Mathematic Slovaca

David Buhagiar; Emmanuel Chetcuti
 On isomorphisms of inner product spaces

Mathematica Slovaca, Vol. 54 (2004), No. 2, 109--117

Persistent URL: http://dml.cz/dmlcz/133055

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON ISOMORPHISMS OF INNER PRODUCT SPACES

David Buhagiar* - Emanuel Chetcuti**
(Communicated by Anatolij Dvurečenskij)

Abstract

In this paper, we show that if S_{1} and S_{2} are two separable, real inner product spaces such that $P\left(S_{1}\right)$ is algebraically isomorphic to $P\left(S_{2}\right)$, where $P(S)$ denotes the modular lattice of finite and cofinite dimensional subspaces of an inner product space S, then S_{1} and S_{2} are isomorphic as inner product spaces. The proof makes use of Gleason's theorem. We also remark that, as a consequence of this, if for two separable, real inner product spaces S_{1}, and S_{2}, the respective complete lattices of strongly closed subspaces are isomorphic, then S_{1} and S_{2} are unitarily equivalent. In particular, if we just restrict ourselves to complete inner product spaces, we obtain the classical Wigner's theorem ([WIGNER, E. P.: Group Theory and its Applications to Quantum Mechanics of Atomic Spectra, Acad. Press. Inc., New York, 1959]).

1. Introduction

For an inner product space S, let $P(S)$ (see [3]) denote the family of finite and cofinite dimensional subspaces of $S .{ }^{1}$ The idea is to show that if S_{1} and S_{2} are two separable real inner product spaces such that $P\left(S_{1}\right)$ is isomorphic to $P\left(S_{2}\right)$, then S_{1} and S_{2} are isomorphic as inner product spaces.

We say that $P\left(S_{1}\right)$ is isomorphic to $P\left(S_{2}\right)$ when there exists a bijective mapping $\psi: P\left(S_{1}\right) \rightarrow P\left(S_{2}\right)$ such that:
(1) $\psi\left(S_{1}\right)=S_{2}$;
(2) $\psi\left(A^{\perp S_{1}}\right)=(\psi(A))^{\perp S_{2}}$ for all $A \in P\left(S_{1}\right)$;

2000 Mathematics Subject Classification: Primary 03G12; Secondary 81P10.
Keywords: Hilbert space, inner product space, isomorphisms of inner product spaces.
Research was partially supported by VEGA 2/3163/23.
${ }^{1}$ A subspace A of S is cofinite dimensional if there exists a finite dimensional subspace M of S such that $A=M^{\perp}$.

DAVID BUHAGIAR - EMANUEL CHETCUTI

(3) $\psi(A \vee B)=\psi(A) \vee \psi(B)$, whenever $A, B \in P\left(S_{1}\right)$ and $A \subset B^{\perp_{S_{1}}}$;
(4) ψ^{-1} satisfies (1), (2) and (3).

2. Preliminary results

We first prove that $P(S)$ is an orthomodular lattice.
PROPOSITION 2.1. $P(S)$ is an orthomodular lattice with the largest and smallest elements being S and $\{0\}$ respectively.

Proof. First we show that $P(S)$ is a lattice. If A and B are either both finite or cofinite dimensional, then obviously we have $A \vee B=A+B$. If A is finite and B is cofinite dimensional, then, by noting that

$$
(A+B)^{\perp}=A^{\perp} \cap B^{\perp} \subset B^{\perp}
$$

it follows that $A+B$ is cofinite dimensional. (The other case is the same).
We now show that $P(S)$ is orthomodular. Let $A \subset B$ be elements of $P(S)$. We certainly have that $A \oplus\left(B \cap A^{\perp}\right) \subset B$. Moreover, since $A \subset B$, we have $B=B \cap\left(A \oplus A^{\perp}\right) \subset(B \cap A) \oplus\left(B \cap A^{\perp}\right)=A \oplus\left(B \cap A^{\perp}\right)$.

