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THE PROJECTIVE PROPERTIES OF 
THE EXTREME PATH DERIVATIVES 

MILAN MATEJDES 

ABSTRACT. The paper studies the projective and measurable properties tha t 
the extreme pa th derivatives as well as the multifunction of all pa th derived 
numbers must have under certain measurable and projective conditions about 
the system of paths . 

I. Introduction 

One approach to get a unified method of the study of a number of generalized 
derivatives is based on the concept of path system differentiation [2]. Namely 
a collection E = {E(x): x E R} (R - real line) is a system of paths if each 
set E(x) C R has x as a point of accumulation. It can be considered as a 
multifunction E: x i—• E(x). If / : R —> R is a function, then the upper and 
lower E -derivatives of / at x are defined as follows: 

7 ' E ( * ) = l i m s u p / 0 c ) - / ( i / ) and f'E(x) = liminf / ( x ) ~ f{y) . 
v-+x x — v — y~*x x — v 

yeE(x) y yeE(x) y 

If FE(X) ~ /EC^) > t n e i r common value is called the E -derivative of / at x 
(fE(x)) . By Ef : R -> R* (R* - the extended real line with the topology of two-
point compactification) we denote the following non-empty and compact-valued 
multifunction defined as 

Ef(x) = < y G R*: there is a sequence {xn}n
cLl in E(x) \ {x} 

/ ( * » ) - / ( * ) ! _ so that lim xn = x and lim 
n—>oo xn — x 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 26A24. Secondary 26A21. 
K e y w o r d s : Pa th derivatives, Projective sets, Borel (Projective) classification of extreme 

derivatives. 
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MILAN MATEJDES 

There are cases, where the behaviour of Ef is very bad . For example, there is 
a continuous function / such that, given any function g, a system of paths E 
can be found so that fE = g [4]. 

The aim of this paper is the investigation of measurability properties that 
the multifunction Ef and f'E , f'E must have under certain measurability con
ditions concerning the system of paths E. We shall namely study projective and 
measurability properties of Ef under the following assumptions about E: 

oo oo oo 

(a) Gr(.E) (graph of E)= (J f| U A?,M x £j,*./> w h e r e A?,M i s o f 

/= i k=i j=i 

projective class n and -Bj,*,/ C R (Theorem 13), 
(b) Graph of E is of projective class n (Theorem 12), 
(c) Graph of E belongs to a given a -algebra (Theorem 17, Corollary 24), 
(d) E is measurable with respect to a given a -algebra (Theorem 22, Corol

lary 23). 
This paper can be considered as a continuation of [8], where a semi-Borel classifi
cation of Ef was given and where measurability properties of Ef were studied 
under stronger conditions about the graph of E than it is in this paper. We 
hope that this paper will give a comprehensive and deeper information concern
ing the measurability of generalized derivatives. We note that the motivation for 
our concept came from paper [1] by A 1 i k h a n i -K o o p a e i . His method of 
considering E as a multifunction seems to be a convenient tool for investigating 
some problems connected with path derivatives. 

2. Notation and preliminary results 

The set of all positive integers is denoted by N. Let F: R —> R* be a 
multifunction, / : R -» R be a function, T c R , A c R x R . 

We set 

fo((x,y)) = /{X) ~ f{y) , (x,y)e R x R , x -£ y , 
x-y 

F~(T) = {x e R 

F+(T) = {xeR 

Gv(F)={(x,y) 

fWnr/8}, 
F(x) C T) , 

yeF(x)} (graph of F), 

pi(A) = {x: 3 y G R s.t. (x,y) e A} .. 

If a single valued function / : R —> R* is given, then under the natural 
interpretation of f(x) as a one point set we have / + ( T ) = f~(T) = / _ 1 ( T ) . 
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L E M M A 1. 

(a) F~(T) = R\F+(R\T). 

( OO \ oo 

IJ An)= U F~(An). 
n=\ ' n=\ 

( OO \ oo 

n^»)= nE+(^n). 
n=l 7 n= l 

(d) If K is a closed set in R*, F is compact-valued and Gn = {x: 
oo 

d(x,K) < £} (d is a metric for R* ) , then F~(K) = f] F-(Gn). 
n=\ 

oo 
As special cases we have F~((—00,6)) == p | F~((—oo,b -f- -)) , 

n=\ U 

00 0 0 

F~((a,^))= n F - ( ( a - I , oo» , F~((a,b))= f] E~((a-i, 6+1)) 
n=l n = l 

for any a, b G R, a < b. 

