Mathematic Slovaca

Jiří Rachůnek; Vladimír Slezák

Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures

Mathematica Slovaca, Vol. 56 (2006), No. 2, 223--233

Persistent URL: http://dml.cz/dmlcz/133054

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

BOUNDED DUALLY RESIDUATED LATTICE ORDERED MONOIDS AS A GENERALIZATION OF FUZZY STRUCTURES

Jiří Rachůnek - Vladimír Slezák
(Communicated by Anatolij Dvurečenskij)

Abstract

Dually residuated lattice ordered monoids ($D R \ell$-monoids) form a large class that contains among others all lattice ordered groups, fuzzy structures which need not be commutative, for instance, pseudo $B L$-algebras and $G M V$-algebras ($=$ pseudo $M V$-algebras) and Brouwerian algebras. In the paper, two concepts of negation in bounded $D R \ell$-monoids are introduced and their properties are studied in general as well as in the case of the so-called good $D R \ell$-monoids. The sets of regular and dense elements of good $D R \ell$-monoids are described.

1. Introduction

Commutative dually residuated lattice ordered monoids (briefly: $D R \ell$-monoids) were introduced by Swamy in [18] as a common generalization of abelian lattice ordered groups and Brouwerian algebras. Moreover, the classes of $M V$-algebras and $B L$-algebras, i.e. algebraic counterparts of Lukasiewicz infinite valued and Hájek's basic fuzzy logic introduced in [1] and [9], respectively, can be viewed as proper subclasses of the class of bounded commutative $D R \ell$-monoids. (In fact, we use the duals of $B L$-algebras.)

General $D R \ell$-monoids (i.e., the commutativity of the addition is not required) were introduced by K o vář in [11]. GMV-algebras introduced in [15] and, equivalently, pseudo $M V$-algebras introduced in [8] are non-commutative generalizations of $M V$-algebras. Further, pseudo $B L$-algebras introduced and studied in [4] and [5] and $B L$-algebras are in the same connection. By [16], $G M V$-algebras are an algebraic counterpart of a non-commutative logic between

[^0]Supported by the Council of Czech Government J14/98: 15100011.
the Łukasiewicz logic and the bilinear logic (see [14]). Pseudo $B L$-algebras are by [10] an algebraic counterpart of Hájek's pseudo basic logic. Analogously as in the commutative case, it was shown in [15] and [12] that $G M V$-algebras and duals of pseudo $B L$-algebras form proper subclasses of the class of bounded $D R \ell$-monoids.

In this paper we study bounded $D R \ell$-monoids as natural generalizations of $G M V$-algebras and pseudo $B L$-algebras introducing two, in general different, concepts of negation. All obtained results are applicable in the case of pseudo $B L$-algebras (and, consequently, of $G M V$-algebras). The particular case of negations in commutative $D R \ell$-monoids were studied in [17].

The basic concepts and results concerning $M V$-algebras, $G M V$-algebras, $B L$-algebras and pseudo $B L$-algebras can be found in [2], [6], [9] and [4], respectively.

2. Negations in bounded $D R \ell$-monoids

In this section we introduce notions of negations of elements in bounded $D R \ell$-monoids as generalizations of those in pseudo $B L$-algebras.

Firstly, let us recall the definition of a $D R \ell$-monoid.
DEFINITION. A dually residuated lattice ordered monoid (briefly: DR is an algebra $M=(M ;+, 0, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ of signature $\langle 2,0,2,2,2,2\rangle$ satisfying the following conditions:
(M1) $(M ;+, 0, \vee, \wedge)$ is a lattice ordered monoid, that means, $(M,+, 0)$ is a monoid, (M, \vee, \wedge) is a lattice, and the operation + distributes from the left and from the right over the operations \vee and \wedge.
(M2) If \leq denotes the order on M induced by the lattice (M, \vee, \wedge), then $x \rightharpoonup y$ is the smallest $s \in M$ such that $s+y \geq x$ and $x \leftharpoondown y$ is the smallest $t \in M$ such that $y+t \geq x$ for any $x, y \in M$.
(M3) M satisfies the identities

$$
\begin{aligned}
((x \rightharpoonup y) \vee 0)+y \leq x \vee y, & y+((x \leftharpoondown y) \vee 0) \leq x \vee y \\
x \rightharpoonup x \geq 0, & x \leftharpoondown x \geq 0
\end{aligned}
$$

In the paper, we will deal with bounded $D R \ell$-monoids. The least element in such a $D R \ell$-monoid is by [11] always 0 . The greatest element will be denoted by 1 and bounded $D R \ell$-monoids will be considered as algebras $M=$ $(M,+, 0,1, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ of extended type $\langle 2,0,0,2,2,2,2\rangle$.

When doing calculations, we use the following list of basic rules for bounded $D R \ell$-monoids.