In [6], the family of complete-cocomplete subspaces of an inner product space, denoted by $C(S)$, was defined and investigated. It was shown that the structure of $C(S)$ can be very different for different separable inner product spaces. It is evident that $P(S)$ is a suborthomodular lattice of $C(S)$, and using an argument similar to that used in [1], one can easily show that $P(S)$ admits no σ-additive states.

Lemma 2.2. Let $A \in P\left(S_{1}\right), \operatorname{dim} A=n<\infty$, then $\operatorname{dim} \psi(A)=n$.
Proof. Let $\left\{e_{i}: i \leq n\right\}$ be an ONB for A. Then

$$
\psi(A)=\psi\left(\bigvee_{i \leq n}\left[e_{i}\right]\right)=\bigvee_{i \leq n} \psi\left(\left[e_{i}\right]\right)
$$

Since for $i \neq j$ we have $\psi\left(\left[e_{i}\right]\right) \perp \psi\left(\left[e_{j}\right]\right)$, it follows that $\operatorname{dim} A \leq \operatorname{dim} \psi(A)$. On the other hand, let $\left\{f_{i}: i \in I\right\}$ be a MONS in $\psi(A)$. Then $\psi(\bar{A})=\bigvee_{i \in I}\left[f_{i}\right]$. Let
$I_{0} \subset I$ such that $\left|I_{0}\right|=n$. Then

$$
A=\psi^{-1}(\psi(A))=\psi^{-1}\left(\bigvee_{i \in I_{0}}\left[f_{i}\right] \vee \bigvee_{i \in I \backslash I_{0}}\left[f_{i}\right]\right)=\bigvee_{i \in I_{0}} \psi^{-1}\left(\left[f_{i}\right]\right) \vee \psi^{-1}\left(\bigvee_{i \in I \backslash I_{0}}\left[f_{i}\right]\right)
$$

and therefore $\operatorname{dim} A \geq \operatorname{dim} \psi(A)$.

As a consequence of Lemma 2.2, we have that atoms in $P\left(S_{1}\right)$ are mapped onto the atoms of $P\left(S_{2}\right)$. Since S_{1} is separable, we can always find an orthonormal basis $\left\{e_{i}\right\}$ of $\overline{S_{1}}$ in S_{1}, see [3], [5]. For every $i \in \mathbb{N}$, let f_{i} be a unit vector in S_{2} such that $\psi\left(\left[e_{i}\right]\right)=\left[f_{i}\right]$.

For every atom in $P\left(S_{1}\right)$, choose a representative vector - i.e., a unit vector in S_{1} which spans the atom. For the atom $\left[e_{i}\right]$, the representative is chosen to be e_{i}, and to make the proof of Lemma 2.9 free of unnecessary awkward notation, we also take the representative of the following atoms to be as follows:

$$
\begin{array}{rlr}
{\left[e_{i}+e_{j}\right] \rightarrow y_{i j}} & =\frac{1}{\sqrt{2}}\left(e_{i}+e_{j}\right) & i, j \in \mathbb{N} \\
{\left[e_{k}+e_{k+1}+\cdots+e_{l}\right] \rightarrow z_{k l}} & =\frac{1}{\sqrt{l-k+1}} \sum_{i=k}^{l} e_{i} & l>k \in \mathbb{N}
\end{array}
$$

Denote by \mathfrak{S}_{1}^{+}the union of $\{0\}$ and the collection of all these unit vectors. For every $x \in \mathfrak{S}_{1}^{+}(x \neq 0)$, let \hat{x} be a unit vector in $\psi([x])$. (To simplify the notation we set \hat{e}_{i} to be equal to f_{i}). The union of $\{0\}$ and the collection of all these unit vectors in S_{2} is denoted by \mathfrak{S}_{2}^{+}.

