Mathematica Slovaca

Ivica Marinová
 Integration with respect to a oplus-measure

Mathematica Slovaca, Vol. 36 (1986), No. 1, 15--22

Persistent URL: http://dml.cz/dmlcz/133071

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

INTEGRATION WITH RESPECT TO A \oplus-MEASURE

IVICA MARINOVÁ

In paper [5] the extension of σ-additive and σ-maxitive measures is performed simultaneously by help of some \oplus-measure. In this paper we show that one can perform simultaneously the integration theory as well as the product of σ-additive and σ-maxitive measures. Both σ-additive and σ-maxitive measures are so-called strong submeasures. For submeasures some more integrals are defined in literature (see [1], [3], [4], [7]). But none of these integrals fulfils the very natural requirement of σ-maxitive measures, that is $\int \sup (f, g)=\sup \left\{\int f, \int g\right\}$ for all non-negative functions f, g.

Preliminary definitions and results

Let \oplus be some binary operation on $\langle 0, \infty\rangle$ with the following properties:

1. $a \oplus b=b \oplus a$ for all $a, b \in\langle 0, \infty\rangle$
2. $(a \oplus b) \oplus c=a \oplus(b \oplus c)$ for all $a, b, c \in\langle 0, \infty\rangle$
3. $k(a \oplus b)=k a \oplus k b$ for all $k>0, a, b \in\langle 0, \infty\rangle$
4. $a \oplus 0=a, a \oplus \infty=\infty$ for each $a \in\langle 0, \infty\rangle$
5. $a \leqq b \Rightarrow a \oplus c \leqq b \oplus c$ for all $a, b, c \in\langle 0, \infty\rangle$
6. $(a+b) \oplus(c+d) \leqq(a \oplus c)+(b \oplus d)$ for all $a, b, c, d \in\langle 0, \infty\rangle$
7. $a_{n} \rightarrow a, b_{n} \rightarrow b \Rightarrow a_{n} \oplus b_{n} \rightarrow a \oplus b$
for all $a, b, a_{n}, b_{n} \in\langle 0, \infty\rangle(n=1,2, \ldots)$.
We shall write briefly $\oplus_{i=1}^{n} a_{i}$ instead of $a_{1} \oplus a_{2} \oplus \ldots \oplus a_{n}$ and $\oplus_{i=1}^{\infty} a_{i}$ instead of $\sup _{n}\left(\bigoplus_{i=1}^{n} a_{i}\right)$.

Clearly the usual addition as well as the maximum of two real numbers fulfil the properties 1.-7.

Definition 1. Let (X, \mathscr{P}) be a measurable space. A set function $m: \mathscr{S} \rightarrow\langle 0, \infty\rangle$ will be called a \oplus-measure if $m(\emptyset)=0$ and $m\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\oplus_{i=1}^{\infty} m\left(E_{i}\right)$ for each sequence $\left\{E_{i}\right\}_{i=1}^{\infty}$ of mutually disjoint sets from \mathscr{S}.

Clearly if $a \oplus b=a+b$ for all $a, b \in\langle 0, \infty\rangle$, the \oplus-measure becomes a σ-additive measure. If $a \oplus b=\max \{a, b\}$ for all $a, b \in\langle 0, \infty\rangle$, the \oplus-measure becomes a σ-maxitive measure (i.e. such a function $m: \mathscr{S} \rightarrow\langle 0, \infty\rangle$ that $m(\emptyset)=0$ and $m\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sup _{i} m\left(E_{i}\right)$ for each sequence $\left\{E_{i}\right\}_{1=1}^{\infty}$ of mutually disjoint sets in .f).

It is easy to see that a \oplus-measure is \oplus-additive (i.e. $m(A \cup B)=m(A) \oplus m(B)$ for all $A, B \in \mathscr{F}, A \cap B=\emptyset$), monotone, \oplus-subadditive (i.e. $m(A \cup B) \leqq$ $m(A) \oplus m(B)$ for all $A, B \in \mathscr{Y})$ and continuous from below.
Let m be a fixed \oplus-measure. First we define an integral with respect to m for a non-negative simple function. Briefly for a NSF.

