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BOUNDED DUALLY RESIDUATED 
LATTICE ORDERED MONOIDS AS 

A GENERALIZATION OF FUZZY STRUCTURES 

JlRI RACHUNEK — VLADIMIR SLEZAK 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. Dually residuated lattice ordered monoids (DP^-monoids) form a 
large class that contains among others all lattice ordered groups, fuzzy struc
tures which need not be commutative, for instance, pseudo BL-algebras and 
GMV-algebras (= pseudo MV-algebras) and Brouwerian algebras. In the pa
per, two concepts of negation in bounded DB£-monoids are introduced and their 
properties are studied in general as well as in the case of the so-called good 
DRl-monoids. The sets of regular and dense elements of good DEI-monoids are 
described. 

1. Introduction 

Commutative dually residuated lattice ordered monoids (briefly: DRl -mo
noids) were introduced by S w a m y in [18] as a common generalization of 
abelian lattice ordered groups and Brouwerian algebras. Moreover, the classes 
of MV-algebras and BL-algebras, i.e. algebraic counterparts of Lukasiewicz 
infinite valued and H a j e k ' s basic fuzzy logic introduced in [1] and [9], respec
tively, can be viewed as proper subclasses of the class of bounded commutative 
Bit^-monoids. (In fact, we use the duals of BL-algebras.) 

General Bi^-monoids (i.e., the commutativity of the addition is not re
quired) were introduced by K o v a f in [11]. GMV-algebras introduced in [15] 
and, equivalently, pseudo MF-algebras introduced in [8] are non-commutative 
generalizations of MF-algebras. Further, pseudo BL-algebras introduced and 
studied in [4] and [5] and BL-algebras are in the same connection. By [16], 
G M V-algebras are an algebraic counterpart of a non-commutative logic between 
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Jlftl RACHUNEK — VLADIMIR SLEZAK 

the Lukasiewicz logic and the bilinear logic (see [14]). Pseudo BL-algebras are 
by [10] an algebraic counterpart of Hajek's pseudo basic logic. Analogously as 
in the commutative case, it was shown in [15] and [12] that GMV-algebras and 
duals of pseudo L?L-algebras form proper subclasses of the class of bounded 
DRl -monoids. 

In this paper we study bounded DRl -monoids as natural generalizations of 
GMV-algebras and pseudo BL-algebras introducing two, in general different, 
concepts of negation. All obtained results are applicable in the case of pseudo 
BL-algebras (and, consequently, of GMV-algebras). The particular case of nega
tions in commutative Di?^-monoids were studied in [17]. 

The basic concepts and results concerning MV-algebras, GMV-algebras, 
BL -algebras and pseudo BL-algebras can be found in [2], [6], [9] and [4], re
spectively. 

2. Nega t ions in b o u n d e d J9jR£-monoids 

In this section we introduce notions of negations of elements in bounded 
Di?£-monoids as generalizations of those in pseudo L?L-algebras. 

Firstly, let us recall the definition of a Dit^-monoid. 

DEFINITION. A dually residuated lattice ordered monoid (briefly: DRl -monoid) 
is an algebra M = (M; +, 0, V, A, —-, v-) of signature (2,0,2,2,2,2) satisfying 
the following conditions: 

(Ml) ( M ; + , 0 , V,A) is a lattice ordered monoid, that means, ( M , + , 0) is a 
monoid, (M, V, A) is a lattice, and the operation + distributes from the 
left and from the right over the operations V and A. 

(M2) If < denotes the order on M induced by the lattice (M, V, A), then 
x —- y is the smallest s G M such that s + y > x and x v- y is the 
smallest t G M such that y -\-t>x for any x,y G M . 

(M3) M satisfies the identities 

( ( x ^ y ) V 0 ) T ! / < i V j / , l / + ( ( ^ » ) V 0 ) < a ! V ! / , 

£ ^ £ > 0, X x- X >0 . 

In the paper, we will deal with bounded L)It£-monoids. The least element 
in such a DRl-monoid is by [11] always 0. The greatest element will be de
noted by 1 and bounded DRl -monoids will be considered as algebras M = 
(M, + , 0 ,1 , V, A, - \ T- ) of extended type (2,0,0,2,2, 2, 2). 