Moreover, for every $i \in \mathbb{N}$ let $A_{i}=\operatorname{span}\left\{e_{i}, e_{i+1}, e_{i+2}\right\}$. It is then not difficult to see that $\psi\left(A_{i}\right)=\operatorname{span}\left\{f_{i}, f_{i+1}, f_{i+2}\right\}$.

Consider the Gleason state $s_{e_{i}}$ on $P\left(S_{1}\right)$ defined by

$$
s_{e_{i}}(M)=\left\langle P_{M} e_{i}, e_{i}\right\rangle
$$

This state induces a state $\hat{s}_{e_{i}}$ on $P\left(S_{2}\right)$ as follows:

$$
\begin{equation*}
\hat{s}_{e_{i}}(N)=s_{e_{i}}\left(\psi^{-1}(N)\right) \tag{2.1}
\end{equation*}
$$

One can easily verify that $\hat{s}_{e_{i}}\left(\psi\left(A_{j}\right)\right)=1$ if and only if $i \in\{j, j+1, j+2\}$. Moreover, for every $i \in \mathbb{N}$, the restriction of $\hat{s}_{e_{i}}$ on $L\left(\psi\left(A_{i}\right)\right)$ defines a state on $L\left(\psi\left(A_{i}\right)\right)$.

The cornerstone of quantum logic theory on $L(H)$ (the complete orthomodular poset of closed subspaces of a Hilbert space) is Gleason's theorem ([3], [4], [7]). This states that:

If H is a separable Hilbert space, $\operatorname{dim} H \geq 3$, then for every state s on $L(H)$, there exists an orthonormal sequence of vectors $\left\{x_{i}\right\} \subset H$ such that

$$
s(M)=\sum_{i \in \mathbb{N}} s\left(\left[x_{i}\right]\right)\left\langle P_{M} x_{i}, x_{i}\right\rangle, \quad M \in L(H)
$$

where P_{M} denotes the orthoprojection of H onto M.

DAVID BUHAGIAR - EMANUEL CHETCUTI

This fundamental and highly non-trivial result is of crucial importance for the probabilistic theory of $L(H)$ and has many generalization and applications (see, for example [3]).

We shall need the following proposition ([2]).
LEMMA 2.4. Let S be any inner product space, and suppose that s_{1}, s_{2} are two (finitely-additive) states on $P(S)$ such that:
(i) $s_{1}(M)=s_{2}(M)=1$ for some $M \subset S, M$ finite dimensional;
(ii) $s_{1}(K)=s_{2}(K)$ for all $K \subset M$.

Then $s_{1}(L)=s_{2}(L)$ holds for all $L \in P(S)$.
Proof. It suffices to show that $s_{1}([x])=s_{2}([x])$ holds for all $x \in S$. Let $x \in S,\|x\|=1$, be arbitrary. If $x \in M$, result follows by hypothesis. Suppose that $x \notin M$. Let N be a finite dimensional subspace of S, of dimension at least equal to 3 , including M and x. We certainly have that $\left.s_{1}\right|_{N}$ and $\left.s_{2}\right|_{N}$ are states on $L(N)$, and therefore, by Gleason's theorem, there exist finite orthonormal sequences $\left\{e_{i}: i \leq n\right\}$ and $\left\{f_{i}: i \leq n\right\}(n=\operatorname{dim} N)$ in N such that

$$
\begin{aligned}
& \left.s_{1}\right|_{N}(K)=s_{1}(K)=\sum_{i \leq n} s\left(\left[e_{i}\right]\right)\left\langle P_{K} e_{i}, e_{i}\right\rangle \\
& \left.s_{2}\right|_{N}(K)=s_{2}(K)=\sum_{i \leq n} s\left(\left[f_{i}\right]\right)\left\langle P_{K} f_{i}, f_{i}\right\rangle
\end{aligned}
$$