The trivial proof of Lemma 1 is omitted. 

Moreover, we use the following notation for families of subsets of R: 

Aa (Ma)- the family of all subsets of the Borel additive (multiplicative) class a. 
Pn - the family of all projective subsets of class n , n = 0 , 1 , 2 , . . . . 
L - the family of all Lebesgue measurable subsets. 

Br - the family of all subsets having the Baire property. 

LEMMA 2. (see [5, pp. 361-362]). Let A,B G Pn and let S C R x R be a set 
of projective class n, n = 0 ,1, 2 , . . . . Let Pn-\ = Po for n = 0 . 

Then 

(a) A x B is of projective class n, 
(b) pr(S') G Pn for n odd and pr(5) G -Pn+i for n even, 
(c) R \ A G Pn-i for n even and R \ A G Pn+i for n odd, 
( d ) P2n C F2n-|-2 H F2n-(-l , 

( e ) -P-.n-l-l C P2n-f 3 • 

( f ) -P2n-fl C P2n+4, 

(g) P„ z.5 closed relatively to countable unions and intersections and if 
O ^ n ^ - 2 , then Pn is closed with respect to operation A [5, p. 375], 

(h) The assertions (c) - (g) hold for the family of all planar projective sub
sets of class n. 

If E is a system of paths, then for j: = 1, 2, 3 , . . . we define multifunctions 
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Ej, E3^, EL as follows: 

E'(x) = E(x)П(x-),x + )) 

E'+(x) = E(x)П(x,x + i), 

E3_(x) = E(x)П(x- l , x). 

The following lemma is the essence for investigating the measurable properties 
of Ef. 

LEMMA 3. Let E be an arbitrary system of paths and f be a function. If K 
is a closed set in R*, then 

Ej(K)=f]pr(f0-
1(V')nGv(E')), 

i=i 

where VJ = {x: d(x,K) < t } (d is a metric for R* ), j = 1,2,... . 

The proof is trivial and hence omitted. 

3. The Borel classification of Ef 

DEFINITION 4. A multifunction F: R —• R* is said to be of lower (upper) 

class a , if F~(G) G Aa ( F + ( G ) G Aa) for each open G C R* . A func

tion / : R —• R* is said to be of lower (upper) class a, if f~l ((a, oo)) G AQ 

( f~l ( ( - c o , a)) G Aa ) for all a G R. 

oo 

THEOREM 5. Let f be a function of class a. If Gr(E) = [j An x Bn, 
n=l 

An G Aa, Bn C R, then Ef is a multifunction of upper class a + 1 and 

consequently f'E ( / # ) is a function of upper (lower) class a + 1. 

P r o o f . By [8, Lemma 2.6], fo1 ((a, b)) n G r (£>) = [f~l ((a, b)) n G r (EL)] 

U [f~l ((a, b)) n Gr (EL)] = [Sa n T6 n Gr ( E | ) ] U [56 n Ta n Gr ( E i ) ] , where 

Ta = {(x,y): / ( x ) - a x < / ( y ) - a y } and 5 a = {(x,y): f(x)-ax > f(y)-ay} 

(see [8, Lemma 2.5]). 
oo 

Hence the set / 0
_ 1 ( l " ) n G r (Ej) can be expressed as |J XJ

k x Yg , X{ G Aa , 
k=i 

y / c R , i = l , 2 , 3 . . . (see also [8, Lemma 2.5]). 
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OO / OO . \ 

By Lemma 3, EJ(K) = f| ( U X3
k) G M a +i for any closed K C R* , 

i=l V .-c=l ' 

hence E^(G) = R \ E~(R \ G) G - 4 a + 1 for any open G C R* - The equali

ties f'E ((a,oo)) = Ej((a, oo)) and / ' " * ( ( -oo ,a ) ) = Ej((—oo,a)) finish the 

proof. 

THEOREM 6. If f is Baire 1 and Gr(E) is an F^-set, then Ef is a mul

tifunction of upper class 2 and consequently f'E ( / # ) is a function of upper 

(lower) class 2 . 

P r o o f . This follows directly from Lemma 3, since if /0
_ 1 (V3) fl Gr (E3) is 

an Fp -set, then EJ(K) is an F^s -set. Hence E~j(G) is a G ^ -set for any open 

G c R * . 

THEOREM 7. Let E be a lower semi-continuous system of paths (i.e. E~(G) 
is open for any open set G C R ) and let f be a continuous function. Then Ef 
is a multifunction of upper class 1 and f'E ( / # ) is a function of upper (lower) 
class 1. 