When doing calculations, we use the following list of basic rules for bounded 
DRl -monoids. 
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L E M M A 1. ([11], [13]) In any bounded DRt-monoid M we have for any 

x,y,zeM: 

( i 

(2 

(3 

(4 

(5 

(6 

(7 

(8 

(9 

(10 

( П 
(12 

x V 2/ = (x - - y) + y = y + (x v- y); 

x-^x = 0 = xx-x, x — - 0 = x = X v - 0 ; 

x < y = > x —-* z < y —-• z , x v- z < y v- z; 

x < y => z —̂  x > z —- 2/, £ v - x > z v - 2 / ; 

x - - (y + z) = (x --• 2:) - ^ y ; 

x v- (y + z) = (x v - y ) v- z; 

x-^y>(z-^y)x-(z-^x); 

x^-y>(zx-y)-^(zx-x); 

x < y <=> x —- 2/ = 0 4=4> x v - 2/ = 0 ; 

x —- (y A z) = (x —-• y) V (x —- z), x v - (y A z) = (x v- y) V (x v - z); 

x - - (2/ v - 2:) < (x - - y) + z, x v - (2/ - ^ z) < z + (x v - 2/) ; 

a > 2/ > 2 ==> x - - 2: = (x - - y) + (y - - z), x v- z = (y v - z) + (x v - 2/) ; 

D E F I N I T I O N . Let M = ( M ; + , 0 , 1 , V , A , - - , v - ) be a b o u n d e d JDl^ -mono id . 

For any x G M we set 

-ix := 1 —- x , ~ x := 1 v- x . 

In the following l e m m a we will show the basic proper t ies of t he negat ions -< 

and ~ in connection wi th the opera t ions of bounded DR£-monoids. 

L E M M A 2 . Let M = ( M ; + , 0 , 1 , V, A , - - , v-) be a bounded DRl-monoid and 

x,H G M . Then 

(1) ~ - , i = 1 = - , ~ 1 . --nO = 0 = - . ~ 0 ; 

(2) ~->x < x . - i ~ x < x ; 

(3) ~ - i ~ x = ~x, - i ~ - i x = - i x ; 

(4) x + ~ x = 1, -ix + x = 1 ; 

(5) ~ x < y <=> x + 2/ = 1 ^ = > -"2/ < x ; 

(6) y v- -ix < x . 2/ - ^ ~ # < # ; 

(7) ~ x —- ~ y < y ^ ^ > ^x ^~ ^y < y ^ x; 
(8) ~ y - ^ x = -ix v- y . x v - -ny = y - ^ ~ ^ ; 

(9) x < 2/ = .> "^y < ^ 5 ~ y < ~ ^ / 
(10) ~ x —- x = -ix v- x ; 

(11) ~ ( x + y) = ~ x v- y, -n(x + y) = -ly - - x ; 

(12) ~ ( x Ay) = ~ x V ~ y . -i(x A y) = -ix V - iy ; 

(13) ~ ( x V y) < ~ x A ~ y . ->(x V y) < -ix A ->y ; 

(14) ~ - i ( x A y ) < ~-<x A ~-"2/ , - i ~ ( x A y ) < ->~x A ->~y; 

(15) ~->x —̂  ~~iy = ~ - i x —-- y . ->~x v- - i ~ y = ->~x v - y ; 

(16) -n(x v- y) < -ix + y . ~(x —- y) < y + ~ x ; 

(17) (x + y ) - ^ y < x . (x + y) v - x < y ; 

(18) y - - (y v- x) < x A y , y v- (y - ^ x) < x A y . 
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P r o o f . 

(1) -1 = 1 T" (1 - - 1) = 1 T~ 0 = 1, -0 = 1 T- (1 - - 0) = 1 V- 1 = 0. 

Analogously - i ~ l = 1 and ->~0 = 0. 

(2) We have ~->x = 1 T - (1 —- x ) . B y t he definition of a DR£-monoid, 

(1 —- x) + ( l T - (1 —- x)) = 1, and a t the same t ime ( l - - x ) + x = l V x = l , 

hence ~->x < x . Analogously - i ~ x < x . 

(3) By (2), ~ - i ~ ~ < ~ x and - i~ - ix < ->x. Moreover, a < b implies 1 —- a > 

1 —- b, i.e. -ib < ->a, and similarly, a < b implies ~ b < ~ a . Thus from ~-<x < x 

it follows t h a t -ix < ->~-ix and ->~x < x gives ~ x < ~ - i ~ x . 