for all $K \subset N$.
Let $z \in M^{\perp_{N}}$. Then

$$
\begin{aligned}
& 0=s_{1}([z])=\sum_{i \leq n} s\left(\left[e_{i}\right]\right)\left\langle P_{[z]} e_{i}, e_{i}\right\rangle \\
& 0=s_{2}([z])=\sum_{i \leq n} s\left(\left[f_{i}\right]\right)\left\langle P_{[z]} f_{i}, f_{i}\right\rangle
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& z \in \operatorname{span}\left\{e_{i}: \quad i \leq n\right\}^{\perp_{N}} \\
& z \in \operatorname{span}\left\{f_{i}: \quad i \leq n\right\}^{\perp_{N}}
\end{aligned}
$$

Hence, $\left\{e_{i}: i \leq n\right\} \subset M$ and $\left\{f_{i}: i \leq n\right\} \subset M$.
But

$$
x=P_{M} x+P_{M^{\perp}} x=x_{M}+x_{M^{\perp}}
$$

and therefore,

$$
\begin{aligned}
s_{1}([x]) & =\sum_{i<n} s\left(\left[e_{i}\right]\right)\left\langle P_{[x]} e_{i}, e_{i}\right\rangle \\
& =\sum_{i<n} s\left(\left[e_{i}\right]\right)\left|\left\langle x, e_{i}\right\rangle\right|^{2} \\
& =\sum_{i<n} s\left(\left[e_{i}\right]\right)\left|\left\langle x_{M}, e_{i}\right\rangle\right|^{2} \\
& =\sum_{i<n} s\left(\left[e_{i}\right]\right)\left\|x_{M}\right\|^{2}\left|\left\langle\frac{x_{M}}{\left\|x_{M}\right\|}, e_{i}\right\rangle\right|^{2} \\
& =\left\|x_{M}\right\|^{2} \sum_{i<n} s\left(\left[e_{i}\right]\right)\left\langle P_{\left[x_{M}\right]} e_{i}, e_{i}\right\rangle \\
& =\left\|x_{M}\right\|^{2} s_{1}\left(\left[x_{M}\right]\right) .
\end{aligned}
$$

Similarly, $s_{2}([x])=\left\|x_{M}\right\|^{2} s_{2}\left(\left[x_{M}\right]\right)$. Then,

$$
\begin{aligned}
s_{1}([x]) & =\left\|x_{M}\right\|^{2} s_{1}\left(\left[x_{M}\right]\right) \\
& =\left\|x_{M}\right\|^{2} s_{2}\left(\left[x_{M}\right]\right) \quad \text { (by hypothesis) } \\
& =s_{2}([x])
\end{aligned}
$$

This completes the proof.
Corollary 2.5. If s is a state on $P(S)$ that lives on an atom (i.e. there exists a unit vector $u \in S$ such that $s([u])=1$), then s is determined by

$$
s(N)=\left\langle P_{N} u, u\right\rangle
$$

COROLLARY 2.6. The state $\hat{s}_{e_{i}}$ defined in equation (2.1) satisfies:

$$
\begin{equation*}
\hat{s}_{e_{i}}(N)=\left\langle P_{N} f_{i}, f_{i}\right\rangle \tag{2.2}
\end{equation*}
$$

for all $N \in P\left(S_{2}\right)$.
LEMMA 2.7. Let $0 \neq x=\sum_{i \in \mathbb{N}} \alpha_{i} e_{i} \in \mathfrak{S}_{1}^{+}$. Then for every $i \in \mathbb{N}$, we have:

$$
\left\langle\hat{x}, f_{i}\right\rangle= \pm \alpha_{i}
$$

Proof. This follows from the following equalities:

$$
\left|\alpha_{i}\right|^{2}=s_{e_{i}}([x])=\hat{s}_{e_{i}}([\hat{x}])=\left\langle\hat{x}, f_{i}\right\rangle^{2} .
$$