P r o o f . We shall show that A3 = pr(f0~
l(V3) n Gr(E3)) is open for any 

j = 1 ,2 ,3 , . . . . Let x0 e A3 . Then there is y0 G R s.t. (x0,yo) G / o " 1 ^ ' ) and 
yo e E3(x0). Since / 0 is continuous, there are open intervals I, J such that 
(^o^yo) e L X J C /<J~ (V^). Since .E-7 is lower semi-continuous, there is an open 
set G C / with x0 e G such that E3(x) n J ^ $ for any x e G. Thus for 
any x G G there is yx G ^ ' ( x ) n J . Since (x,yx) G Gr(.EJ") n / Q " ^ ^ " ) , X G -4 J 

for any x e G. Hence A3 is open. By Lemma 3, EJ(K) G Mi for any closed 
I\ C R* , hence Ef is a multifunction of upper class 1. The classification of the 
extreme E -derivatives is similar to that in the proof of Theorem 5. 

R e m a r k 8. Note that the assertions of this section are stronger than those 
of paper [8], where we consider only the inverse image of intervals under Ef . 
Further results as well as open problems concerning the Borel classification of 
Ef can be found in [9]. 

4. The projective properties of Ef 

DEFINITION 9. A multifunction F: R —» R* is a lower (upper) projective mul
tifunction of class n with respect to the upper inverse image (briefly F G UP~ 
(F e c7P+)) if F+((a ,oo)) G Pn ( F + ( ( 4 o o , a ) ) G Pn) for all a G R . 
F is a lower (upper) projective multifunction of class n with respect to the 
lower inverse image (briefly F G LP~ (F G LP+)) if F~~((a,oo)) G Pn 
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(F~((—oo, a)) G Pn ) f
or oil a G 1 . For single-valued functions we use the 

notation P~ (= UP~ = LP~), P+ (= UP+ = LP+). 

LEMMA 10. If F is a compact-valued multifunction, then for n = 1,2,3,... 
we have 

(a) UP2-=LP+_1, (b) UP+„=LP2n_1, 

(<0 UP2n_1=LP+n, (d) C / P + . ^ L P , - . 

P r o o f . 
(a) If F G UP2~ , then 

OO CO 

F-((-<x>,a)) = (jF-((-cx>,a-\))=-:\f}F+((a-\,«>))€P2n-i 
i = l i = l 

(see Lemmas lb and 2c, g). 

If F G £-P2+-i, t h e n 

OO 

F + ( ( a , o o » = R \ F - ( ( - o o , a » = R \ f ) F - ( ( - o o , a + i ) ) e P 2 „ 
1 = 1 

(see Lemmas Id and 2c, g). 

(b) If F G UP+n , then 

OO OO 

F- ((a, oo» = {JF-((a + }, oo» = U (R \ ~+ ((-00,a + 4))) € P2„_i 
І = l І = l 

(see Lemmas lb and 2c, g). 

If F G -LP2~i-i » t h e n 

.F+((-oo,a))=F+(|J(-oo,a-ł),)--R\F-(П(ű-ł,oo)) 
S = l ' ^ І = l ' 

OO 

= R \ f | F - ( ( a - ł , o o » Є P 2 „ 
І = l 

(see Lemmas Id and 2c, g). 

(c) If F G UP2n_j, then 

OO OO 

F~((-00,a)) = [)F-((-oo,a - i)) = R \ f | F+ ((a - i , 00)) G P2„ 
t = l i = l 
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(see Lemmas lb and 2c, g). 

If F G LP+n, then 

oo 

F + ((a,oo» = R \ f - ( ( - o o , a » = R\ f | F " ( ( - o c , a + })) G P2n-i 
1 = 1 

(see Lemmas Id and 2c, g). 

(d) If F G UP+n_i , then 

OO OO 

F-((a,oo» = Џ F - ( ( a + l , o o » = Џ ( * \ - ^ ( ( - o o . a + ł ) ) ) Є P2„ 
П = l t = l 

(see Lemmas lb and 2c, g). 

If F G LP^n, then 

F + ( ( - o o , a ) ) = F + ( U ( - ~ , a - ł ) ) = R \ E - ( П ( « - T ' ° ° > ) 
^ t = l ' ^ t = l ' 

OO 

= R \ f | F - ( ( a - i , o o ) ) є P 2 n - i 
. = 1 

(see Lemmas Id and 2c, g). 

