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ABSTRACT. In this paper, we show tha t if Sx and S2 are two separable, real 
inner product spaces such tha t P(SX) is algebraically isomorphic to P(S2), where 
P(S) denotes the modular lattice of finite and cofinite dimensional subspaces of 
an inner product space S, then Sx and S2 are isomorphic as inner product spaces. 
The proof makes use of Gleason's theorem. We also remark tha t , as a consequence 
of this, if for two separable, real inner product spaces S1, and S2, the respective 
complete lattices of strongly closed subspaces are isomorphic, then Sx and S2 

are unitarily equivalent. In particular, if we just restrict ourselves to complete 
inner product spaces, we obtain the classical Wigner 's theorem ([WIGNER, E. P.: 
Group Theory and its Applications to Quantum Mechanics of Atomic Spectra, 
Acad. Press. Inc., New York, 1959]). 

1. Introduc t ion 

For an inner product space 5 , let P(S) (see [3]) denote the family of finite 
and cofinite dimensional subspaces of S} The idea is to show that if S1 and 
S2 are two separable real inner product spaces such that P(S1) is isomorphic 
to P(S2), then S± and S2 are isomorphic as inner product spaces. 

We say that P(S1) is isomorphic to P(S2) when there exists a bijective 
mapping ip: P(S1) —> P(S2) such that: 

(1) ^(S1) = S2'} 

(2) ij(ALsi) = {ip(A))±S2 for all A G P(SX)\ 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 03G12; Secondary 81P10. 
K e y w o r d s : Hilbert space, inner product space, isomorphisms of inner product spaces. 
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XA subspace A of S is cofinite dimensional if there exists a finite dimensional subspace M 

of S such tha t A = Mx . 
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(3) ip(A V B) = tp(A) V ip(B), whenever A, B e P(SX) and A C -B1-5- ; 
(4) ip-1 satisfies (1), (2) and (3). 

2. Preliminary results 

We first prove that P(S) is an orthomodular lattice. 

PROPOSITION 2.1. P(S) is an orthomodular lattice with the largest and 
smallest elements being S and {0} respectively. 

P r o o f . First we show that P(S) is a lattice. If A and B are either both 
finite or cofinite dimensional, then obviously we have AW B = A + B. If A is 
finite and B is cofinite dimensional, then, by noting that 

(A + B)L =ALnBL C-B x , 

it follows that A + B is cofinite dimensional. (The other case is the same). 
We now show that P(S) is orthomodular. Let A C B be elements of P(S). 

We certainly have that A © (B C\ AL) C B. Moreover, since A C B, we have 
B = B n (A © AL) c (B n A) © (£ n A1) = A © (JB n A1). • 

In [6], the family of complete-cocomplete subspaces of an inner product space, 
denoted by C(S), was defined and investigated. It was shown that the structure 
of C(S) can be very different for different separable inner product spaces. It is 
evident that P(S) is a suborthomodular lattice of C(S), and using an argument 
similar to that used in [1], one can easily show that P(S) admits no a-additive 
states. 

LEMMA 2.2. Let A G P(S1), dim A = n < oo; then dim ip(A) =n. 

P r o o f . Let {e- : i < n) be an ONB for A. Then 

*(-4)=-*(V[ej) = V*(.eJ) 
^ i<n ' i<n 

Since for i ^ j we have ,0([eJ)±'0([eJ.]), it follows that dim A < dimtp(A). On 
the other hand, let {/• : ie 1} be a MONS in tp(A). Then ij)(A) = V [/J. Let 
I0 C I such that \I0\ = n. Then ieI 

A = r1 MA)) = r1 (V i/Jv V w) = V ̂  (W)v ̂ _1 ( V w) 

and therefore dim_4 > dim-0(A). • 
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As a consequence of Lemma 2.2, we have that atoms in P(SX) are mapped 
onto the atoms of P(S2). Since 5X is separable, we can always find an orthonor-
mal basis { e j of Sx in Sx, see [3], [5]. For every i € N, let f{ be a unit vector 
in S2 such that V>(N) = [/J. 

For every atom in P(S1)i choose a representative vector — i.e., a unit vector 
in Sx which spans the atom. For the atom [ej, the representative is chosen to be 
e{, and to make the proof of Lemma 2.9 free of unnecessary awkward notation, 
we also take the representative of the following atoms to be as follows: 

h + es] -> Vij = -j=(e{ + ed) ij e N; 

i 

Þfc + efc+i + - + Є|l->-«= л Л + l-E „—, - , e . l>keN. 

