as the set of all functions y defined, positive and nondecreasing on $\left\langle t_{1}, \infty\right)$ and such that $y(t)=x(t)$ for $t \in\left\langle t_{1}, t_{2}\right\rangle$ and $y(t) \leqslant x(t)$ for $t \geqslant t_{2}$, with the obvious point-wise ordering. Then, clearly, Y is the complete lattice. Define the operator Φ by a form

$$
\begin{equation*}
(\Phi y)(t)=y(t) \quad \text { for } t \in\left\langle t_{1}, t_{2}\right\rangle \tag{7}
\end{equation*}
$$

$(\Phi y)(t)=y\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{1}{r(s)} \int_{s}^{\infty} f(\xi, y(\xi), y(g(\xi))) \mathrm{d} \xi \mathrm{d} s \quad$ for $t \geqslant t_{2}$ and $y \in Y$.
Using the assumptions (3) (ii) and (6) we can easily show that $\Phi Y \subseteq Y$ and Φ is isotonous. Then by the fixed point theorem there exists $y \in Y$ such that $y=\Phi y$. By the definition (7) such y is the neede nonoscillatory solution of (2).

Theorem 1. Let the assumptions (3) hold. Then the inequality (1) is oscillatory if and only if the equation (2) is.

Proof. It remains to prove that the existence of the nonoscillatory solution of (1) implies the same for (2). Let x be the nonoscillatory solution of (1) and, without loss of generality, $x(t)>0, x(g(t))>0, x^{\prime}(t) \geqslant 0$ and $x^{\prime}(g(t)) \geqslant 0$ for $t \geqslant t_{1} \geqslant t_{0}$. Then integrating (1) from t to $s \geqslant t \geqslant t_{1}$ we get

$$
r(t) x^{\prime}(t) \geqslant r(s) x^{\prime}(s)+\int_{t}^{s} f(\xi, x(\xi), x(g(\xi))) \mathrm{d} \xi
$$

and from this

$$
r(t) x^{\prime}(t) \geqslant \int_{t}^{\infty} f(s, x(s), x(g(s))) \mathrm{d} s \quad \text { for } t \geqslant t_{1} .
$$

Dividing this inequality by $r(t)$ and integrating it from t_{2} to $t \geqslant t_{2}$, where $t_{2} \geqslant t_{1}$ is such that $g(t) \geqslant t_{1}$ for $t \geqslant t_{2}$, we can obtain the inequality (6) in lemma 2 and the application of this lemma completes the proof.

Remark 1. With regard to the theorem just proved we can consider in the sequel only the equatins (2) and (4).

Theorem 2. Let the functions r_{i}, g_{i}, f_{i} satisfy the assumptions (3) for $i=1,2$ and

$$
\begin{align*}
& r_{1}(t) \geqslant r_{2}(t), \quad g_{1}(t) \leqslant g_{2}(t), \quad\left|f_{1}(t, x, y)\right| \leqslant\left|f_{2}(t, x, y)\right| \tag{8}\\
& \text { for } t \geqslant t_{0} \text { and } x y>0 \text {. }
\end{align*}
$$

If the equation

$$
\begin{equation*}
\left(r_{1}(t) x^{\prime}(t)\right)^{\prime}+f_{1}\left(t, x(t), x\left(g_{1}(t)\right)\right)=0 \tag{1}
\end{equation*}
$$

is oscillatory, then the equation

$$
\begin{equation*}
\left(r_{2}(t) x^{\prime}(t)\right)^{\prime}+f_{2}\left(t, x(t), x\left(g_{2}(t)\right)\right)=0 \tag{2}
\end{equation*}
$$

is oscillatory, too.
Proof. Suppose to the contrary that $\left(2_{2}\right)$ has the nonoscillatory solution x and, without loss of generality, that $x(t)>0, x\left(g_{1}(t)\right)>0, x^{\prime}(t) \geqslant 0$ and $x^{\prime}\left(g_{1}(t)\right) \geqslant 0$ for $t \geqslant t_{1}$. Let $t_{2} \geqslant t_{1}$ be such that $g_{2}(t) \geqslant g_{1}(t) \geqslant t_{1}$ for $t \geqslant t_{2}$. In the same way as in the proof of the theorem 1 we can obtain that