(4), (5) Immedia te ly from the definition of a D i ^ - m o n o i d . 

(6) y < 1, hence by (4), y < -ix + x , thus y T - ->x < x . Analogously t he 

o ther inequali ty. 

(7) B y L e m m a 1(8) , ~ x —- ~ y = (1 - - x) —- (1 - - y) < y - - x . Analogously 

->x T— -<y < y —-* x . 

(8) We have ->~y < y , hence ->x T - y < ->x - - -«~y, therefore by (7), 

-ix T - y < ~ y —- x . Similarly ~ y —- x < -<x T— y . T h e second assert ion is dua l . 

(9) If x < y , then 1 - - x > 1 —- y , thus ->y < ->x. Analogously x < y 

implies ~ y < ~ x . 

(10) B y t he definition of a DRl-monoid we have for any u E M , ~ x —- x < it 

iff ~ x < u + x , which holds iff x + (it + x) = 1, t h a t means (x + u) + x = 1 . 

This is equivalent t o -ix < x + it and so to -ix T - X < u. 

(11) B y L e m m a 1(6) , (5), we have ~ x T - y = ( l T - x ) v - y = l T - ( x + y) = 

~ ( x + y) and -<y - - x = (1 --- y) —- x = 1 - - (x + y) = ->(x + y ) . 

(12) By L e m m a 1(10), ~ ( x A y ) - 1 - (xAy) = (1 T - x ) V ( l v - y ) = ~ x V ~ y , 

and similarly, -i(x A y) = ->x V ->y. 

(13) Follows from (9) . 

(14) x A y < x , hence by (9) we ob ta in ~ - i ( x A y ) < ~ - i x , and thus also 

~ - i ( x A y) < ~->x A ~ - i y . Analogously t he second inequality. 

(15) B y (8) and (3), ~-~x - - ~ - i y = - ~ - i y T - ->x = -iy T - -ix = ~-<x - - y . 

Similarly t he second inequality. 

(16) By L e m m a 1(11), 1 - - (x T - y) < (1 - - x) + y , 1 v- (x - - y) < 

y + ( l T - x ) . 

(17) B y t he definition of a bounded DR£ -monoid we have ( ( x + y ) - - y)-\-y = 

(x-\-y)Vy = x + y, hence (x + y) —- y < x . Similarly x + ((x + y) T - x) = 

x V ( x + y) = x + y , therefore (x + y) T - X < y . 

(18) B y L e m m a 1(11), y - A ( y - - x ) < ( y — - y ) + x = 0 + x = x , and at 
the same t ime y -^ (y ^- x) < y, hence y ^ ( y T - x ) < x A y . Analogously 

y^-(y-^x)<xAy. • 

226 



BOUNDED DUALLY RESIDUATED LATTICE ORDERED MONOIDS 

D E F I N I T I O N . 

a) We say that a bounded DRl-monoid M is good (or symmetric) if it 
satisfies the identity ->~x = ~ - . x . 

b) A bounded DRl -monoid is called regular if it satisfies the identity 
- |~£ = x = ~ - ix . 

N o t e . We choose the name "good I)I?£-monoid" because it generalizes the 
notion of "good pseudo I?L-algebra", see e.g. [7]. 

LEMMA 3. Let M be a good bounded DRl-monoid. Then for each x,y G M 
we have: 

(1) ~(-^x + ^y) = ^(~x + ~y); 
(2) -i(x v- ~-ix) = ~(x —- ~-<x) = 1; 
(3) ->~(x —- y) = -t~x —- ~^~y, ~~*(x v- 2/) = ^-«x v- ~_ ,2// 
(4) ->~(x + 2/) < - i~x + ~>~2// 
(5) -i~(x V 2/) = ->~~ V ->~y; 

(6) ~ x v- 2/ = ~ x v- ~~>2/, ->2/ —- x = -12/ - - - i~x . 

I/, moreover, M is regular, then 

(7) y v- x = ~x - - ~y, y - - a; = -.x v- -.y; 
(8) ~(-<x + ->2/) = ->(~x + ~2/) = 2/ - - ~ # = x v- ->2/. 

P r o o f . 