Denote by 6 * the union of {0} and the collection of all these unit vectors. 
For every x e &* (x ^ 0), let x be a unit vector in ip([x]). (To simplify the 
notation we set e{ to be equal to /^). The union of {0} and the collection of all 
these unit vectors in S2 is denoted by 62". 

Moreover, for every i G N let A{ = span{ef, e i + 1 , ei+2}. It is then not difficult 
to see that ^(AJ = span{/., / i + 1 , / i + 2 } . 

Consider the Gleason state se. on P(S1) defined by 

sei(M) = (PMei,ei). 

This state induces a state s€, on P(S2) as follows: 

*ei(") = *ei(l>-1(N)). (2.1) 

One can easily verify that se. (ip(Aj)) = 1 if and only if i e { i , j + l , j + 2 } . 
Moreover, for every i eN, the restriction of se. on L(ip(Ai)) defines a state on 

HWi)). 
The cornerstone of quantum logic theory on L(H) (the complete orthomodu-

lar poset of closed subspaces of aHilbert space) is Gleason's theorem ([3], [4], [7]). 
This states that: 

If H is a separable Hilbert space, dim H > 3, then for every state s 
on L(H), there exists an orthonormal sequence of vectors {x{} C H 
such that 

s(M) = Y/s([xi]){PMxi,xi), M G L(H), 

where PM denotes the orthoprojection of H onto M. 
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This fundamental and highly non-trivial result is of crucial importance for the 
probabilistic theory of L(H) and has many generalization and applications (see, 
for example [3]). 

We shall need the following proposition ([2]). 

LEMMA 2.4. Let S be any inner product space, and suppose that sx, s2 are 
two (finitely-additive) states on P(S) such that: 

(i) 51(M) = s2(M) = 1 for some M C S, M finite dimensional; 
(ii) Sl(K) = s2(K) for all K C M. 

Then Sl(L) = s2(L) holds for all L G P(S). 

P r o o f . It suffices to show that 51([x]) = s2([«x]) holds for all x G S. 
Let x G 5, ||x|| = 1, be arbitrary. If x G M, result follows by hypothesis. 
Suppose that x £ M. Let JV be a finite dimensional subspace of *?, of dimension 
at least equal to 3, including M and x. We certainly have that «s1|jy and 
32 | jy are states on L(N), and therefore, by Gleason's theorem, there exist finite 
orthonormal sequences {ei : i < n} and {fi: i < n} (n — dim TV) in N such 
that 

s1\N(K) = s1(K) = Y,s([ei})(PKei,ei), 
i<n 

s2\N(K) = s2(K) = "ž2s([fi))(PKUfi) 
І<П 

for all KcN. 

Let z € M±N . Then 

0 = -i(И)=£фJ)<- э

We.,e ł) l 
І<П 

o = '2([*])=Y,*(ШЩ,]Ufi)-
i<n 

This implies that 

z G span{e^ : i < n}±N , 

z G span{/- : i < n}±N . 

Hence, {ei : i < n} C M and {/• : i < n} c M. 
But 

X = PMX + PM+-X = XM "+" XM±^ 
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and therefore, 

«i(w) = E-W(pwei'ei> 
i<n 

= E*(N)K^>I2 

i<n 

= Es(N)i^M>e
i>i 

i<n 

= E««e. JM\ 
i<n 

JM 

= IMI2£«(IW^> 
i<n 

= .WlVM) • 
Similarly, s2([x]) = ||xM | |2s2([a;M]). Then, 

»M) = \M\\iM) 
= . . - ^ . . ^ ( f r j j ) (by hypothesis) 
= s2([x]). 

This completes the proof. Q 

COROLLARY 2.5. If s is a state on P(S) that lives on an atom (i.e. there 
exists a unit vector u € S such that s{[u]) = 1), then s is determined by 

s(N) = (PNu,u). 

COROLLARY 2.6. The state se. defined in equation (2.1) satisfies: 

sei(N) = (PNfi,fi) (2.2) 

for all N e P(S2). 

LEMMA 2.7. Let 0 ̂  x = £ a ie i € 6 + . T/ien /or every i 6 N , we ftowe: 

(x, fd) = ±at. 

P r o o f . This follows from the following equalities: 

\°i\2 = *«([*]) = *«([*]) = i*>fi)2 • 

D 
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DEFINITION 2.1. For any unit vector x G &* and i G N satisfying (x, e{) ^ 0, 
define 

«-•'>-£$<-*>• 
When (x, e{) = 0, we set /?(x, i) = 1. 