Definition 2. Let (X, \mathscr{G}, m) be a \oplus-measure space and let f be a NSF, $f=\sum_{i=1}^{n} \alpha_{i} \chi_{E_{t}}$ where $E_{i} \cap E_{k}=\emptyset$ for $i \neq k, 0<\alpha_{i}<\infty$. We define $\int f \mathrm{~d} m=\oplus_{t=1}^{n} \alpha_{t} m\left(E_{t}\right)$ and we say that f is integrable iff $\int f \mathrm{~d} m<\infty$.

Clearly a NSF f is integrable iff $m(N(f))<\infty$ where $N(f)=\{x, f(x) \neq 0\}$.
We shall write $\int f$ in place of $\int f \mathrm{~d} m$ since m is fixed.
Remark. The definition 2 is correct by the distributivity of \oplus and the \oplus-additivity of m.

Proposition 1. Let f, g be $N S F-s$ on (X, \mathscr{F}, m) such that $f \leqq g$. Then $\int f \leqq \int g$.
Proof. f, g are NSF-s, thus such mutually disjoint sets $E_{l} \in \mathscr{G}$ and numbers $0 \leqq \gamma_{i} \leqq \delta_{i}(i=1,2, \ldots, k)$ exist that

$$
f=\sum_{i=1}^{k} \gamma_{i} \chi_{E_{i}}, \quad g=\sum_{i=1}^{k} \delta_{1} \chi_{E_{i}} .
$$

Then $\int f=\oplus_{i=1}^{k} \gamma_{i} m\left(E_{i}\right) \leqq \oplus_{i=1}^{k} \delta_{i} m\left(E_{i}\right)=\int g$.
Proposition 2. Let f, g be NSF-s on (X, \mathscr{F}, m). Then $\int f+g \leqq \int f+\int g$.
Proof. Take mutually disjoint sets $E_{t} \in \mathscr{F}$ and numbers $\gamma_{i}, \delta_{t} \geqq 0(i=1,2, \ldots, k)$ such that $f=\sum_{i=1}^{k} \gamma_{i} \chi_{E_{i}}, \quad g=\sum_{i=1}^{k} \delta_{i} \chi_{E_{i}}$. Then $\quad \int f+g=\int \sum_{i=1}^{k}\left(\gamma_{i}+\delta_{i}\right) \chi_{E_{i}}$ $=\oplus_{i=1}^{k}\left(\gamma_{i}+\delta_{i}\right) m\left(E_{i}\right) \leqq \oplus_{i=1}^{k} \gamma_{i} m\left(E_{i}\right)+\oplus_{i=1}^{k} \delta_{i} m\left(E_{i}\right)=\int f+\int g$.

Corollary. Let f, g be integrable NSF-s on (X, \mathscr{H}, m). Then $\left|\int f-\int g\right| \leqq$ $\int|f-g|$.

Proposition 3. Let f, g be such NSF-s that $f \cdot g=0$. Then $\int f+g=\int f \oplus \int g$.
Let f, g be non-negative real functions on X. Let us define a function $f \oplus g$ as follows : $(f \oplus g)(x)=f(x) \oplus g(x)$ for all $x \in X$.

Proposition 4. Let f, g be NSF-s. Then the function $f \oplus g$ is a NSF and $\int f \oplus g=\int f \oplus \int g$.

Proof. We can write $f=\sum_{i=1}^{k} \gamma_{i} \chi_{E_{l}}, g=\sum_{i=1}^{k} \delta_{i} \chi_{E_{t}}$ for suitable numbers $\gamma_{t}, \delta_{t} \geqq 0$ and
mutually disjoint sets $E_{i} \in \mathscr{S}(i=1,2, \ldots, k)$. Then the function $f \oplus g=$ $\sum_{i=1}^{k}\left(\gamma_{i} \oplus \delta_{i}\right) \chi_{E_{i}}$ is a NSF. $\int f \oplus g=\bigoplus_{i=1}^{k}\left(\gamma_{i} \oplus \delta_{i}\right) m\left(E_{i}\right)=\left(\underset{i=1}{k} \gamma_{i} m\left(E_{i}\right)\right)$ $\left(\oplus_{i=1}^{k} \delta_{i} m\left(E_{i}\right)\right)=\int f \oplus \int g$.