LEMMA 1. ([11], [13]) In any bounded DRौ-monoid M we have for any $x, y, z \in M$:
(1) $x \vee y=(x \rightharpoonup y)+y=y+(x \leftharpoondown y)$;
(2) $x \rightharpoonup x=0=x \leftharpoondown x, x \rightharpoonup 0=x=x \leftharpoondown 0$;
(3) $x \leq y \Longrightarrow x \rightharpoonup z \leq y \rightharpoonup z, x \leftharpoondown z \leq y \leftharpoondown z$;
(4) $x \leq y \Longrightarrow z \rightharpoonup x \geq z \rightharpoonup y, z \leftharpoondown x \geq z \leftharpoondown y$;
(5) $x \rightharpoonup(y+z)=(x \rightharpoonup z) \rightharpoonup y$;
(6) $x \leftharpoondown(y+z)=(x \leftharpoondown y) \leftharpoondown z$;
(7) $x \rightharpoonup y \geq(z \rightharpoonup y) \leftharpoondown(z \rightharpoonup x)$;
(8) $x \leftharpoondown y \geq(z \leftharpoondown y) \rightharpoonup(z \leftharpoondown x)$;
(9) $x \leq y \Longleftrightarrow x \rightharpoonup y=0 \Longleftrightarrow x \leftharpoondown y=0$;
(10) $x \rightharpoonup(y \wedge z)=(x \rightharpoonup y) \vee(x \rightharpoonup z), x \leftharpoondown(y \wedge z)=(x \leftharpoondown y) \vee(x \leftharpoondown z)$;
(11) $x \rightharpoonup(y \leftharpoondown z) \leq(x \rightharpoonup y)+z, x \leftharpoondown(y \rightharpoonup z) \leq z+(x \leftharpoondown y)$;
(12) $x \geq y \geq z \Longrightarrow x \rightharpoonup z=(x \rightharpoonup y)+(y \rightharpoonup z), x \leftharpoondown z=(y \leftharpoondown z)+(x \leftharpoondown y)$;

Definition. Let $M=(M ;+, 0,1, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ be a bounded $D R \ell$-monoid. For any $x \in M$ we set

$$
\neg x:=1 \rightharpoonup x, \quad \sim x:=1 \leftharpoondown x .
$$

In the following lemma we will show the basic properties of the negations \neg and \sim in connection with the operations of bounded $D R \ell$-monoids.

LEMMA 2. Let $M=(M ;+, 0,1, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ be a bounded $D R \ell$-monoid and $x, y \in M$. Then
(1) $\sim \neg 1=1=\neg \sim 1, \sim \neg 0=0=\neg \sim 0$;
(2) $\sim \neg x \leq x, \neg \sim x \leq x$;
(3) $\sim \neg \sim x=\sim x, \neg \sim \neg x=\neg x$;
(4) $x+\sim x=1, \neg x+x=1$;
(5) $\sim x \leq y \Longleftrightarrow x+y=1 \Longleftrightarrow \neg y \leq x$;
(6) $y \leftharpoondown \neg x \leq x, y \rightharpoonup \sim x \leq x$;
(7) $\sim x \rightharpoonup \sim y \leq y \leftharpoondown x, \neg x \leftharpoondown \neg y \leq y \rightharpoonup x$;
(8) $\sim y \rightharpoonup x=\neg x \leftharpoondown y, x \leftharpoondown \neg y=y \rightharpoonup \sim x$;
(9) $x \leq y \Longrightarrow \neg y \leq \neg x, \sim y \leq \sim x$;
(10) $\sim x \rightharpoonup x=\neg x \leftharpoondown x$;
(11) $\sim(x+y)=\sim x \leftharpoondown y, \neg(x+y)=\neg y \rightharpoonup x$;
(12) $\sim(x \wedge y)=\sim x \vee \sim y, \neg(x \wedge y)=\neg x \vee \neg y$;
(13) $\sim(x \vee y) \leq \sim x \wedge \sim y, \neg(x \vee y) \leq \neg x \wedge \neg y$;
(14) $\sim \neg(x \wedge y) \leq \sim \neg x \wedge \sim \neg y, \neg \sim(x \wedge y) \leq \neg \sim x \wedge \neg \sim y$;
(15) $\sim \neg x \rightharpoonup \sim \neg y=\sim \neg x \rightharpoonup y, \neg \sim x \leftharpoondown \neg \sim y=\neg \sim x \leftharpoondown y$;
(16) $\neg(x \leftharpoondown y) \leq \neg x+y, \sim(x \rightharpoonup y) \leq y+\sim x$;
(17) $(x+y) \rightharpoonup y \leq x,(x+y) \leftharpoondown x \leq y$;
(18) $y \rightharpoonup(y \leftharpoondown x) \leq x \wedge y, y \leftharpoondown(y \rightharpoonup x) \leq x \wedge y$.