$$
x(t) \geqslant x\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{1}{r_{2}(s)} \int_{s}^{\infty} f_{2}\left(\xi, x(\xi), x\left(g_{2}(\xi)\right)\right) \mathrm{d} \xi \mathrm{~d} s
$$

and using the assumptions (3) for $\left(2_{2}\right)$ and (8) that

$$
x(t) \geqslant x\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{1}{r_{1}(s)} \int_{s}^{\infty} f_{1}\left(\xi, x(\xi), x\left(g_{1}(\xi)\right)\right) \mathrm{d} \xi \mathrm{~d} s
$$

for $t \geqslant t_{2}$. Then by lemma 2 the equation (2_{1}) is nonoscillatory. This contradiction completes the proof.

Theorem 3. Let the assumptions (3) hold. Then the condition

$$
\begin{equation*}
\left|\int_{t_{0}}^{\infty} R(t) f(t, a, a) \mathrm{d} t\right|=\infty \quad \text { for any } a \neq 0 \tag{9}
\end{equation*}
$$

is sufficient and neccessary for the equation (2) not to have any bounded nonoscillatory solution.

Proof. To prove the sufficiency of (9) suppose to the contrary that there exists the bounded nonoscillatory solution x of (2) and, without loss of generality, that $x(t)>0, x(g(t))>0, x^{\prime}(t) \geqslant 0$ and $x^{\prime}(g(t)) \geqslant 0$ for $t \geqslant t_{1} \geqslant t_{0}$. Then there exists $a>0$ and $t_{2} \geqslant t_{1}$ such that

$$
\begin{equation*}
2 a \geqslant x(t) \geqslant x(g(t)) \geqslant a \quad \text { for } t \geqslant t_{2} . \tag{10}
\end{equation*}
$$

Multiplying (2) by $R(t)$ and integrating it from t_{2} to $t \geqslant t_{2}$ by parts we have

$$
\begin{aligned}
R(t) r(t) x^{\prime}(t) & =R\left(t_{2}\right) r\left(t_{2}\right) x^{\prime}\left(t_{2}\right)+x(t)-x\left(t_{2}\right)- \\
& -\int_{t_{2}}^{t} R(s) f(s, x(s), x(g(s)) \mathrm{d} s
\end{aligned}
$$

and using (3) (ii) and (10) we have

$$
0 \leqslant R(t) r(t) x^{\prime}(t) \leqslant K-\int_{t_{2}}^{t} R(s) f(s, a, a) \mathrm{d} s \quad \text { for } t \geqslant t_{2},
$$

where $K=R\left(t_{2}\right) r\left(t_{2}\right) x^{\prime}\left(t_{2}\right)+2 a-x\left(t_{2}\right)$. The last inequality contradicts the assumption (9).

To prove the neccessity part of the theorem suppose that (9) does not hold, i.e. there exists $a \neq 0$, say $a>0$, (the case $a<0$ is analogous) such that

$$
\int_{t_{0}}^{\infty} R(t) f(t, a, a) \mathrm{d} t<\infty .
$$

Then there exists $t_{2} \geqslant t_{0}$ so that $g(t) \geqslant t_{0}$ for $t \geqslant t_{2}$ and

$$
\int_{t_{2}}^{\infty} \frac{1}{r(t)} \int_{t}^{\infty} f(s, a, a) \mathrm{d} s \mathrm{~d} t \leqslant \frac{a}{2} .
$$

Define the function $x(t)=a / 2$ for $t \in\left\langle t_{0}, t_{2}\right\rangle$ and $x(t)=a$ for $t>t_{2}$. Then, clearly, such a function x satisfies the assumptions of lemma 2 and the simple application of this lemma completes the proof.