If Gr(E) = (J Ai x £?,, where A{ G Pn , B{ G R, then the first information 
t = i 

about the projective classification of Ef is given by [8, Theorem 3.3]. It is clear 
from the following tables (for n = 0, let P n _i = PQ ). 

i -odd 

/ E Ef 

PÏ + UPti 

Pñ - UPÏ-г 

Pì - UPn-i 

Pӣ + UPn-i 

f E Ef 

Pï + UP++1 

Pñ - UPЇ+1 

Pï - UPn+1 

Pn + UP~+1 

The sign + ( —) corresponds to a right-(left-)sided system of paths. For ex
ample, if / G P^ and E is left sided, then Ef G UP~_l for n even and 
Ef G t/\P~+1 for n odd. 
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B y L e m m a 10, the preceding tables can be joined by the following table which 
holds for E wi th a more general graph as we shall see in Theorem 13 below. 

/ E Ef 

P+ + LP~ 

Pñ - LP~ 

PІ - LP+ 

p« + LPÌ 

E X A M P L E A . Let n be odd. There is a right sided system E in the lower 
n-\ 

Borel class 1 and a function f in P~ such that fE G Pj~ \ U Pk • 
k=o 

E X A M P L E B . Let n > 0 be even. There is a right-sided system of paths E in 
n-2 

the lower Borel class 1 and a function f in P + such that fE G Pn-\ \ U Pk • 
k=o 

n-\ 
P r o o f A . Let Z G Pn \ U pk [5, p . 368] and let Zr be a set of all right 

k=o 
cluster points of Z. Let E(x) = Z \~\ (x, oo) for x G Zr and E(x) = (x, oo) for 
x i Zr. Since Zr G AiHMi and Gr(£*) = [(Zr x Z ) U ( R \ Z r ) x R ] n H , where 

oo 

H = {(x , y): x < y } , Gr (E) can be expressed as Gr (E) = [j Cn x Bn , where 
n=\ 

Cn G -4i n M i . Hence E~(S) G U ^ , - for any 5 C R (sum is taken over all 

Cni s.t. Bni n S 7-- 0 ) . Thus E is in the lower Borel class 1. 

Denote the characterist ic function of Z by / . Then 

Sir 

f — oo for x Є Z П ( R \ Z r ) , 

fE(*) = < 
0 for 

0 for 

x Є Z П Zr , 

x Є ( R \ Z ) П ( R \ Z r ) , 

oo for x Є ( R \ Z ) П Z r . 

í Ø Є P o if a = 1, 
- 1 ( a , oo) = < ZЄPn 

if 0 = a < l , / Є P " , 

R є P 0 
if a < 0 . 
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It is clear that Z n ( R \ Zr) is a countable set, hence Z n (R \ Zr) G P0 • 
Moreover R \ ZT G P0 . 

Since 

f,-i(, ҳҳ Г z П ( R \ z r 

fE «-oo,a)) = { Z u ( R U r 

) Є P 0 if a g 0, 

) Є P„ if a > 0 

and / i ; - 1 ( ( - o o , o o ) ) = R G P o , f'E £ P+ \ 1 / P+ . 
fc=o 

P r o o f B . By Example A, there is a right-sided system of paths E in the 
lower Borel class 1 and a function / in Pn~_1 = P„ such that 

n - 2 

/ Í*e.P+-i\U-í-
k=0 

LEMMA 1 1 . For any a £ R and j = 1 ,2 ,3 . . . we have 

(a) If f £ P+ and £" w right-sided, then 

f0-
l((a-),c*))nGT(&)= {J(A)xB)) 

(b) If f £ Pn and E is left-sided, then 

- oo 

/->((«-},oo))nGr(£>)= l j K x 5 i ) 
L i = l 

(c) If f £ P„ and E is left-sided, then 

nGr(.5|), A),R\B)eP„. 

ПGr(fľІ), A}, R\Bj ЄP„. 

/o"1 ( ( - o o , a + ) ) ) n G r (£?>) = , ( J ( 4 x B)) 
•" 1 = 1 

(d) If f £ P~ and E is right-sided, then 

- oo 

/-1((-oo,a+ })) nGr(F) = lJ(Ai x B P 
L « = 1 

ПGг(Æ7І), Лj, R \ P ' є P „ . 