DAVID BUHAGIAR - EMANUEL CHETCUTI

Definition 2.1. For any unit vector $x \in \mathfrak{S}_{1}^{+}$and $i \in \mathbb{N}$ satisfying $\left\langle x, e_{i}\right\rangle \neq 0$, define

$$
\beta(x, i)=\frac{\left\langle\hat{x}, f_{i}\right\rangle}{\left\langle x, e_{i}\right\rangle}(= \pm 1) .
$$

When $\left\langle x, e_{i}\right\rangle=0$, we set $\beta(x, i)=1$.
Lemma 2.8. For any unit vector $x \in \mathfrak{S}_{1}^{+}$, the vector \hat{x} can be expressed in terms of the f_{i} 's as follows:

$$
\hat{x}=\sum_{i \in \mathbb{N}} \beta(x, i) \alpha_{i} f_{i} .
$$

Proof. First we observe that

$$
\begin{aligned}
\hat{x} & =\hat{x}_{\psi\left(A_{n}\right)}+\hat{x}_{\left(\psi\left(A_{n}\right)\right)^{\perp}} \\
& =\sum_{i \leq n}\left\langle\hat{x}, f_{i}\right\rangle f_{i}+\hat{x}_{\left(\psi\left(A_{n}\right)\right)^{\perp}} \\
& =\sum_{i \leq n} \beta(x, i) \alpha_{i} f_{i}+\hat{x}_{\left(\psi\left(A_{n}\right)\right)^{\perp}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left\|\hat{x}_{\left(\psi\left(A_{n}\right)\right)^{\perp}}\right\|^{2} & =\|\hat{x}\|^{2}-\sum_{i \leq n}\left|\alpha_{i}\right|^{2} \\
& =1-\sum_{i \leq n}\left|\alpha_{i}\right|^{2} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
\end{aligned}
$$

Lemma 2.9. Let $x \in \mathfrak{S}_{1}^{+}$. If $\left\langle x, e_{i}\right\rangle \neq 0$ and $\left\langle x, e_{j}\right\rangle \neq 0$, then

$$
\frac{\beta(x, i)}{\beta(x, j)}=\frac{\beta\left(y_{i j}, i\right)}{\beta\left(y_{i j}, j\right)} .
$$

Proof. Recall that

$$
y_{i j}=\frac{1}{\sqrt{2}} e_{i}+\frac{1}{\sqrt{2}} e_{j} \in \mathfrak{S}_{1}^{+} .
$$

It is not difficult to see that

$$
\hat{y}_{i j}=\frac{1}{\sqrt{2}} \beta\left(y_{i j}, i\right) f_{i}+\frac{1}{\sqrt{2}} \beta\left(y_{i j}, j\right) f_{j} .
$$

We have

$$
\begin{aligned}
\left(\frac{\alpha_{i}}{\sqrt{2}}+\frac{\alpha_{j}}{\sqrt{2}}\right)^{2} & =\left|\left\langle y_{i j}, x\right\rangle\right|^{2} \\
& =s_{y_{i j}}([x])=\hat{s}_{y_{i j}}([\hat{x}])=\left|\left\langle\hat{y}_{i j}, \hat{x}\right\rangle\right|^{2} \\
& =\left(\frac{\beta(x, i) \beta\left(y_{i j}, i\right) \alpha_{i}}{\sqrt{2}}+\frac{\beta(x, j) \beta\left(y_{i j}, j\right) \alpha_{j}}{\sqrt{2}}\right)^{2}
\end{aligned}
$$

Since the field is real, it follows that

$$
\beta(x, i) \beta\left(y_{i j}, i\right)=\beta(x, j) \beta\left(y_{i j}, j\right),
$$

and therefore,

$$
\frac{\beta(x, i)}{\beta(x, j)}=\frac{\beta\left(y_{i j}, i\right)}{\beta\left(y_{i j}, j\right)}
$$