(1) Using Lemma 2(8), (11) we get -*(~x + ~y) = - I~J / —- ~ x = ~->2/ - - ~ x 
= —<~x v- -iy = ~-ix v- -i2/ = ~(-ix + -i2/). 

(2) x v- -i~x < 1 v- ->~x = ~ - i ~ x = ~ ^ , hence -i~x < ->(x v- - i~x) , thus 
by Lemma 2(11), (2), -.(x v- - .~x) = -i(~ v- ->~x) V -«~x = (-.(x v- -.~~) 
—- ->~x) + -i~x = - i (- i^x + (x v- -<~x)) + - i ~ ~ = -i(-i~x V x) + -i~x = 
-<x+->~x = - ix+~- ix , therefore by Lemma 2(4), ->(x v- ->~x) = 1. Analogously 
~(x —- ~->x) = 1. 

(3) By Lemma 1 we have - .~x - - y = (1 —-> ~x) —- 2/ = 1 - - v2/ + ( l - - x)) < 
1 - - (1 v- (x - - 2/)) = 1 - - ~ (x - - y) = -n~(x - - y). 

Further, by Lemma 2(11), - ,~( - .~x —- y) = -i~(-i(y + ~x)) = -i(y + ~x) = 
-<~x - - 2/, hence in our case we get - i~(~ --> 2/) —- (->~x --- y) = - i ~ (-i~(x —- 2/) 
- - (->-x - - 2/)) < -<~((x - - y) - - (-.~x - - 2/)), and this is by Lemma 1 equal to 
-n~(x - - ((- .~~ - - y)+y)) = - i~ (~ - - (~—xVy)) < ->~((x - - --~x)A(x - - 2/)) 
< -i~(x —- ->~x) = -il = 0, thus -i~(x —- y) < -i~x —- 2/. 

Therefore by Lemma 2(15) we obtain -i~(x - - y) = ->~x - - -*~y. Analo
gously the second equality. 

(4) By Lemma 2(11), (15), -i(-.~x + -i~y) = ~ |- ,~2/ - - ~^~x = ~,~~l2/ ~~ """^ 
= ~^~^y - - a; = -ny - - x = - . ( - + 2/), hence by Lemma 2(2) ->~(x + y) = 
~-i(x + 2/) — ~ _ | ( - | ~ x + ->~2/) < ""^x + -i~2/-
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(5) -i~x < -i~(xVy) and -^~y < ->~(xVy), hence - i~xV-i~y < ^~(xVy)-

Further, by (4) and (3), -i~(xVy) = ->~((x —- y)+y) < - i~(x —- y) + ~^~y = 
( - i~x —- - ,~2/) + -"^2/ = " " " ^ V - i ~ i / . 

(6) By Lemma 2(3), (11) and by equality (3), ~ x v- ~-iy = ~-«~x v- ~->H 
z-: ~ - , ( ~ # v- y) = ~->~(x + ?/) = ~(x + y) = ~ x v- y. Analogously the other 
equality. 

(7) By Lemma 2(7), y v- x = -*~y v- ->~x < ~ x —̂  ~y < y ^~ x a n d 
y —- x = ~-"i/ —- ~->x < -ix v- -i?/ < y —- x . 

(8) The first equality is proven in (1) for arbitrary good F)i?£-monoids. Fur
ther, by Lemma 2(11), ~(-ix + -«2/) = ~-ix v- -*y = x v- ->y and -<(~x + ~H) = 
"•^y —̂  ~ x — 2/ "~̂  ~ x • a 

Pseudo BL-algebras were introduced in [4] as a non-commutative generaliza
tion of Hajek's P?L-algebras ([9]). By [12], the duals of pseudo P?L-algebras are 
special cases of bounded DiJ^-monoids which are characterized by the identities 

(x --- y) A (y - - x) = (x v- y) A (y v- x) = 0. 

LEMMA 4. If M is a good dual pseudo BL-algebra, then M satisfies the iden
tity 

->~(x + y) = - i~x + -i~2/. 