Definition 3. Let (X, \mathscr{S}, m) be a \oplus-measure space.
A) If $f: X \rightarrow\langle 0, \infty)$ is a measurable function, we put $\int f=\sup \left\{\int g: g \leqq f, g\right.$ is a NSF \} and we say that f is integrable iff $\int f<\infty$.
B) If $f: X \rightarrow(-\infty, \infty)$ is measurable and at least one of the functions $f^{+}=$ $\max (f, 0), f^{-}=-\min (f, 0)$ is integrable, we put $\int f=\int f^{+}-\int f^{-}$and we say that f is integrable iff $-\infty<\int f<\infty$.

Remarks. 1) A measurable function $f: X \rightarrow(-\infty, \infty)$ is integrable iff both f^{+}, f^{-}are integrable.
2) For a NSF the definitions 2 and 3 do not differ.
3) If m is a σ-additive measure, then integral from the definition 3 does not differ from the classical one (for definition see e.g. [2]).
4) For σ-maxitive measures N. Shilkret in [6] defined the integral of a non-negative measurable function as follows: $\int_{S h} f \mathrm{~d} m=\sup _{a>0} \operatorname{am}\{x, f(x) \geqq a\}$. If a \oplus-measure m is a σ-maxitive measure, we assert that $\int f=\int_{S h} f$ for each non-negative measurable function f. Proof: Clearly $\int g=\int_{S h} g$ for each NSF g. Let $f \geqq 0$ be measurable and denote $E_{a}=\{x, f(x) \geqq a\}$. Then $\int f=\sup \left\{\int g, g \leqq f\right.$, g is a $N S F\} \geqq \sup _{a>0}\left\{\int a \chi_{E_{a}}\right\}=\int_{S h} f$. On the other hand if $g \leqq f, g$ is a NSF, then $\int \mathrm{g}=\int_{\mathrm{Sh}} \mathrm{g} \leqq \int_{\mathrm{Sh}} \mathrm{f}$, hence $\int f=\sup \left\{\int g, g \leqq f, g\right.$ is a $\left.N S F\right\} \leqq \int_{S h} f$.

We leave the easy proof of the following theorem to the reader.
Theorem 1. Let f, g, h be measurable functions such that $\int f, \int g, \int h$ have a sense. Then

1. $f \geqq 0 \Rightarrow \int f \geqq 0$
2. $f \leqq g \Rightarrow \int f \leqq \int g$
3. $f \leqq h \leqq g, f, g$ are integrable $\Rightarrow h$ is integrable
4. f is integrable iff $|f|$ is integrable
5. Let $c \in(-\infty, \infty), c \neq 0$. Then f is integrable iff $c f$ is integrable and $\int c f=c \int f$.

Theorem 2. Let f be a non-negative integrable function on (X, \mathscr{S}, m). Let us define a set function $v_{f}: \mathscr{S} \rightarrow\langle 0, \infty)$ as follows: $v_{f}(E)=\int_{E} f=\int f \chi_{E}$ for each $E \in \mathscr{S}$. Then v_{f} is a \oplus-measure on \mathscr{S}.

Proof. It suffices to show that v_{f} is \oplus-additive and continuous from below. First we show the \oplus-additivity. Let $A, B \in \mathscr{T}, A \cap B=\emptyset$ and $\varepsilon>0$ be arbitrary. Then the
$N S F g \leqq f$ exists such that $v_{f}(A \cup B)-\varepsilon<v_{g}(A) \oplus v_{g}(B) \leqq v_{f}(A) \oplus v_{f}(B)$. Since ε was arbitrary $v_{f}(A \cup B) \leqq v_{f}(A) \oplus v_{f}(B)$. On the other hand, for each $\varepsilon>0$ the NSF $h \leqq f$ exists such that $v_{f}(A) \oplus v_{f}(B) \leqq\left(v_{h}(A)+\frac{\varepsilon}{2}\right) \oplus\left(v_{h}(B)+\frac{\varepsilon}{2}\right) \leqq$ $\left(v_{h}(A) \oplus v_{h}(B)\right)+\left(\frac{\varepsilon}{2} \oplus \frac{\varepsilon}{2}\right) \leqq v_{h}(A \cup B)+\varepsilon \leqq v_{f}(A \cup B)+\varepsilon$. Since ε was arbitrary the inequality $v_{f}(A) \oplus v_{f}(B) \leqq v_{f}(A \cup B)$ holds.