ПGr(fľІ), A), R\PJЄP„ 

This lemma follows directly from [8, Lemmas 2.5 and 2.6]. 
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THEOREM 12. Let E be a system of paths with the graph of projective class 
n. Then Ef has properties given in the following tables: 

n-odd 

/ E E, 

P+ + LP~+1 

Pñ - LP~+1 

Pï - LPÏ+1 

Pñ + LPt+1 

f E Ef 

P„+ + LP~+2 

Pñ - LP~+2 

PŻ - -^-°n+2 

Pӣ + LP:+2 

P r o o f . Note that if X%, R\Yl G P n and S is of the projective class n, then 

(
r o o v " | o o [ / °° \ 1 

[JX'xY^nS = (j(-Y l'npr(5nRxrO)-Thus pr ({J XixYi)nS\ 
L t=l ' J 1=1 L^i=l ' J 

belongs to P n +1 (P n +2 ) for n even (odd), by Lemma 2. Let a £ R . By Lemmas 
3 and 11 we have 

(a) If / £ P + and E is right-sided, then £ ^ ( { - o o , a ) ) = R\Ej((a, co)) = 
OO r 

R \ f ] P t / o _ 1 ( ( a - 7 . ° ° ) ) n G r ( £ > ) belongs to P n + 2 ( P „ + 3 ) for n even 
>=i L J 

(odd). 
(b) If / 6 P~ and E is left-sided, then £ ^ ( ( - 0 0 , a)) = R\Ej((a,oo)) = 

OO r 

R \ f ] p r /o"1 ( ( a - i , c x ) ) ) n G r (£•>') belongs to P n+ 2 ( P n + 3 ) for n even 
i = i L J 

(odd). 

(c) If / £ P + and E is left-sided, then E^((a,oo)) = R \ EJ ( ( -oo , a)) = 
OO r 

R \ f| pr / _ 1 ( ( - o o , a + ))) n G r ( " ' ) belongs to P„+2 ( P „ + 3 ) for n even 
>=i L J 

(odd). 

(d) If / e P~ and E is right-sided, then E + ( (a ,oo) ) = R \ f ; _ ( ( - o o , a ) ) = 
OO r 

R \ fl P r ( / o " 1 ( ( - ° ° ' a + })) HGr(E>) belongs to P n + 2 ( P n + 3 ) for n even 
j=i L J 

(odd). Lemma 10 finishes the proof. 

OO OO OO 

THEOREM 13. Let Gr(E) = |J f] U zr,k,i x Tr,fcj/, where Zr>k,i £ P n , 
{=1 j t = l r = l 
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-Tr,*,/ C R , O ^ - n / 2 . Then Ef has properties given in the following table: 

f E Ef 

PÏ + LPñ 

Pñ - LPr7 

Pï - LP„ 

Pñ + LPrt 

00 00 00 

P r o o f . We shall show that if S = U D U -̂ -V,fc,/ x Yr,k,l» where 
/ = 1 j k = l r = l 

^-V,M e P „ (0 ^ n 7-- 2) and y r i M C R, then p r (5 ) E P„ . 

pr 

OO • OO OO ч ОО • ОО ч 

(s) = IJp r( П U х г ы х у ^ . ' ) = LJp r(U П x""k>>хF^-fc.') 
/=1 Н = 1 г = 1 / /=1 V Гк k=l ' 

СО Г • ОО ч • ОО ч ~| ОО 

= ULJpr ( П ^ - . - . ' ) х ( П г ' - . - . ' ) = 0 if П^-.-.' = 0 

/=1 rfc 1Л*=1 ' ^ * = i ' J • *=i 

and 

00 00 

p r ( 5 ) = | J ( J P | Xrkik,i E Pn otherwise 
/=1 rk k=l 

since Pn is closed with respect to operation A for 0 ^ n ^ 2 (see [5, p. 375]). 
(J is the sum taken over all the subsequences of N. 
rk 

The proof of the assertions is similar to that of Theorem 12. 

(1) Suppose that / E P + and E is right-sided. Then 

i = i 

£ + ( ( - 0 0 , a)) = R \ EJ ((a, 00)) = R \ fji pr [jo"1 ((a - },oo)) n G r ( ^ ) 

by Lemma 3. 

By Lemmi 

E~j((—oo,a)) belongs to P n _i for n even and to P„+i for n odd. 

00 00 00 
By Lemma 11a, j " 1 ( ( a - }, oo)) DGr(£>) = U f l U -*-,,.,. X Y,M. Hence 

j = l fc=l r = l 
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Using Lemmas 3 and l i b , c, d the proof of the remaining cases is exactly like 
that of the cases b, c, d of the proof of Theorem 12. 