Proof.
(1) $\sim \neg 1=1 \leftharpoondown(1 \rightharpoonup 1)=1 \leftharpoondown 0=1, \sim \neg 0=1 \leftharpoondown(1 \rightharpoonup 0)=1 \leftharpoondown 1=0$. Analogously $\neg \sim 1=1$ and $\neg \sim 0=0$.
(2) We have $\sim \neg x=1 \leftharpoondown(1 \rightharpoonup x)$. By the definition of a $D R \ell$-monoid, $(1 \rightharpoonup x)+(1 \leftharpoondown(1 \rightharpoonup x))=1$, and at the same time $(1 \rightharpoonup x)+x=1 \vee x=1$, hence $\sim \neg x \leq x$. Analogously $\neg \sim x \leq x$.
(3) By (2), $\sim \neg \sim x \leq \sim x$ and $\neg \sim \neg x \leq \neg x$. Moreover, $a \leq b$ implies $1 \rightharpoonup a \geq$ $1 \neg b$, i.e. $\neg b \leq \neg a$, and similarly, $a \leq b$ implies $\sim b \leq \sim a$. Thus from $\sim \neg x \leq x$ it follows that $\neg x \leq \neg \sim \neg x$ and $\neg \sim x \leq x$ gives $\sim x \leq \sim \neg \sim x$.
(4), (5) Immediately from the definition of a $D R \ell$-monoid.
(6) $y \leq 1$, hence by (4), $y \leq \neg x+x$, thus $y \leftharpoondown \neg x \leq x$. Analogously the other inequality.
(7) By Lemma 1(8), $\sim x \rightharpoonup \sim y=(1 \leftharpoondown x) \rightharpoonup(1 \leftharpoondown y) \leq y \leftharpoondown x$. Analogously $\neg x \leftharpoondown \neg y \leq y \rightharpoonup x$.
(8) We have $\neg \sim y \leq y$, hence $\neg x \leftharpoondown y \leq \neg x \leftharpoondown \neg \sim y$, therefore by (7), $\neg x \leftharpoondown y \leq \sim y \rightharpoonup x$. Similarly $\sim y \rightharpoonup x \leq \neg x \leftharpoondown y$. The second assertion is dual.
(9) If $x \leq y$, then $1 \rightharpoonup x \geq 1 \rightharpoonup y$, thus $\neg y \leq \neg x$. Analogously $x \leq y$ implies $\sim y \leq \sim x$.
(10) By the definition of a $D R \ell$-monoid we have for any $u \in M, \sim x \rightharpoonup x \leq u$ iff $\sim x \leq u+x$, which holds iff $x+(u+x)=1$, that means $(x+u)+x=1$. This is equivalent to $\neg x \leq x+u$ and so to $\neg x \leftharpoondown x \leq u$.
(11) By Lemma 1(6), (5), we have $\sim x \leftharpoondown y=(1 \leftharpoondown x) \leftharpoondown y=1 \leftharpoondown(x+y)=$ $\sim(x+y)$ and $\neg y \rightharpoonup x=(1 \rightharpoonup y) \rightharpoonup x=1 \rightharpoonup(x+y)=\neg(x+y)$.
(12) By Lemma $1(10), \sim(x \wedge y)=1 \leftharpoondown(x \wedge y)=(1 \leftharpoondown x) \vee(1 \leftharpoondown y)=\sim x \vee \sim y$, and similarly, $\neg(x \wedge y)=\neg x \vee \neg y$.
(13) Follows from (9).
(14) $x \wedge y \leq x$, hence by (9) we obtain $\sim \neg(x \wedge y) \leq \sim \neg x$, and thus also $\sim \neg(x \wedge y) \leq \sim \neg x \wedge \sim \neg y$. Analogously the second inequality.
(15) By (8) and (3), $\sim \neg x \rightharpoonup \sim \neg y=\neg \sim \neg y \leftharpoondown \neg x=\neg y \leftharpoondown \neg x=\sim \neg x \rightharpoonup y$. Similarly the second inequality.
(16) By Lemma $1(11), 1 \rightharpoonup(x \leftharpoondown y) \leq(1 \rightharpoonup x)+y, 1 \leftharpoondown(x \rightharpoonup y) \leq$ $y+(1 \leftharpoondown x)$.
(17) By the definition of a bounded $D R \ell$-monoid we have $((x+y) \rightharpoonup y)+y=$ $(x+y) \vee y=x+y$, hence $(x+y) \rightharpoonup y \leq x$. Similarly $x+((x+y) \leftharpoondown x)=$ $x \vee(x+y)=x+y$, therefore $(x+y) \leftharpoondown x \leq y$.
(18) By Lemma 1(11), $y \rightarrow(y \leftharpoondown x) \leq(y \rightharpoonup y)+x=0+x=x$, and at the same time $y \rightharpoonup(y \leftharpoondown x) \leq y$, hence $y \rightharpoonup(y \leftharpoondown x) \leq x \wedge y$. Analogously $y \leftharpoondown(y \rightharpoonup x) \leq x \wedge y$.

BOUNDED DUALLY RESIDUATED LATTICE ORDERED MONOIDS

DEFINITION.

a) We say that a bounded $D R \ell$-monoid M is good (or symmetric) if it satisfies the identity $\neg \sim x=\sim \neg x$.
b) A bounded $D R \ell$-monoid is called regular if it satisfies the identity $\neg \sim x=x=\sim \neg x$.

Note. We choose the name "good $D R \ell$-monoid" because it generalizes the notion of "good pseudo $B L$-algebra", see e.g. [7].

LEMMA 3. Let M be a good bounded DRौ-monoid. Then for each $x, y \in M$ we have:
(1) $\sim(\neg x+\neg y)=\neg(\sim x+\sim y)$;
(2) $\neg(x \leftharpoondown \sim \neg x)=\sim(x \rightharpoonup \sim \neg x)=1$;
(3) $\neg \sim(x \rightharpoonup y)=\neg \sim x \rightharpoonup \neg \sim y, \sim \neg(x \leftharpoondown y)=\sim \neg x \leftharpoondown \sim \neg y$;
(4) $\neg \sim(x+y) \leq \neg \sim x+\neg \sim y$;
(5) $\neg \sim(x \vee y)=\neg \sim x \vee \neg \sim y$;
(6) $\sim x \leftharpoondown y=\sim x \leftharpoondown \sim \neg y, \neg y \rightharpoonup x=\neg y \rightharpoonup \neg \sim x$.