Remark 2. The condition (9) for the equation (4) will have the form

$$
\int_{t_{0}}^{\infty} R(t) a(t) \mathrm{d} t=\infty .
$$

We shall assume in the sequel that

$$
\begin{equation*}
|f(t, x, x)| \geqslant a(t)|F(x)| \quad \text { for } t \geqslant t_{0}, x \in R \tag{11}
\end{equation*}
$$

In the same way as in the proof of theorem 2 we can show that the oscillatoriness of (4) if (11) holds implies the same for (2). Hence we shall consider in the sequel only the equation (4). Moreover we shall assume that

$$
\begin{equation*}
g^{\prime}(t) \geqslant 0 \quad \text { exists for } t \geqslant t_{0} \tag{12}
\end{equation*}
$$

Theorem 4. Let (3) (i), (3) (iii), (5) and (12) hold. If

$$
\begin{equation*}
\int_{t_{0}}^{x} R(g(t)) a(t) \mathrm{d} t=\infty \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{ \pm \varepsilon}^{ \pm x} \frac{\mathrm{~d} x}{F(x)}<\infty \quad \text { for any } \varepsilon>0 \tag{14}
\end{equation*}
$$

then the equation (4) is oscillatory.
Proof. Suppose to the contrary that x is the nonoscillatory solution of (4) and $x(t)>0, x(g(t))>0, x^{\prime}(t) \geqslant 0$ and $x^{\prime}(g(t)) \geqslant 0$ for $t \geqslant t_{1} \geqslant t_{0}$. Then in the same way as in the proof of theorem 1 we can obtain

$$
r(t) x^{\prime}(t) \geqslant \int_{t}^{\infty} a(s) F(x(g(s))) \mathrm{d} s \quad \text { for } t \geqslant t_{1}
$$

Since g, x, F are nondecreasing functions and from (4) $r(t) x^{\prime}(t)$ is nonincreasing we get

$$
\begin{equation*}
r(g(t)) x^{\prime}(g(t)) \geqslant F(x(g(t))) \int_{t}^{\infty} a(s) \mathrm{d} s \quad \text { for } t \geqslant t_{1} \tag{15}
\end{equation*}
$$

Multiplying (15) by $g^{\prime}(t)$ and dividing it by $r(g(t)) F(x(g(t)))$ and then integrating it from t_{1} to $t \geqslant t_{1}$ we have

$$
\int_{t_{1}}^{t} \frac{x^{\prime}(g(s)) g^{\prime}(s) \mathrm{d} s}{F(x(g(s)))} \geqslant \int_{t_{1}}^{t} \frac{g^{\prime}(s)}{r(g(s))} \int_{s}^{x} a(\xi) \mathrm{d} \xi \mathrm{~d} s
$$

and from this

$$
\begin{aligned}
& \int_{x\left(g\left(t_{1}\right)\right)}^{x} \frac{\mathrm{~d} y}{F(y)} \geqslant \int_{x\left(g\left(t_{1}\right)\right)}^{x(g(t))} \frac{\mathrm{d} y}{F(y)} \geqslant \int_{t_{1}}^{t} \frac{g^{\prime}(s)}{r(g(s))} \int_{s}^{t} a(\xi) \mathrm{d} \xi \mathrm{~d} s= \\
& =\int_{t_{1}}^{t}\left[R(g(s))-R\left(g\left(t_{1}\right)\right)\right] a(s) \mathrm{d} s \geqslant \frac{1}{2} \int_{t_{2}}^{t} R(g(s)) a(s) \mathrm{d} s
\end{aligned}
$$

for $t \geqslant t_{2}$, where $t_{2} \geqslant t_{1}$ is such that $R\left(g\left(t_{1}\right)\right) \leqslant \frac{1}{2} R(g(t))$ for $t \geqslant t_{2}$. The last inequality contradicts the assumptions (13) and (14).

Remark 3. The condition (13) is weaker than the analogous one given in theorem 1 in [2], which for the equation (4) has the form

$$
\begin{equation*}
\int_{t_{0}}^{\infty} g(t) a(t) \mathrm{d} t=\infty \tag{16}
\end{equation*}
$$

See the following example.
Example 1. The equation

$$
\left(\frac{1}{t} x^{\prime}(t)\right)^{\prime}+\frac{1}{t^{3}} x^{3}(t)=0
$$

does not satisfy the condition (16) but it satisfies the assumptions of theorem 4 and thus this equation is oscillatory.