3. Main result

Let $0 \neq x \in \mathfrak{S}_{1}^{+}$be arbitrary and let k be the smallest natural number satisfying $\left\langle x, e_{k}\right\rangle \neq 0$. For any $j \in \mathbb{N}$ satisfying $\left\langle x, e_{j}\right\rangle \neq 0$, by Lemma 2.9, we have

$$
\frac{\beta(x, j)}{\beta(x, k)}=\frac{\beta\left(y_{k j}, j\right)}{\beta\left(y_{k j}, k\right)}
$$

This implies that

$$
\beta(x, j)=\beta(x, k) \frac{\beta\left(z_{1 j}, j\right)}{\beta\left(z_{1 j}, k\right)}
$$

But since, from Lemma 2.9,

$$
\frac{\beta\left(z_{1 j}, k\right)}{\beta\left(z_{1 j}, 1\right)}=\frac{\beta\left(z_{1 k}, k\right)}{\beta\left(z_{1 k}, 1\right)}
$$

we have that

$$
\beta(x, j)=\beta(x, k) \frac{\beta\left(z_{1 k}, 1\right)}{\beta\left(z_{1 k}, k\right)} \frac{\beta\left(z_{1 j}, j\right)}{\beta\left(z_{1 j}, 1\right)} .
$$

For any $j \in \mathbb{N}$, define:

$$
\gamma_{j}=\frac{\beta\left(z_{1 j}, j\right)}{\beta\left(z_{1 j}, 1\right)} .
$$

Thus, we have that

$$
\hat{x}=\beta(x, k) \frac{\beta\left(z_{1 k}, 1\right)}{\beta\left(z_{1 k}, k\right)} \sum_{i \in \mathbb{N}} \gamma_{i} \alpha_{i} f_{i} .
$$

So if we define $U: \mathfrak{S}_{1}^{+} \rightarrow S_{2}$ by

$$
U(x)= \begin{cases}U\left(\sum_{i \in \mathbb{N}} \alpha_{i} e_{i}\right)=\sum_{i \in \mathbb{N}} \gamma_{i} \alpha_{i} f_{i} & \text { if } x \neq 0 \tag{3.1}\\ 0 & \text { if } x=0\end{cases}
$$

we certainly have that U is well defined on \mathfrak{S}_{1}^{+}and moreover, it is an injection into S_{2}. We now prove the claim put in the abstract.

THEOREM 3.1. Let S_{1} and S_{2} be two separable real inner product spaces. Then, $P\left(S_{1}\right)$ is isomorphic to $P\left(S_{2}\right)$ if and only if S_{1} and S_{2} are isomorphic as inner product spaces.

Proof. If S_{1} is isomorphic to S_{2}, then we obviously have that $P\left(S_{1}\right)$ is isomorphic to $P\left(S_{2}\right)$. Suppose that $P\left(S_{1}\right)$ is isomorphic to $P\left(S_{2}\right)$ as understood in the beginning of this note. We show that there exists a bijective operator T from S_{1} onto S_{2} such that $\langle T x, T y\rangle=\langle x, y\rangle$ for all $x, y \in S_{1}$.

Define $T: S_{1} \rightarrow S_{2}$ by:

$$
\begin{aligned}
T(v) & =T(\lambda x) \quad \text { for some unique } x \in \mathfrak{S}_{1}^{+} \\
& =\lambda U(x)
\end{aligned}
$$

where U is as defined in equation (3.1). Clearly T is a bijection between S_{1} and S_{2}. We show that T is linear. From the same definition, it is clear that for every $\rho \in \mathbb{R}, T(\rho v)=\rho T(v)$. Let $v, w \in S_{1}$. Put $\delta_{i}=\left\langle v, e_{i}\right\rangle$ and $\theta_{i}=\left\langle w, e_{i}\right\rangle$. Then