If, moreover, M is regular, then
(7) $y \leftharpoondown x=\sim x \rightharpoonup \sim y, y \rightharpoonup x=\neg x \leftharpoondown \neg y$;
(8) $\sim(\neg x+\neg y)=\neg(\sim x+\sim y)=y \rightharpoonup \sim x=x \leftharpoondown \neg y$.

Proof.
(1) Using Lemma $2(8)$, (11) we get $\neg(\sim x+\sim y)=\neg \sim y \rightharpoonup \sim x=\sim \neg y \rightharpoonup \sim x$ $=\neg \sim x \leftharpoondown \neg y=\sim \neg x \leftharpoondown \neg y=\sim(\neg x+\neg y)$.
(2) $x \leftharpoondown \neg \sim x \leq 1 \leftharpoondown \neg \sim x=\sim \neg \sim x=\sim x$, hence $\neg \sim x \leq \neg(x \leftharpoondown \neg \sim x)$, thus by Lemma $2(11),(2), \neg(x \leftharpoondown \neg \sim x)=\neg(x \leftharpoondown \neg \sim x) \vee \neg \sim x=(\neg(x \leftharpoondown \neg \sim x)$ $\rightharpoonup \neg \sim x)+\neg \sim x=\neg(\neg \sim x+(x \leftharpoondown \neg \sim x))+\neg \sim x=\neg(\neg \sim x \vee x)+\neg \sim x=$ $\neg x+\neg \sim x=\neg x+\sim \neg x$, therefore by Lemma 2(4), $\neg(x \leftharpoondown \neg \sim x)=1$. Analogously $\sim(x \rightharpoonup \sim \neg x)=1$.
(3) By Lemma 1 we have $\neg \sim x \rightharpoonup y=(1 \rightharpoonup \sim x) \rightharpoonup y=1 \rightharpoonup(y+(1 \leftharpoondown x)) \leq$ $1 \rightharpoonup(1 \leftharpoondown(x \rightharpoonup y))=1 \rightharpoonup \sim(x \rightharpoonup y)=\neg \sim(x \rightharpoonup y)$.

Further, by Lemma 2(11), $\neg \sim(\neg \sim x \rightharpoonup y)=\neg \sim(\neg(y+\sim x))=\neg(y+\sim x)=$ $\neg \sim x \rightharpoonup y$, hence in our case we get $\neg \sim(x \rightharpoonup y) \rightharpoonup(\neg \sim x \rightharpoonup y)=\neg \sim(\neg \sim(x \rightharpoonup y)$ $\rightharpoonup(\neg \sim x \rightharpoonup y)) \leq \neg \sim((x \rightharpoonup y) \rightharpoonup(\neg \sim x \rightharpoonup y))$, and this is by Lemma 1 equal to $\neg \sim(x \rightharpoonup((\neg \sim x \rightharpoonup y)+y))=\neg \sim(x \rightharpoonup(\neg \sim x \vee y)) \leq \neg \sim((x \rightharpoonup \neg \sim x) \wedge(x \rightharpoonup y))$ $\leq \neg \sim(x \rightharpoonup \neg \sim x)=\neg 1=0$, thus $\neg \sim(x \rightharpoonup y) \leq \neg \sim x \rightharpoonup y$.

Therefore by Lemma $2(15)$ we obtain $\neg \sim(x \rightharpoonup y)=\neg \sim x \rightharpoonup \neg \sim y$. Analogously the second equality.
(4) By Lemma $2(11)$, (15), $\neg(\neg \sim x+\neg \sim y)=\neg \neg \sim y \rightharpoonup \neg \sim x=\neg \sim \neg y \rightharpoonup \neg \sim x$ $=\neg \sim \neg y \rightharpoonup x=\neg y \rightharpoonup x=\neg(x+y)$, hence by Lemma $2(2) \neg \sim(x+y)=$ $\sim \neg(x+y)=\sim \neg(\neg \sim x+\neg \sim y) \leq \neg \sim x+\neg \sim y$.
(5) $\neg \sim x \leq \neg \sim(x \vee y)$ and $\neg \sim y \leq \neg \sim(x \vee y)$, hence $\neg \sim x \vee \neg \sim y \leq \neg \sim(x \vee y)$.

Further, by (4) and (3), $\sim \sim(x \vee y)=\neg \sim((x \rightharpoonup y)+y) \leq \neg \sim(x \rightharpoonup y)+\neg \sim y=$ $(\neg \sim x \rightarrow \neg \sim y)+\neg \sim y=\neg \sim x \vee \neg \sim y$.
(6) By Lemma 2(3), (11) and by equality (3), $\sim x \leftharpoondown \sim \neg y=\sim \neg \sim x \leftharpoondown \sim \neg y$ $=\sim \neg(\sim x \leftharpoondown y)=\sim \neg \sim(x+y)=\sim(x+y)=\sim x \leftharpoondown y$. Analogously the other equality.
(7) By Lemma 2(7), $y \leftharpoondown x=\neg \sim y \leftharpoondown \neg \sim x \leq \sim x \rightharpoonup \sim y \leq y \leftharpoondown x$ and $y \rightharpoonup x=\sim \neg y \rightharpoonup \sim \neg x \leq \neg x \leftharpoondown \neg y \leq y \rightharpoonup x$.
(8) The first equality is proven in (1) for arbitrary good $D R \ell$-monoids. Further, by Lemma $2(11), \sim(\neg x+\neg y)=\sim \neg x \leftharpoondown \neg y=x \leftharpoondown \neg y$ and $\neg(\sim x+\sim y)=$ $\neg \sim y \rightharpoonup \sim x=y \rightharpoonup \sim x$.