The proof of the continuity from below is realized in three steps. Let $E_{i} \in \mathscr{S}$ ($i=1,2, \ldots$) be mutually disjoint.

1. First let $f=\alpha \chi_{A}$ for some $\alpha>0$ and $A \in \mathscr{S} . v_{f}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\int \alpha \chi \bigcup_{i=1}^{\infty}\left(A \cap E_{i}\right)$ $=\alpha m\left(\bigcup_{i=1}^{\infty}\left(A \cap E_{i}\right)\right)=\alpha \sup _{n} m\left(\bigcup_{i=1}^{n}\left(A \cap E_{i}\right)\right)=\sup _{n} \int \alpha \chi_{\bigcup_{1}}^{n}\left(A \cap E_{1}\right)=$ $\sup _{n} v_{f}\left(\bigcup_{i=1}^{n} E_{i}\right)$.
2. Let $f=\sum_{i=1}^{k} \alpha_{i} \chi_{\mathrm{A}}$, where $\alpha_{i}>0, \mathrm{~A}_{i} \in \mathscr{S}$ are mutually disjoint $(i=1,2, \ldots, k)$. Let us denote $f_{i}=\alpha_{i} \chi_{A_{i}} \quad(i=1,2, \ldots, k)$. Then by the proposition $3 v_{f}\left(\bigcup_{i=1}^{\infty} E_{i}\right)$ $=\bigoplus_{j=1}^{k} v_{f}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sup _{n}\left\{\bigoplus_{j=1}^{k} v_{f}\left(\bigcup_{i=1}^{n} E_{i}\right)\right\}=\sup _{n}\left\{v_{f}\left(\bigcup_{i=1}^{n} E_{i}\right)\right\}$.
3. Let f be a non-negative integrable function and $\varepsilon>0$ be arbitrary. Then the NSF $g \leqq f$ exists such that $v_{f}\left(\bigcup_{i=1}^{\infty} E_{i}\right)-\varepsilon<v_{q}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sup _{k} v_{q}\left(\bigcup_{i=1}^{k} E_{i}\right) \leqq$ $\sup _{k} v_{f}\left(\bigcup_{i=1}^{k} E_{i}\right) \leqq v_{f}\left(\bigcup_{i=1}^{\infty} E_{i}\right)$. Since ε was arbitrary one has $v_{f}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sup _{k} v_{f}\left(\bigcup_{t=1}^{k} E_{i}\right)$.

Integration with respect to a continuous \oplus-measure

In this section we consider a fixed continuous \oplus-measure m on a σ-ring \mathscr{S} of subsets of $X \neq \emptyset$ (i.e. if E_{n} is a decreasing sequence of sets in \mathscr{S} with empty intersection and $m\left(E_{k}\right)<\infty$ for some k, then $\lim _{n \rightarrow \infty} m\left(E_{n}\right)=0$).

Theorem 3. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequenc̣e of bounded measurable functions such that $f_{n} \downarrow 0$. Let such an index k exist that $m\left(N\left(f_{k}\right)\right)<\infty$. Then $\lim _{n \rightarrow \infty} \int f_{n}=0$.