Namely 

(2) If / G Pn and E is left sided, then E+((-oo,a)) belongs to P n _j for 
n even and to P n+i for n odd. 

(3) If / G P + and E is left sided, then Ef((a,oo)) belongs to P n _ i for 
n even and to Pn+1 for n odd. 

(4) If / G P~ and E is right sided, then E~f((a,oo)) belongs to P n _ i for 
n even and to P n+i for n odd. 

Lemma 10 finishes the proof. 

We turn now to the discussion of the measurability properties of Ef with 
respect to a given a -algebra. 

DEFINITION 14. Given a family A of subsets of R, we say that a multifunc
tion F: R—• R* is an upper (lower) A-measurable if F+(G) G A (F~(G) G A) 
for each G open in R* . 

R e m a r k 15. If A is a a -algebra and F is compact-valued, then the con
dition of being upper and lower .A-measurable are equivalent (see Lemma 1). It 
is then motivated to use the denomination A -measurable, e.g. Borel measurable, 
Lebesgue measurable, Baire measurable e t c 

DEFINITION 16. The a-algebra generated by P 2 n ( n = 0 , 1 , 2 , . . . ) will be 
denoted 52 n (R) . Since P 2 n and P2 n - i are closed relatively to countable unions 
and intersections, 52n(R) C P2n+i H P2n+2 • The a-algebra generated by pro
jective sets of class 2n in R x R will be denoted 52n(R x R ) . As above any set 
from 5 2 n (R x R) is of projective class 2n + 1 and 2n + 2 (for n = 1 see [6]). 

THEOREM 17. If f is 52 n(R) -measurable and Gr(E) G 5 2 n (R x R ) , then 

EJ(K) G P 2 n +i for any closed set K C R* and consequently Ef is 52(n+i)-raea-
surable. 

oo 

P r o o f . By Lemma 3, EJ(K) = f] pv(f~1(Vj) n Gr(Ej)). It is clear 
i= i 

that fvl(Vj) n Gi(Ej) G 5 2 n(R x R) . Since any set belonging to 5 2 n (R x R) 
is of projective class 2n + 1, EJ(K) G P2n+i, by Lemma 2b. Since EJ(G) = 
oo oo 

(J Ej(Kj) (Kj closed, |J Kj = G), Ef is 52(n_|_!)-measurable. 

A . A l i k h a n i - K o o p a e i in [1] quotes the following fact due to Laczko-
vich. There is a Baire 2 function and a continuous system of path E such that 
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f'E is not Borel measurable. The following corollary says that it is an analytic 
function. 

COROLLARY 18. If f is Borel measurable and Gv(E) is a Borel set, then 
EJ(K) is an analytic set for any K C R* and consequently Ef is Lebesgue 
and Baire measurable [7, p. 424]. 

LEMMA 19. If E is a closed valued system of paths, then 

Gr (E) = P | (R x (R \ Uj) U E~(Uj) x R) 
i= i 

where U\, Ui, Us . . . is an open base of R. 

From Lemma 19 follows: 

R e m a r k 20. If E is a lower Pn -measurable system of paths with closed 
values (0 7-= n 7-- 2) , then Theorem 13 holds. 

LEMMA 21 . Let A be a a -algebra closed with respect to operation A (see 
oo oo oo 

[5, p. 4]). If M = IJ PI U Xi,k,r x ri.fc.r, Xi,h,r G A, Ylykyr C R, then 
1=1 k=l r = l 

p r ( M ) G A. 

The proof is exactly like the first part of the proof of Theorem 13. 

THEOREM 22. Let E have closed values. If f and E are A-measurable 
where A is a a-algebra closed with respect to operation A, then f'E, f'E, Ef 
are A-measurable. 

The proof follows from Lemmas 3, 19, 21. 

COROLLARY 23. Let E have closed values. If f and E are Lebesgue (Baire) 
measurable, then f'E, f'E, Ef are Lebesgue (Baire) measurable. 

This is just a special case of Theorem 22, since L and Br are closed with 
respect to operation A [7, p. 403]. 

COROLLARY 24 . Let f be Lebesgue measurable with closed values. If Gr(E) 
belongs to a a -algebra generated by {A x B: A, B G L} , then f'E, f'E, Ef are 
Lebesgue measurable. 

P r o o f . By [3, Theorem 3.4], E is Lebesgue measurable. 
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