Pseudo BL-algebras were introduced in [4] as a non-commutative generalization of Hájek's $B L$-algebras ([9]). By [12], the duals of pseudo $B L$-algebras are special cases of bounded $D R \ell$-monoids which are characterized by the identities

$$
(x \rightharpoonup y) \wedge(y \rightharpoonup x)=(x \leftharpoondown y) \wedge(y \leftharpoondown x)=0 .
$$

Lemma 4. If M is a good dual pseudo $B L$-algebra, then M satisfies the identity

$$
\neg \sim(x+y)=\neg \sim x+\neg \sim y
$$

Proof. Every dual pseudo $B L$-algebra satisfies, among others, the identity $\sim(x \vee y)=\sim x \wedge \sim y$. Hence by Lemmas 1, 2 and 3 we get $\neg \sim(x+y)=$ $\neg \sim(x+y) \vee \neg \sim x=\neg \sim x+(\neg \sim(x+y) \leftharpoondown \neg \sim x)=\neg \sim x+(\sim \neg(x+y) \leftharpoondown \neg \sim x)$ $=\neg \sim x+(\sim(\neg y \rightharpoonup x) \leftharpoondown \neg \sim x)=\neg \sim x+(\sim(\neg y \rightharpoonup \neg \sim x) \leftharpoondown \neg \sim x)=$ $\neg \sim x+\sim((\neg y \rightarrow \neg \sim x)+\neg \sim x)=\neg \sim x+\sim(\neg y \vee \neg \sim x)=\neg \sim x+\sim(\neg \sim x \vee \neg y)=$ $\neg \sim x+(\sim x \wedge \sim \neg y)=\neg \sim x+(\sim x \wedge \neg \sim y)=(\neg \sim x+\sim x) \wedge(\neg \sim x+\neg \sim y)=$ $1 \wedge(\neg \sim x+\neg \sim y)=\neg \sim x+\neg \sim y$.

Remark. The class of bounded $D R \ell$-monoids satisfying the identities from Lemma 4 is essentially larger than the class of good dual pseudo $B L$-algebras. For instance, every Brouwerian algebra is a bounded (commutative) $D R \ell$-monoid that fulfils these identities.
$G M V$-algebras were introduced in [15] (equivalently as pseudo MV-algebras in [8]) as a non-commutative generalization of $M V$-algebras. If $A=$ $(A ; \oplus, \neg, \sim, 0,1)$ is a $G M V$-algebra, set $x+y:=x \oplus y, x \odot y:=\sim(\neg x \oplus \neg y)$, $x \rightharpoonup y:=\neg y \odot x, x \leftharpoondown y:=x \odot \sim y, x \vee y:=x \oplus(y \odot \sim x)$ and $x \wedge y:=x \odot(y \oplus \sim x)$. Then $M=M(A)=(A ;+, 0,1, \neg, \leftharpoondown, \vee, \wedge)$ is a bounded $D R \ell$-monoid. (Recall that from this point of view, $G M V$-algebras form a proper subclass of the class of dual pseudo $B L$-algebras.)

BOUNDED DUALLY RESIDUATED LATTICE ORDERED MONOIDS

By [15], $D R \ell$-monoids induced by $G M V$-algebras can be characterized by means of identities with negations. Namely, a bounded $D R \ell$-monoid M is induced by a $G M V$-algebra if and only if M satisfies the identities

$$
\begin{gathered}
1 \rightharpoonup(1 \leftharpoondown x)=x=1 \leftharpoondown(1 \rightharpoonup x) \\
1 \rightharpoonup((1 \leftharpoondown x)+(1 \leftharpoondown y))=1 \leftharpoondown((1 \rightharpoonup x)+(1 \rightharpoonup y))
\end{gathered}
$$

that means

$$
\neg \sim x=x=\sim \neg x, \quad \neg(\sim x+\sim y)=\sim(\neg x+\neg y) .
$$

We have proved in Lemma $3(1)$ that the last identity is satisfied in any good bounded $D R \ell$-monoid, therefore a good bounded $D R \ell$-monoid is induced by a $G M V$-algebra if and only if it is regular.

Let us show that the class of good dual pseudo $B L$-algebras is also a variety of bounded $D R \ell$-monoids that satisfies certain identities with negations.