$$
\begin{aligned}
T(v+w) & =T\left(\sum_{i \in \mathbb{N}}\left(\delta_{i}+\theta_{i}\right) e_{i}\right) \\
& =T\left((\kappa\|v+w\|)\left[\frac{\kappa}{\|v+w\|} \sum_{i \in \mathbb{N}}\left(\delta_{i}+\theta_{i}\right) e_{i}\right]\right)
\end{aligned}
$$

where $\kappa= \pm 1$ so that $\left[\frac{\kappa}{\|v+w\|} \sum_{i \in \mathbb{N}}\left(\delta_{i}+\theta_{i}\right) e_{i}\right] \in \mathfrak{S}_{1}^{+}$. Then we have

$$
\begin{aligned}
T(v+w) & =\kappa\|v+w\| U\left(\sum_{i \in \mathbb{N}}\left(\frac{\kappa \delta_{i}}{\|v+w\|}+\frac{\kappa \theta_{i}}{\|v+w\|}\right) e_{i}\right) \\
& =\kappa\|v+w\| \sum_{i \in \mathbb{N}}\left(\frac{\kappa \gamma_{i} \delta_{i}}{\|v+w\|}+\frac{\kappa \gamma_{i} \theta_{i}}{\|v+w\|}\right) f_{i} \\
& =\sum_{i \in \mathbb{N}} \gamma_{i} \delta_{i} f_{i}+\sum_{i \in \mathbb{N}} \gamma_{i} \theta_{i} f_{i} \\
& =T(v)+T(w) .
\end{aligned}
$$

This completes the proof.
Let $F(S)$ denote the complete lattice of strongly closed subspaces of S and $E(S)$ the orthomodular poset of splitting subspaces of S. We recall that

$$
P(S) \subset C(S) \subset E(S) \subset F(S)
$$

Corollary 3.2. The following statements are equivalent:
(1) S_{1} is isomorphic to S_{2} (as inner product spaces);
(2) $P\left(S_{1}\right)$ is isomorphic to $P\left(S_{2}\right)$ (as orthomodular lattices);
(3) $C\left(S_{1}\right)$ is isomorphic to $C\left(S_{2}\right)$ (as orthomodular posets);
(4) $E\left(S_{1}\right)$ is isomorphic to $E\left(S_{2}\right)$ (as orthomodular posets);
(5) $F\left(S_{1}\right)$ is isomorphic to $F\left(S_{2}\right)$ (as complete lattices).

REFERENCES

[1] BUHAGIAR, D.-CHETCUTI, E. : On complete-cocomplete subspaces of an inner product space, Appl. Math. 48 (2003) (To appear).
[2] CHETCUTI, E. : Completeness Criteria for Inner Product Spaces. MSc. Thesis, University of Malta, 2002.
[3] DVUREČENSKIJ, A.: Gleason's Theorem and Its Applications, Kluwer Acad. Publ./Ister Science Press, Dordrecht/Bratislava, 1992.
[4] GLEASON, A. M.: Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885-893.
[5] HAMHALTER, J.-PTÁK, P.: A completeness criterion for inner product spaces, Bull. London Math. Soc. 19 (1987), 259-263.
[6] PTÁK, P.-WEBER, H.: Lattice properties of subspace families in an inner product spaces, Proc. Amer. Math. Soc. 129 (2001), 2111-2117.
[7] PTÁK, P.-PULMANNOVÁ, S.: Orthomodular Structures as Quantum Logics, Kluwer Acad. Publ., Dordrecht, 1991.
[8] WIGNER, E. P.: Group Theory and its Applications to Quantum Mechanics of Atomic Spectra, Acad. Press. Inc., New York, 1959.

Received June 17, 2003

[^0]
[^0]: * Department of Mathematics

 University of Malta
 Msida MSD. 06
 MALTA
 E-mail: david.buhagiar@um.edu.mt
 ** Mathematical Institute
 Slovak Academy of Sciences
 Štefánikova 49
 SK-814 73 Bratislava SLOVAKIA

 E-mail: chetcuti@mat.savba.sk