Proof. Let $\varepsilon>0$ be arbitrary. We put $E=N\left(f_{k}\right)$ and we assume $m(E)>0$ (for $m(E)=0$ the theorem is obvious). Let us denote $\varepsilon^{\prime}=\frac{\varepsilon}{m(E)}$ and $E_{n}=\{x$, $\left.f_{n}(x) \geqq \varepsilon^{\prime}\right\}(n=1,2, \ldots) . f_{n} \downarrow 0$ implies $E_{n} \downarrow \emptyset$ and by continuity of m one has
$\lim _{n \rightarrow \infty} m\left(E_{n}\right)=0$. Let us denote $b=\max f_{k}$. Then for $n \geqq k, 0 \leqq \int f_{n} \leqq \int_{E_{n}} f_{n}$ $+\int_{E-E_{n}} f_{n} \leqq b m\left(E_{n}\right)+\varepsilon^{\prime} m\left(E-E_{n}\right) \leqq b m\left(E_{n}\right)+\varepsilon$. Hence $0 \leqq \lim _{n \rightarrow \infty} \int f_{n} \leqq$ $\lim _{n \rightarrow \infty}\left(b m\left(E_{n}\right)+\varepsilon\right)=\varepsilon . \varepsilon$ was arbitrary, thus $\lim _{n \rightarrow \infty} \int f_{n}=0$.

Theorem 4. Let $f_{n}, f(n=1,2, \ldots)$ be integrable NSF-s such that $f_{n} \uparrow f$. Then $\lim _{n \rightarrow \infty} \int f_{n}=\int f$.

Proof. The functions $f-f_{n}(n=1,2, \ldots)$ are bounded and $f-f_{n} \downarrow 0$. Since $m(N(f))<\infty$ one can apply the theorem 3. Hence $\lim _{n \rightarrow \infty} \int\left(f-f_{n}\right)=0$ and since $0 \leqq \int f-\int f_{n} \leqq \int\left(f-f_{n}\right)$ for $n=1,2, \ldots$ one has $\lim _{n \rightarrow \infty} \int f_{n}=\int f$.

Theorem 5. Let $f_{n}, f(n=1,2, \ldots)$ be NSF-s such that $f_{n} \uparrow f$ and $\lim _{n \rightarrow \infty} \int f_{n}<\infty$. Then f is integrable.

Proog. 1) First we assume $f=\chi_{A}$ for some $A \in \mathscr{S}$. We can suppose $f_{1} \neq 0$. Let us denote $\beta_{n}=\min f_{n} / N\left(f_{n}\right)$ for $n=1,2, \ldots$ Then $\int f_{n} \geqq \beta_{n} m\left(N\left(f_{n}\right)\right) \geqq \beta_{1} m\left(N\left(f_{n}\right)\right)$ and one has $m\left(N\left(f_{n}\right)\right) \leqq \frac{1}{\beta_{1}} \int f_{n}$. Hence $m(A)=\lim _{\cdot n \rightarrow \infty} m\left(N\left(f_{n}\right)\right) \leqq \frac{1}{\beta_{1}} \lim _{n \rightarrow \infty} \int f_{n}<\infty$.
2) Let $f=\sum_{i=1}^{k} \alpha_{i} \chi_{A_{i}}$ for some $\alpha_{i} \in(0, \infty), A_{i} \in \mathscr{S}(i=1,2, \ldots, k) A_{i} \cap A_{j}=\emptyset$ for $i \neq j$. Then $f_{n} \chi_{A_{i}} \uparrow \alpha_{i} \chi_{A_{i}}$ implies $0 \leqq \frac{1}{\alpha_{i}} f_{n} \chi_{A_{i}} \uparrow \chi_{A_{i}}$ and $\lim _{n \rightarrow \infty} \int \frac{1}{\alpha_{i}} f_{n} \chi_{A_{i}} \leqq \lim _{n \rightarrow \infty} \frac{1}{\alpha_{i}} \int f_{n}<\infty$. Hence $m\left(A_{i}\right)<\infty$ for $i \in\{1,2, \ldots, k\}$ and this implies $m(N(f))<\infty$, i.e. f is an integrable function. Notice that we did not use the continuity of m.

Theorem 6. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-negative measurable functions such that $f_{n} \uparrow f$. Then $\int f=\lim _{n \rightarrow \infty} \int f_{n}$.