Proposition 5. Let M be a bounded good DRौ-monoid. Then the following conditions are equivalent.
(1) $\neg \sim(x \wedge y)=\neg \sim x \wedge \neg \sim y$;
(2) $\neg(x \vee y)=\neg x \wedge \neg y, \sim(x \vee y)=\sim x \wedge \sim y$;
(3) $\neg(x \vee y)+((x \rightharpoonup y) \wedge(y \rightharpoonup x))=\neg(x \vee y)$, $((x \leftharpoondown y) \wedge(y \leftharpoondown x))+\sim(x \vee y)=\sim(x \vee y)$.
Proof.
$(1) \Longrightarrow(2):$ By Lemma 2(12) and Lemma 3(5), $\neg x \wedge \neg y=\neg \sim(\neg x \wedge \neg y)=$ $\neg(\sim \neg x \vee \sim \neg y)=\neg(\sim \neg(x \vee y))=\neg(x \vee y)$. Analogously $\sim(x \vee y)=\sim x \wedge \sim y$.
$(2) \Longrightarrow(1):$ Using Lemma $2(12)$, we have $\neg \sim x \wedge \neg \sim y=\neg(\sim x \vee \sim y)=$ $\neg(\sim(x \wedge y))=\neg \sim(x \wedge y)$.
$(2) \Longrightarrow(3):$ By Lemma $1, \neg x=1 \rightharpoonup x=(1 \rightharpoonup(x \vee y))+((x \vee y) \rightharpoonup x)=$ $\neg(x \vee y)+(y \rightharpoonup x)$. Analogously $\neg y=\neg(x \vee y)+(x \rightharpoonup y)$.

From this we get $\neg(x \vee y)=\neg x \wedge \neg y=(\neg(x \vee y)+(y \rightharpoonup x)) \wedge(\neg(x \vee y)+$ $(x \rightharpoonup y))=\neg(x \vee y)+((y \rightharpoonup x) \wedge(x \rightharpoonup y))$.

Similarly, by Lemma $1, \sim x=1 \leftharpoondown x=((x \vee y) \leftharpoondown x)+(1 \leftharpoondown(x \vee y))$ and $\sim y=$ $1 \leftharpoondown y=((x \vee y) \leftharpoondown y)+(1 \leftharpoondown(x \vee y))$, hence $\sim(x \vee y)=((x \leftharpoondown y) \wedge(y \leftharpoondown x))$ $+\sim(x \vee y)$.
$(3) \Longrightarrow(2): \neg x \wedge \neg y=(\neg(x \vee y)+(y \rightharpoonup x)) \wedge(\neg(x \vee y)+(x \rightharpoonup y))=$ $\neg(x \vee y)+((y \rightharpoonup x) \wedge(x \rightharpoonup y))=\neg(x \vee y)$.

Similarly $\sim x \wedge \sim y=\sim(x \vee y)$.
Let us recall that the duals of pseudo $B L$-algebras are exactly the bounded $D R \ell$-monoids satisfying the equalities

$$
(x \rightharpoonup y) \wedge(y \rightharpoonup x)=0, \quad(x \leftharpoondown y) \wedge(y \leftharpoondown x)=0
$$

Corollary 6. Every good dual pseudo BL-algebra satisfies all the identities from the preceding proposition.

3. Regular and dense elements

Let M be a bounded $D R \ell$-monoid and $x \in M$. Then x is called a regular element in M if $\neg \sim x=x=\sim \neg x$.

Denote by $R(M)$ the set of all regular elements in M.
Proposition 7. If a bounded DR ℓ-monoid M is good, then $R(M)$ is a subalgebra of the reduct $(M ; 0,1, \vee, \rightharpoonup, \leftharpoondown)$.

Proof. It follows from Lemma 2(1) and Lemma 3(3), (5).
As a consequence of preceding propositions we get the following theorem.

Theorem 8.

(a) If M is a bounded good DR \boldsymbol{D}-monoid satisfying the identity $\neg \sim(x+y)$ $=\neg \sim x+\neg \sim y$, then $R(M)$ is a subalgebra of $(M ;+, 0,1, \vee, \rightharpoonup, \leftharpoondown)$ and the mapping $x \mapsto \neg \sim x$ is a retract of $(M ;+, 0,1, \vee, \rightharpoonup, \leftharpoondown)$ onto $(R(M) ;+, 0,1, \vee, \rightharpoonup, \leftharpoondown)$.
(b) If M is a good dual BL-algebra, then $R(M)$ is a subalgebra of M.

THEOREM 9. If a bounded good $D R \ell$-monoid M satisfies the identity $\neg \sim(x+y)$ $=\neg \sim x+\neg \sim y$, then $R(M)=\left(R(M) ;+, 0,1, \vee, \wedge_{R(M)}, \rightharpoonup, \leftharpoondown\right)$, where $y \wedge_{R(M)} z$ $=\neg \sim(y \wedge z)$ for any $y, z \in R(M)$, is a DRौ-monoid induced by a GMV-algebra.