P r o o f . Every dual pseudo BL-algebra satisfies, among others, the iden
tity ~ (x V y) = ~ x A ~y. Hence by Lemmas 1, 2 and 3 we get -i~(x + y) = 
-i~(x + y)W ->~x = -i~x + (-i~(x + y) v- -i~x) = ->~x + (~->(x + y) v- ->~x) 
= -i~x + (~(->y —- x) v- -i~x) = -i~x + (~(-iy —- ->~x) v- ->~x) = 
- i~x + ~((-iH —- -i~x) + -i~x) = -i~x + ~(-iy V~i~x) = -i~x + ~ ( - i~x V-ij/) = 
- i~x + (~x A ~->2/) = ->~x + (~x A -i^y) = (->~x + ~x) A (-<~x + -i~y) = 
1 A (~i~x + -i~i/) = ->~x + - i^y . D 

Remark. The class of bounded DRl-monoids satisfying the identities from 
Lemma 4 is essentially larger than the class of good dual pseudo F?L-algebras. 
For instance, every Brouwerian algebra is a bounded (commutative) 
DiJ^monoid that fulfils these identities. 

GMV-algebras were introduced in [15] (equivalently as pseudo MV-algebras 
in [8]) as a non-commutative generalization of MV-algebras. If A = 
(A; 0 , -i, ~ , 0,1) is a GMV-algebra, set x + y := x 0 y, x 0 y := ~(-ix 0 -•?/), 
x —- ?/ := ->2/0x, x v- 2/ := x0~H , xV2/ := x0(2 /0~x) and xA2/ := X 0 ( T / 0 ~ X ) . 
Then M = M(A) = (A; + , 0 ,1 , - - , v-, V, A) is a bounded DjR£-monoid. (Recall 
that from this point of view, GMF-algebras form a proper subclass of the class 
of dual pseudo JBL-algebras.) 
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By [15], Z)i2^-monoids induced by GMV-algebras can be characterized by 
means of identities with negations. Namely, a bounded Z^it^-monoid M is in
duced by a GMV-algebra, if and only if M satisfies the identities 

1 --• (1 v - X) = X = 1 v - (1 - - X) , 

1 - ((1 v- x) + (1 v- 2/)) - 1 - ((1 -* x) + (1 - 2/)) , 

that means 

->~x = x = ~-*x , - . (~x + ~y) = ~(->x + -\y). 

We have proved in Lemma 3(1) that the last identity is satisfied in any good 
bounded F)i?^-monoid, therefore a good bounded F)i?^-monoid is induced by a 
GAIV-algebra if and only if it is regular. 

Let us show that the class of good dual pseudo F?F-algebras is also a variety 
of bounded DR£-monoids that satisfies certain identities with negations. 

PROPOSITION 5. Let M be a bounded good DRl-monoid. Then the following 
conditions are equivalent. 

(1) - .~(x Ay) = ->~x A ->~2// 
(2) -i(a; V y) = ->x A ->y. ~ (x V y) = ~x A ~y; 
(3) n(xV!/) + ( ( x " - » ) A ( y ^ x ) ) = n ( a ; V ! / ) , 

((x v- y) A (y v- x)) + ~(x V y) = ~(x V y). 

P r o o f . 

(1) => (2): By Lemma 2(12) and Lemma 3(5), ->a; A->2/=-.~(^a; A->2/) = 
-i(~-ia; V ~->2/) = ~"(~->(x V y)) = -.(a; V y). Analogously ~ (x V y) = ~x A ~y. 

(2) =.> (1): Using Lemma 2(12), we have - .~x A -.~y = -i(~x V ~y) = 
-«(~(x Ay)) = -.~(a; Ay) . 

(2) = > (3): By Lemma 1, -.x = 1 - - a; = ( l - - (x V y)) + ((x v 2/) - - a;) = 
-•(x V 2/) + (2/ —- a;). Analogously -iH = ->(x V y) + (x —- y). 

From this we get -.(x V y) = ->x A->y = (->(x V 2/) + (2/ —- a;)) A (-.(a; V 2/) + 

(x - - 2/)) = -.(a; V 2/) + ((2/ -^ x) A (x - - 2/)). 
Similarly, by Lemma 1, ~ x = 1 v- x = ((xVy) v- x) + ( l v- (xVy)) and ~2/ = 

1 v- 2/ = ((a; V 2/) v- y) + ( l v- (x V y)), hence ~(x V 2/) = ((x v- 2/) A (y v- x)) 
+ ~ ( x V j / ) . 