Theorem 5. Let the assumptions (3) (i), (3) (iii), (5) and (12) hold. Let there exist the nondecreasing function $G \in C(R)$ such that $F(x)=|x| G(x)$ for $x \in R$. Then, if

$$
\begin{equation*}
\int_{t_{0}}^{\infty} R^{2}(g(t)) a(t) \int_{g(t)}^{\infty} a(s) \mathrm{d} s \mathrm{~d} t=\infty \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{ \pm \varepsilon}^{ \pm x} \frac{\mathrm{~d} x}{G(x)}<\infty \quad \text { for any } \varepsilon>0 \tag{18}
\end{equation*}
$$

the equation (4) is oscillatory.
Proof. Suppose to the contrary that x is the nonoscillatory solution of (4), and without loss of generality, that $x(t)>0, x(g(t))>0, x^{\prime}(t) \geqslant 0$ and $x^{\prime}(g(t)) \geqslant 0$ for $t \geqslant t_{1} \geqslant t_{0}$. Then x is the nonoscillatory solution of the equation

$$
\left(r(t) x^{\prime}(t)\right)^{\prime}+b(t) G(x(g(t)))=0
$$

where $b(t)=a(t) x(g(t))$. Then by theorem 4

$$
\begin{equation*}
\int_{t_{0}}^{x} R(g(t)) a(t) x(g(t)) \mathrm{d} t<\infty . \tag{19}
\end{equation*}
$$

In the same way as in the proof of theorem 4 we have

$$
r(t) x^{\prime}(t) \geqslant F(x(g(t))) \int_{t}^{\infty} a(s) \mathrm{d} s \geqslant F\left(x\left(g\left(t_{1}\right)\right)\right) \int_{t}^{\infty} a(s) \mathrm{d} s
$$

for $t \geqslant t_{1}$. Dividing this inequality by $r(t)$ and integrating it from t_{1} to $t \geqslant t_{1}$ we get

$$
\begin{gathered}
x(t) \geqslant F\left(x\left(g\left(t_{1}\right)\right) \int_{t_{1}}^{t} \frac{1}{r(s)} \int_{s}^{\infty} a(\xi) \mathrm{d} \xi \mathrm{~d} s \geqslant\right. \\
\geqslant F\left(x\left(g\left(t_{1}\right)\right)\right) \int_{t_{1}}^{t} \frac{1}{r(s)} \int_{t}^{\infty} a(\xi) \mathrm{d} \xi \mathrm{~d} s=F\left(x\left(g\left(t_{1}\right)\right)\right)\left[R(t)-R\left(t_{1}\right)\right] \int_{t}^{\infty} a(s) \mathrm{d} s .
\end{gathered}
$$

Then there exists $t_{2} \geqslant t_{1}$ such that

$$
x(g(t)) \geqslant \frac{1}{2} F\left(x\left(g\left(t_{1}\right)\right)\right) R(g(t)) \int_{g(t)}^{\infty} a(s) \mathrm{d} s \quad \text { for } t \geqslant t_{2} .
$$

This inequality and (19) contradict the condition (17) and this completes the proof.

Example 2. The equation

$$
x^{\prime \prime}(t)+t^{-3 / 2} x^{3}\left(t^{1 / 3}\right)=0
$$

satisfies the assumptions of theorem 5 but the condition (13) of theorem 4 does not hold.

Remark 4. In an analogous way we can show that the condition

$$
\int_{t_{0}}^{\infty} R^{\beta}(g(t)) a(t)\left[\int_{g(t)}^{\infty} a(s) \mathrm{d} s\right]^{\beta-1} \mathrm{~d} t=\infty
$$

for some $1 \leqslant \beta<\alpha-1$ is sufficient for the equation

$$
\left(r(t) x^{\prime}(t)\right)^{\prime}+a(t)|x(g(t))|^{\alpha} \operatorname{sgn}(x(g(t)))=0
$$

with $\alpha>2$ to be oscillatory.
Finally, we shall consider the case $F(x)=x$, i.e. the linear equation

$$
\begin{equation*}
\left(r(t) x^{\prime}(t)\right)^{\prime}+a(t) x(g(t))=0 . \tag{20}
\end{equation*}
$$