Proof. If the $\lim _{n \rightarrow \infty} \int f_{n}=\infty$, the assertion is clear. Let the $\lim _{n \rightarrow \infty} \int f_{n}<\infty$ and for $n=1,2, \ldots$ take a sequence $\left\{g_{m}^{(n)}\right\}_{m=1}^{\infty}$ of NSF-s such that $g_{m}^{(n)} \uparrow f_{n}$. Denote $h_{n}=\max \left\{g_{n}^{(1)}, g_{n}^{(2)}, \ldots, g_{n}^{(n)}\right\}$ for $n=1,2, \ldots$ Then h_{n} are NSF-s, $h_{n} \uparrow f$ and $\lim _{n \rightarrow \infty} \int h_{n}<\infty$. Let g be $N S F, g \leqq f$. Denote $r_{n}=\min \left(h_{n}, g\right) \uparrow \min (f, g)=g$. Then $\int r_{n} \leqq \int h_{n}$ for $n=1,2, \ldots$ thus $\lim _{n \rightarrow \infty} \int r_{n} \leqq \lim _{n \rightarrow \infty} \int h_{n}<\infty$. Hence g is integrable by the theorem 5. Suppose $\int f=\infty$. Then NSF-s $p_{m}(m=1,2, \ldots)$ exist such that $p_{m} \leqq f$ and $\int p_{m}>m . p_{m}$ is integrable for $m=1,2, \ldots$ and the $\lim _{m \rightarrow \infty} \int p_{m}=\infty$. Then
$s_{n}=\min \left(h_{n}, p_{m}\right) \uparrow \min \left(f, p_{m}\right)=p_{m}$ and by the theorem $4 \int p_{m}=\lim _{n \rightarrow \infty} \int s_{n} \leqq \lim _{n \rightarrow \infty} \int h_{n}$.
Then also the $\lim _{m \rightarrow \infty} \int p_{m} \leqq \lim _{n \rightarrow \infty} \int h_{n}<\infty$, which is a contradiction. Thus $\int f<\infty$. Let $\varepsilon>0$ be arbitrary. Then the NSF $t \leqq f$ exists such that $\int f-\varepsilon<\int t \leqq \int f$. Denote $t_{n}=\min \left(h_{n}, t\right) \uparrow \min (\mathrm{f}, \mathrm{t})=\mathrm{t}$. Thus $\lim _{n \rightarrow \infty} \int t_{n}=\int t$ by the theorem 4. Hence $\int f-\varepsilon<$ $\int t=\lim _{n \rightarrow \infty} \int t_{n} \leqq \lim _{n \rightarrow \infty} \int h_{n} \leqq \lim _{n \rightarrow \infty} \int f_{n} \leqq \int f$. Since ε was arbitrary $\int f=\lim _{n \rightarrow \infty} \int f_{n}$.

Theorem 7. Let f, g be non-negative measurable functions on (X, \mathscr{S}, m). Then $\int f \oplus g=\int f \oplus \int g$.

Proof. Take NSF-s $f_{n}, g_{n}(n=1,2, \ldots)$ such that $f_{n} \uparrow f, g_{n} \uparrow g$. Then $f_{n} \oplus g_{n} \uparrow f \oplus g$ and by the theorem 6 and the proposition $4 \int f \oplus g=\sup _{n} \int f_{n} \oplus g_{n}$ $=\sup _{n} \int f_{n} \oplus \int g_{n}=\sup _{n} \int f_{n} \oplus \sup _{n} \int g_{n}=\int f \oplus \int g$.

Product of \oplus-measures

Let $(X, \mathscr{P}, \mu),(Y, \mathscr{T}, v)$ be measurable spaces with finite and continuous \oplus-measures μ, resp. v. Let \mathscr{R} be a ring of all finite disjoint unions $M=\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right)$ where $A_{i} \in \mathscr{S}, B_{i} \in \mathscr{T}(i=1,2, \ldots, n)$ and denote by $\mathscr{S} \times \mathcal{T}$ the σ-ring generated by \mathscr{R}. Let $M \in \mathscr{P} \times \mathscr{T}$. For each $x \in X, y \in Y$ define sections $M_{x}=\{y \in Y,(x, y) \in M\}$, $M^{y}=\{x \in X,(x, y) \in M\}$. Then $M_{x} \in \mathscr{T}, M^{y} \in \mathscr{F}$. Further define functions $f_{M}: X \rightarrow$ $\langle 0, \infty), g^{M}: Y \rightarrow\langle 0, \infty)$ as follows: $f_{M}(x)=v\left(M_{x}\right), g^{M}(y)=\mu\left(M^{y}\right)$.