(3) =--=> (2): -nx A -2/ = H * V 2/) + (2/ ^ x)) A ( i (x V 2/) + (x - - 2/)) = 
-n(x V 2/) + ((2/ --- x) A (x - - y)) = -.(x V 2/). 

Similarly ~ x A ~2/ = ~ (x V 2/). • 

Let us recall that the duals of pseudo F?L-algebras are exactly the bounded 
DR£-monoids satisfying the equalities 

(x - - y) A (y - - x) = 0, (x v- y) A (y v- x) = 0 . 
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COROLLARY 6. Every good dual pseudo BL-algebra satisfies all the identities 
from the preceding proposition. 

3. Regular and dense elements 

Let M be a bounded jDi?^-monoid and x G M . Then x is called a regular 
element in M if -*~x = x = ~-^x. 

Denote by R(M) the set of all regular elements in M. 

PROPOSITION 7. / / a bounded DRi-monoid M is good, then R(M) is a 
subalgebra of the reduct (M; 0 ,1 , V, —-, ^—). 

P r o o f . It follows from Lemma 2(1) and Lemma 3(3), (5). • 

As a consequence of preceding propositions we get the following theorem. 

T H E O R E M 8. 

(a) If M is a bounded good DRO,-monoid satisfying the identity -i~(x + y) 
= -t~x + ->~2/, ^en R(M) is a subalgebra of ( M ; + , 0 ,1 , V, —-, T—) 
and the mapping x i-> -i~x is a retract of (M; + , 0 , 1 , V, —-, T—) onto 
(J2(M);+ ,0 ,1 ,V , -* , - - ) . 

(b) If M is a good dual BL-algebra, then R(M) is a subalgebra of M. 

THEOREM 9. If a bounded good DRi-monoid M satisfies the identity -*~(x+y) 
= ^~x + ^~y, then R(M) = {R(M)\ + , 0 , 1 , V, AR(M), -^, T - ) , where yAR{M)z 
= ~^~(yAz) for any y,z G R(M), is a DRl-monoid induced by a GMV-algebra. 

P r o o f . From Lemma 2 (2) and from the fact that operations —- and <--
are antitone in the second variable it follows that ->~ is an interior operator 
on the lattice (M; V, A). Hence ->~x is the greatest element in R(M) which is 
contained in x G M . Furthermore, (R(M);<) is a lattice and for any y,z G 
R(M) it holds that 

y V B ( M ) z = y v * i y AR(M) Z = ^~(yA *) • 

Let w,y,z G R(M). Then 

w + (y AR,M\ z) = w + -*~(y A z) = -i~w + _|~(H A z) = -i~(w + (y A z)) 

= -n~((w + y)A(w + z)) =(w + y) AR{M) (w + z). 

Similarly we can prove the distributivity from the right. Moreover, if y, z G 
R(M), then 

y ^R(M) z a n ( i y ^~R(M) z 
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exist and 

y -^R{M) z = y~^z and 2/ ^-R(M) z = y ^ z . 

Thus (R(M); +,0,1, V, A^,Mx, —S-<—) is a bounded J9i?^-monoid. Since it is 
regular, it is induced by a (7M17-algebra. • 

Let M be a bounded JJit^-monoid. Then an element x e M is called dense 
if -i~x = ~-^x = 0. Denote by D(M) the set of all dense elements in M . 

Let us recall the notions of an ideal and a normal ideal of M . Let again M 
be a bounded J)i?^-monoid and 0 / J C M . Then J is called an ideal of M if 

(a) x,y e I =i> x + y el', 

(b) : T e J , , z e M , £ < £ = > £ E J . 

An ideal J is called normal if for any x,y e M, 

(c) x ^ y e l <=> x T-y e I. 
By [13], normal ideals of M are in a one-to-one correspondence with congru

ences on M . Namely, let J be a normal ideal of M . Then 0 ( J ) , the congruence 
on M induced by J , is determined as follows: If x,y e M, then 

(x, y) e 0 ( J ) <=> (x^y)\/(y^x)el 

(which is equivalent to (x v- y) V (2/ —̂ x) e I). 

Conversely, let 6 be a congruence on M . Then J ( 0 ) = [O]0 = {x e M : 

(x,0) e 0 } is the normal ideal of M corresponding to 0 . 