Proof. From Lemma 2(2) and from the fact that operations \rightharpoonup and \leftharpoondown are antitone in the second variable it follows that $\neg \sim$ is an interior operator on the lattice $(M ; \vee, \wedge)$. Hence $\neg \sim x$ is the greatest element in $R(M)$ which is contained in $x \in M$. Furthermore, $(R(M) ; \leq)$ is a lattice and for any $y, z \in$ $R(M)$ it holds that

$$
y \vee_{R(M)} z=y \vee z, \quad y \wedge_{R(M)} z=\neg \sim(y \wedge z)
$$

Let $w, y, z \in R(M)$. Then

$$
\begin{aligned}
w+\left(y \wedge_{R(M)} z\right) & =w+\neg \sim(y \wedge z)=\neg \sim w+\neg \sim(y \wedge z)=\neg \sim(w+(y \wedge z)) \\
& =\neg \sim((w+y) \wedge(w+z))=(w+y) \wedge_{R(M)}(w+z)
\end{aligned}
$$

Similarly we can prove the distributivity from the right. Moreover, if $y, z \in$ $R(M)$, then

$$
y \rightharpoonup_{R(M)} z \quad \text { and } \quad y \leftharpoondown_{R(M)} z
$$

exist and

$$
y \rightharpoonup_{R(M)} z=y \rightharpoonup z \quad \text { and } \quad y \leftharpoondown_{R(M)} z=y \leftharpoondown z .
$$

Thus $\left(R(M) ;+, 0,1, \vee, \wedge_{R(M)}, \rightharpoonup, \leftharpoondown\right)$ is a bounded $D R \ell$-monoid. Since it is regular, it is induced by a $G M V$-algebra.

Let M be a bounded $D R \ell$-monoid. Then an element $x \in M$ is called dense if $\neg \sim x=\sim \neg x=0$. Denote by $D(M)$ the set of all dense elements in M.

Let us recall the notions of an ideal and a normal ideal of M. Let again M be a bounded $D R \ell$-monoid and $\emptyset \neq I \subseteq M$. Then I is called an ideal of M if
(a) $x, y \in I \Longrightarrow x+y \in I$;
(b) $x \in I, z \in M, z \leq x \Longrightarrow z \in I$.

An ideal I is called normal if for any $x, y \in M$,
(c) $x \rightharpoonup y \in I \Longleftrightarrow x \leftharpoondown y \in I$.

By [13], normal ideals of M are in a one-to-one correspondence with congruences on M. Namely, let I be a normal ideal of M. Then $\Theta(I)$, the congruence on M induced by I, is determined as follows: If $x, y \in M$, then

$$
\langle x, y\rangle \in \Theta(I) \Longleftrightarrow(x \rightharpoonup y) \vee(y \rightharpoonup x) \in I
$$

(which is equivalent to $(x \leftharpoondown y) \vee(y \leftharpoondown x) \in I)$.
Conversely, let Θ be a congruence on M. Then $I(\Theta)=[0]_{\Theta}=\{x \in M$: $\langle x, 0\rangle \in \Theta\}$ is the normal ideal of M corresponding to Θ.

THEOREM 10. If M is a bounded good DR ℓ-monoid, then $D(M)$ is a normal ideal of M and $M / D(M) \cong R(M)$.

Proof. Let $x, y \in D(M)$. Then by Lemma 3(4), $\neg \sim(x+y) \leq \neg \sim x+\neg \sim y$ $=0$, thus $x+y \in D(M)$. If $x \in D(M), z \in M$ and $z \leq x$, then $\neg \sim z \leq$ $\neg \sim x=0$, hence $z \in D(M)$. Therefore $D(M)$ is an ideal of M.

Further, if $x, y \in M$, then $x \rightharpoonup y \in D(M)$ iff $\neg \sim(x \rightharpoonup y)=0$ iff (by Lemmas 3(3) and 1) $\neg \sim x \leftharpoondown \neg \sim y=0$, hence again by Lemma 3(3) iff $\neg \sim(x \leftharpoondown y)$ $=0$, i.e. iff $x \leftharpoondown y \in D(M)$. Therefore the ideal $D(M)$ is normal.

Let us consider the congruence $\Theta(D(M))$ induced by $D(M)$. That means, if $x, y \in M$, then $\langle x, y\rangle \in \Theta(D(M))$ iff $(x \rightharpoonup y) \vee(y \rightharpoonup x) \in D(M)$, hence iff $\neg \sim((x \rightharpoonup y) \vee(y \rightharpoonup x))=0$, hence by Lemma 3(5) iff $\neg \sim(x \rightharpoonup y) \vee \neg \sim(y \rightharpoonup x)$ $=0$, and by Lemma $3(3)$ iff $(\neg \sim x \rightharpoonup \neg \sim y) \vee(\neg \sim y \rightarrow \neg \sim x)=0$, and this holds iff $\neg \sim x \rightarrow \neg \sim y=0=\neg \sim y \rightharpoonup \neg \sim x$. By Lemma 1 it is equivalent to $\neg \sim x \leq \neg \sim y \leq \neg \sim x$, i.e. with $\neg \sim x=\neg \sim y$.

Therefore $M / D(M) \cong R(M)$.

Remark. In an analogous theorem in [17], for a commutative bounded $D R \ell$-monoid M it was, moreover, supposed that M satisfies the identity $\neg \neg(x+y)=\neg \neg x+\neg \neg y$. The proof of Theorem 10 shows that the mentioned assumption was superfluous.

A $D R \ell$-monoid M is called (congruence) simple if M is non-trivial and has no proper congruence different from the identity.

THEOREM 11. If M is a bounded good DR ℓ-monoid satisfying the identity $\neg \sim(x+y)=\neg \sim x+\neg \sim y$, then M is simple if and only if it is induced by a simple GMV-algebra.