LEMMA 2.8. For any unit vector x G 6 * , £/ie vector x can be expressed in 
terms of the fi 's as follows: 

x = ^20(x,i)aifi. 
ien 

P r o o f . First we observe that 

X -Xф(An) +x(ф(An))± 

- 2^(xi íiííi + x(4,(An))± 
i<n 

= Y,0(X>Í)aifi+ÍMAn))±-
i<n 

Therefore 

l*w.4.))-lґ = i i* i i 2 -Ew a 

i<n 

= 1 - ^ l a J 2 - > 0 as n - > o o , 
i<n 

LEMMA 2.9. Let x e&?. If (x,e{) ^ 0 and (x,ej) ^ 0, then 

P(x,i) = PiVipi) 

0(xJ) PiVijJ) ' 

P r o o f . Recall that 

*« = ^ e ' + 7I e-€ 6-"-
It is not difficult to see that 

yn = -^G/y . - ) / . + -jšP(Vij>3)fj 
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We have 

= ^ ( N ) = ^,([^) = I ( ^ ^ ) I 2 

_ /_(_________ ___________i___\2 

I V2 V2 ) ' 
Since the field is real, it follows that 

p(x,i)p(yipi) = p(xJ)(3(yijJ), 

and therefore, 
0{x,i) __ P(yipi) 
P(xJ) P(yipj)' 

3. Main result 

Let 0 7-= x G &i be arbitrary and let k be the smallest natural number 
satisfying (x,ek) ^ 0. For any j G N satisfying (x,e-) ^ 0, by Lemma 2.9, we 
have 

P(xJ) __ /%fcj>J) 

/?(*,*) /%„,*)' 
This implies that 

But since, from Lemma 2.9, 

P(zipk) = p(Zlk,k) 

0(~y,-) P(zlk,l)' 

we have that 

For any j G N, define: 

Thus, we have that 

l^^ifc.^ i e N 
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+ So if we define U: 6]*" -> S2 by 

.„ . /^(E«^) = E7^/, if^o, 
U(x) = < ViGN ' z6N (3.1) 

[ 0 if x = 0, 

we certainly have that U is well defined on &f and moreover, it is an injection 
into S2. We now prove the claim put in the abstract. 

THEOREM 3.1. Let Sx and S2 be two separable real inner product spaces. 
Then, P(S1) is isomorphic to P(S2) if and only if S1 and S2 are isomorphic 
as inner product spaces. 

P r o o f . If Sx is isomorphic to S2, then we obviously have that P(S1) is 
isomorphic to P(S2). Suppose that P(S1) is isomorphic to P(S2) as understood 
in the beginning of this note. We show that there exists a bijective operator T 
from Sx onto S2 such that (Tx, Ty) = (x, y) for all x,y G Sx. 

Define T: Sx -> S2 by: 

T(v) = T(Xx) for some unique x G &f 

= XU(x) 

where U is as defined in equation (3.1). Clearly T is a bijection between Sx 

and S2. We show that T is linear. From the same definition, it is clear that for 
every peR, T(pv) = pT(v). Let v, w G 5 2 . Put S- = (v, e{) and 0. = (w, e•). 
Then 

T(v + w) = T('£(Si + Oi)et
>} 

= T(w,, + -»)[jf>7»lg« + »H)-
where K = ±1 so that [,, * ,, XI (5i + ^ ) e J £ e i~ • T h e n w e have 

L " " i G N J 

= * + » i , g ( ^ + ^ > . 

J6N tgN 

= T(v) + T(w). 

116 



ON ISOMORPHISMS OF INNER PRODUCT SPACES 

This completes the proof. • 

Let F(S) denote the complete lattice of strongly closed subspaces of S and 
E(S) the orthomodular poset of splitting subspaces of S. We recall that 

P(S) C C(S) C E(S) C F(S). 

COROLLARY 3.2. The following statements are equivalent: 
(1) Sx is isomorphic to S2 (as inner product spaces); 
(2) P(SX) is isomorphic to P(S2) (as orthomodular lattices); 
(3) C^) is isomorphic to C(S2) (as orthomodular posets); 
(4) E(SX) is isomorphic to E(S2) (as orthomodular posets); 
(5) F(S1) is isomorphic to F(S2) (as complete lattices). 
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