THEOREM 10. If M is a bounded good DRt-monoid, then D(M) is a normal 
ideal of M and M/D(M) =" R(M). 

P r o o f . Let x,y e D(M). Then by Lemma 3(4), -*~(x + y) < ->~:r + -i~2/ 
= 0, thus x + y e D(M). If x e D(M), z e M and z < x, then - i~z < 
- .~# = 0, hence z e D(M). Therefore D(M) is an ideal of M . 

Further, if x, y G M , then x --- y G J>(M) iff -i~(a; - - 2/) = 0 iff (by Lem
mas 3(3) and 1) -\~x T- -i~y = 0> hence again by Lemma 3(3) iff -i~(.r v- 2/) 
= 0, i.e. iff x <-— 2/ G D(M). Therefore the ideal D(M) is normal. 

Let us consider the congruence Q(D(M)) induced by D(M). That means, 
if x,y e M, then (x,y) e Q(D(M)) iff (x ^ y) V (y ^ x) e D(M), hence iff 
-n~((x —- 2/) V (2/ -^ x)) = 0 , hence by Lemma 3(5) iff ->~(.r —- y) V ->~(2/ - 1 a?) 
= 0, and by Lemma 3(3) iff (-i~x -* ^~2/) V (~i~2/ -^ _ 1^^) = 0, and this 
holds iff - i~x —- -i~2/ = 0 = -1^2/ —̂  ""^ar. By Lemma 1 it is equivalent to 
-i~.r < -n~2/ < ->~a;, i.e. with -i~:r = - i~y. 

Therefore M/D(M) = R(M). D 
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Remark. In an analogous theorem in [17], for a commutative bounded 
L)i?£-monoid M it was, moreover, supposed that M satisfies the identity 
—i—i(x + y) = ~^^x + ->^y. The proof of Theorem 10 shows that the mentioned 
assumption was superfluous. 

A DRl-monoid M is called (congruence) simple if M is non-trivial and has 
no proper congruence different from the identity. 

THEOREM 1 1 . If M is a bounded good DRl-monoid satisfying the identity 
-*~(x + y) = - i~x + -"~y, then M is simple if and only if it is induced by a 
simple GMV-algebra. 

P r o o f . By Theorem 10, D(M) is a normal ideal in M for any bounded 
good DiZ^-monoid M . Let M satisfy the identity -*~(x + y) = ~^~x + ^~y and 
let M be simple. Then M has a unique proper normal ideal, hence D(M) = {0}. 
Therefore, by Theorem 9, M is induced by a GMV-algebra. • 

Let M be a bounded DRl-monoid and i be a normal ideal in M . Then i is 
called a GMV-ideal if the DiJ^-monoid M/Q(I) is induced by a GMF-algebra. 

THEOREM 12. Let M be a bounded good DRl-monoid satisfying the identity 
-*~(x + y) = - i~x + -i~y and I be a normal ideal in M . Then the following 
conditions are equivalent. 

(1) I is a GMV-ideal. 
(2) x —-• -i~x G I for each x G M. 
(3) - i~x G i => x G i /or mc/i x € M. 
(4) D(M)CI. 

P r o o f . 
(1) 4=» (2): Since M is good, M / 0 ( L ) is induced by a GMV-algebra if 

and only if (x, -i~x) G 0(L) for each x G M , i.e. if and only if (x —- ->~.r) V 
(-n~x —- x) G L for each x G M , and this is equivalent to x —- -i~x G L for 
each x G M . 

(2) =-==}> (3): Let x —- - i^x G L and -i~x G L. Then x = x V ->~x = 
(x —- -i~x) + -<~x G L. 

(3) ==> (4): Let y G J9(M). Then - . ^ j / = 0 G L, hence j / G L. Therefore 
L)(M) C L . 

(4) => (1): Let D(M) C I. Then M/Q(I) is isomorphic to a subalgebra 
of M/Q(D(M)) which is induced by a GMF-algebra. • 

THEOREM 13. Let M be a bounded good DRl-monoid satisfying the identity 
-i~(x + y) = - i~x + -i~y. If I is a maximal ideal in M and is normal, then I 
is a GMV-ideal. 

P r o o f . Let I be a maximal and normal ideal in M. Then M/I is a simple 
DRl-monoid, thus by Theorem 11 we have that i is a GMF-ideal. • 
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