Proof. By Theorem $10, D(M)$ is a normal ideal in M for any bounded good $D R \ell$-monoid M. Let M satisfy the identity $\neg \sim(x+y)=\neg \sim x+\neg \sim y$ and let M be simple. Then M has a unique proper normal ideal, hence $D(M)=\{0\}$. Therefore, by Theorem $9, M$ is induced by a $G M V$-algebra.

Let M be a bounded $D R \ell$-monoid and I be a normal ideal in M. Then I is called a $G M V$-ideal if the $D R \ell$-monoid $M / \Theta(I)$ is induced by a $G M V$-algebra.
THEOREM 12. Let M be a bounded good DR \boldsymbol{L}-monoid satisfying the identity $\neg \sim(x+y)=\neg \sim x+\neg \sim y$ and I be a normal ideal in M. Then the following conditions are equivalent.
(1) I is a GMV-ideal.
(2) $x \rightharpoonup \neg \sim x \in I$ for each $x \in M$.
(3) $\neg \sim x \in I \Longrightarrow x \in I$ for each $x \in M$.
(4) $D(M) \subseteq I$.

Proof.
$(1) \Longleftrightarrow(2)$: Since M is good, $M / \Theta(I)$ is induced by a $G M V$-algebra if and only if $\langle x, \neg \sim x\rangle \in \Theta(I)$ for each $x \in M$, i.e. if and only if $(x \rightharpoonup \neg \sim x) \vee$ $(\neg \sim x \rightharpoonup x) \in I$ for each $x \in M$, and this is equivalent to $x \rightharpoonup \neg \sim x \in I$ for each $x \in M$.
$(2) \Longrightarrow(3):$ Let $x \rightharpoonup \neg \sim x \in I$ and $\neg \sim x \in I$. Then $x=x \vee \neg \sim x=$ $(x \rightharpoonup \neg \sim x)+\neg \sim x \in I$.
(3) $\Longrightarrow(4)$: Let $y \in D(M)$. Then $\neg \sim y=0 \in I$, hence $y \in I$. Therefore $D(M) \subseteq I$.
$(4) \Longrightarrow$ (1): Let $D(M) \subseteq I$. Then $M / \Theta(I)$ is isomorphic to a subalgebra of $M / \Theta(D(M))$ which is induced by a $G M V$-algebra.
TheOrem 13. Let M be a bounded good $D R \ell$-monoid satisfying the identity $\neg \sim(x+y)=\neg \sim x+\neg \sim y$. If I is a maximal ideal in M and is normal, then I is a GMV-ideal.

Proof. Let I be a maximal and normal ideal in M. Then M / I is a simple $D R \ell$-monoid, thus by Theorem 11 we have that I is a $G M V$-ideal.

BOUNDED DUALLY RESIDUATED LATTICE ORDERED MONOIDS

REFERENCES

[1] CHANG, C. C.: Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88 (1958), 467-490.
[2] CIGNOLI, R. L. O.-D'OTTAVIANO, I. M. L.-MUNDICI, D. : Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
[3] CIGNOLI, R.-TORRENS, A.: Hájek basic fuzzy logic and Lukasiewicz infinite valued logic, Arch. Math. Logic 42 (2003), 361-370.
[4] DI NOLA, A.-GEORGESCU, G.-IORGULESCU, A.: Pseudo BL-algebras I, Mult.-Valued Log. 8 (2002), 673-714.
[5] DI NOLA, A.-GEORGESCU, G.-IORGULESCU, A.: Pseudo BL-algebras II, Mult.-Valued Log. 8 (2002), 715-750.
[6] DVUREČENSKIJ, A.-PULMANNOVÁ, S.: New Trends in Quantum Structures, Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000.
[7] GEORGESCU, G. : Bosbach states on fuzzy structures, Soft Comput. 8 (2004), 217-230.
[8] GEORGESCU, G.-IORGULESCU, A.: Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95-135.
[9] HÁJEK, P. : Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Amsterdam, 1998.
[10] HÁJEK, P. : Fuzzy logics with non-commutative conjunction, J. Logic Comput. 13 (2003), 469479.
[11] KOVÁŘ, T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacký Univ., Olomouc, 1996.
[12] KÜHR, J. : Pseudo BL-algebras and DRौ-monoids, Math. Bohem. 128 (2003), 199-208.
[13] KÜHR, J.: Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacký Univ., Olomouc, 2003.
[14] LAMBEK, J.: Some lattice models of bilinear logic, Algebra Universalis 34 (1995), 541-550.
[15] RACHUNEK, J.: A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273.
[16] RACHUNEK, J.: Prime spectra of non-commutative generalizations of $M V$-algebras, Algebra Universalis 48 (2002), 151-169.
[17] RACHŮNEK, J.-SLEZÁK, V.: Negation in bounded commutative DRौ-monoids, Czechoslovak Math. J. (To appear).
[18] SWAMY, K. L. N. : Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965), 105114.

Received August 16, 2004
Revised November 20, 2004

Department of Algebra and Geometry
Faculty of Sciences
Palacký University
Tomkova 40
CZ-779 00 Olomouc
CZECH REPUBLIC
E-mail: rachunek@inf.upol.cz
slezakv@seznam.cz

[^0]: 2000 Mathematics Subject Classification: Primary 06D35; Secondary 06F15, 03G20. Keywords: $D R \ell$-monoid, good bounded $D R \ell$-monoid, pseudo $B L$-algebra, $G M V$-algebra, negation.