Lemma 3. Assume that (3) (i) and (3) (iii) hold and

$$
\begin{equation*}
\int_{t_{0}}^{x} R(t) a(t) \mathrm{d} t=\infty \tag{21}
\end{equation*}
$$

Then for any nonoscillatory solution x of (20) there exists $t_{1} \geqslant t_{0}$ such that

$$
\begin{equation*}
|x(g(t))| \geqslant \frac{R(g(t))}{R(t)}|x(t)| \quad \text { and } \quad\left|x^{\prime}(t)\right| \leqslant \frac{|x(t)|}{R(t) r(t)} \tag{22}
\end{equation*}
$$

for $t \geqslant t_{1}$.
Proof. Suppose that $x(t)>0, x(g(t))>0, x^{\prime}(t) \geqslant 0$ and $x^{\prime}(g(t)) \geqslant 0$ for $t \geqslant t_{2} \geqslant t_{0}$ (the case $x(t)<0$ is analogous). Define the function $y(t)=x(t) / R(t)$. Then

$$
\left(R^{2}(t) r(t) y^{\prime}(t)\right)^{\prime}=R(t)\left(r(t) x^{\prime}(t)\right)^{\prime} \leqslant 0
$$

and the function $R^{2}(t) r(t) y^{\prime}(t)$ is nonincreasing for $t \geqslant t_{2}$. If $R^{2}(t) r(t) y^{\prime}(t) \geqslant 0$ for all $t \geqslant t_{2}$, then by the definition of y we have $R(t) r(t) x^{\prime}(t) \geqslant x(t)$ for $t \geqslant t_{2}$. Then multiplying (20) by $R(t)$ and integrating it by parts we get

$$
x(t) \leqslant R(t) r(t) x^{\prime}(t) \leqslant K+x(t)-x\left(t_{2}\right)-\int_{t_{2}}^{t} R(s) a(s) x(g(s)) \mathrm{d} s
$$

where $K=R\left(t_{2}\right) r\left(t_{2}\right) x^{\prime}\left(t_{2}\right)$ and from this we get

$$
0 \leqslant K-x\left(g\left(t_{2}\right)\right) \int_{t_{2}}^{t} R(s) a(s) \mathrm{d} s \quad \text { for } t \geqslant t_{2}
$$

and the condition (21) leads to the contradiction. Thus there exists $t_{1} \geqslant t_{2}$ such that $R^{2}(t) r(t) y^{\prime}(t) \leqslant 0$ for $t \geqslant t_{1}$ and this implies (22).

Theorem 6. Assume that (3) (i), (3) (iii) and (12) hold. Let one of the following conditions hold, either

$$
\begin{equation*}
\int_{t_{0}}^{\infty} R^{i}(g(t)) a(t) \mathrm{d} t=\infty \quad \text { for some } \lambda \in(0,1) \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{t_{0}}^{\infty} R^{\lambda}(t) a(t) \mathrm{d} t=\infty \quad \text { and } \quad \int_{t_{0}}^{\infty} \frac{R^{\lambda-1}(t) \mathrm{d} t}{R(g(t) r(t)}<\infty \tag{24}
\end{equation*}
$$

for some $\lambda \in(0,1)$, or

$$
\begin{equation*}
\int_{t_{0}}^{x} \frac{g^{\prime}(t)}{R(g(t)) r(g(t))} \exp \left[-\int_{g(t)}^{1} R(g(s)) a(s) \mathrm{d} s\right] \mathrm{d} t<\infty \tag{25}
\end{equation*}
$$

Then the equation (20) is oscillatory.

Proof. Suppose to the contrary that x is the nonoscillatory solution of (20) and $x(t)>0, x(g(t))>0, x^{\prime}(t) \geqslant 0$ and $x^{\prime}(g(t)) \geqslant 0$ for $t \geqslant t_{1}$. Note that if any of the conditions either (23) or (24) or (25) holds, then (21) and by lemma 3 the condition (22) hold, too.

1. Let the condition (23) hold. Define the function

$$
V(t)=\frac{R^{\lambda}(g(t)) r(t) x^{\prime}(t)}{x(g(t))} \quad \text { for } t \geqslant t_{1} .
$$

Then

$$
\begin{aligned}
V^{\prime}(t) & \leqslant-R^{\lambda}(g(t)) a(t)+\frac{\lambda r(t) x^{\prime}(t) R^{\lambda-1}(g(t)) g^{\prime}(t)}{r(g(t)) x(g(t))} \leqslant \\
& \leqslant-R^{\lambda}(g(t)) a(t)+\frac{\lambda R^{\lambda-2}(g(t)) g^{\prime}(t)}{r(g(t))}
\end{aligned}
$$

and integration of this inequality from t_{1} to $t \geqslant t_{1}$ leads to the contradiction with nonegativity of x^{\prime}.
2. Suppose that the condition (24) holds. Define the function $V(t)$ by the form

$$
V(t)=\frac{R^{\lambda}(t) r(t) x^{\prime}(t)}{x(g(t))} \quad \text { for } t \geqslant t_{1} .
$$

Then we can obtain the contradiction in an analogous way.
3. Finally, let the condition (25) hold. Then $x^{\prime}(t)>0$ for $t \geqslant t_{1}$ and from (20) and (22) we get

$$
\left(r(t) x^{\prime}(t)\right)^{\prime}+a(t) R(g(t)) r(t) x^{\prime}(t) \leqslant 0 \quad \text { for } t \geqslant t_{1} .
$$

Dividing this inequality by $r(t) x^{\prime}(t)$ and integrating it from $g(t)$ to t we have

$$
r(t) x^{\prime}(t) \leqslant r(g(t)) x^{\prime}(g(t)) \exp \left[-\int_{g(t)}^{t} R(g(s)) a(s) \mathrm{d} s\right]
$$

for $t \geqslant t_{2}$, where $t_{2} \geqslant t_{1}$ is such that $g(t) \geqslant t_{1}$ for $t \geqslant t_{2}$. Then we can finish the proof as in the previous cases using the function

$$
V(t)=\frac{R(g(t)) r(t) x^{\prime}(t)}{x(g(t))}
$$

Example 3. The equation

$$
x^{\prime \prime}(t)+t^{-4 / 3} x\left(t^{1 / 2}\right)=0
$$

satisfies (24) for $\lambda=1 / 3$ but (23) and (25) do not hold.
Example 4. The equation

$$
x^{\prime \prime}(t)+\frac{1}{t} x(\ln t)=0
$$

satisfies (23) for any $\lambda \in(0,1)$ but (24) and (25) do not hold.
Example 5. The equation

$$
x^{\prime \prime}(t)+\frac{1}{t \ln ^{2} t} x(\ln t)=0
$$

satisfies (25) but (23) and (24) do not hold.

REFERENCES

[1] NABABAN, S.-NOUSSAIR. E. S.: Oscillation criteria for second order nonlinear delay inequalities. Bull. Math. Soc. 14, 1976. 331-341.
[2] HRUBINOVÁ, A.-ŠOLTÉS. V.: Oscilatorické kritéria pre nelineárnu nerovnicu druhého rádu s posunutím. Zbornik ved. prác VŠT. 1986. 53-63.
[3] ВУЛИХ, Б. З.: Введение в теорию полуупорядоченных пространств. Гос. Изд. Физ. Мат. Лит., Москва 1961.

Received October 10. 1986
Katedra matematiky VŠT
Švermova 9
Košice

ТЕОРЕМЫ КОЛЕБЛЕМОСТИ ДЛЯ НЕЛИНЕЙНЫХ НЕРАВЕНСТВ ВТОРОГО ПОРЯДКА С ОТКЛОНЕНИЕМ

Ján Seman

Резюме
В статье приведены некоторые достаточные условия, при которых дифференциальное неравенство

$$
\begin{equation*}
x(t)\left[\left(r(t) x^{\prime}(t)\right)^{\prime}+f(t, x(t), x(g(t)))\right] \leqslant 0 \tag{1}
\end{equation*}
$$

является колеблемым. Эти результаты являются расширением результатов, приведенных в [1] и [2], где авторы предполагали. что $r(t)=1$ или ограничено.