Lemma. Let $M \in \mathscr{S} \times \mathscr{T}$. Then the functions f_{M}, g^{M} are non-negative measurable.

Proof. Let $M \in \mathscr{R}, M=\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right)$ where $A_{i} \in \mathscr{T}, B_{i} \in \mathscr{T}$ and $A_{i} \times B_{i}$ are mutually disjoint $(i=1,2, \ldots, n)$. For all $x \in X f_{M}(x)=v\left(\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right)_{x}\right)$ $=\oplus_{i=1}^{n} v\left(A_{i} \times B_{i}\right)_{x}$. Hence $f_{M}=\oplus_{i=1}^{n} v\left(B_{i}\right) \chi_{A_{i}}$. By the propositon $4 f_{M}$ is a NSF and hence is measurable. Similary g^{M} is a $N S F$. Let \mathcal{M} be a class of all $M \in \mathscr{S} \times \mathscr{T}$ such that both f_{M}, g^{M} are measurable. Then $\mathscr{R} \subset \mathcal{M}$. By continuity of μ and v, \mathcal{M} is a monotone class and hence $\mathscr{S} \times \mathscr{T} \subset \mathcal{M}$.

Remark. It is not difficult to see that for $M \in \mathscr{S} \times \mathscr{T}$ the functions f_{M}, g^{M} are integrable.

Let us define real functions φ, ψ on $\mathscr{S} \times \mathscr{T}$ as follows: $\varphi(M)=\int f_{M} d \mu$, $\psi(M)=\int g^{M} d v$ for all $M \in \mathscr{S} \times \mathscr{T}$.

Theorem 8. The functions φ, ψ are finite and continuous \oplus-measures.
Proof. Clearly φ is finite and $\varphi(\emptyset)=0$. Let $M, N \in \mathscr{S} \times \mathscr{T}, M \cap N=\emptyset$. Then $\varphi(M \cup N)=\int f_{M \cup N} \mathrm{~d} \mu=\int\left(f_{M} \oplus f_{N}\right) \mathrm{d} \mu=\int f_{M} \mathrm{~d} \mu \oplus \int f_{N} \mathrm{~d} \mu=\varphi(M) \oplus \varphi(N)$. Let $M_{n} \downarrow \emptyset, M_{n} \in \mathscr{S} \times \mathscr{T}(n=1,2, \ldots)$. For all $x \in X\left(M_{n}\right)_{x} \downarrow \emptyset$ and by continuity of v $\lim _{n \rightarrow \infty} v\left(\left(M_{n}\right)_{x}\right)=0$. Hence $f_{M_{n}} \downarrow 0$ and by the theorem $3 \lim _{n \rightarrow \infty} \varphi\left(M_{n}\right)=0$. Thus φ is continuous. Let $E_{n} \in \mathscr{S} \times \mathscr{T}(n=1,2, \ldots)$ are mutually disjoint. Put $E=\bigcup_{n=1}^{\infty} E_{n}$ and $F_{n}=E-\bigcup_{i=1}^{n} E_{i} \quad(n=1,2, \ldots)$. Then $F_{n} \downarrow \emptyset$ and hence $\lim _{n \rightarrow \infty} \varphi\left(F_{n}\right)=0 . \quad \varphi(E)=$ $\varphi\left(\bigcup_{i=1}^{n} E_{i}\right) \oplus \varphi\left(F_{n}\right)$. Hence $\varphi(E)=\lim _{n \rightarrow \infty} \varphi\left(\bigcup_{i=1}^{n} E_{i}\right)=\bigoplus_{n=1}^{\infty} \varphi\left(E_{n}\right)$. Hence φ is a \oplus-measure. For ψ the proof is dual.

Theorem 9. Let $M \in \mathscr{S} \times \mathscr{T}$. Then $\varphi(M)=\psi(M)$.
Proof. Let $M \in \mathscr{R}, M=\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right)$ where $A_{i} \in \mathscr{S}, B_{i} \in \mathscr{T}, A_{i} \times B_{i}$ are mutually disjoint $(i=1,2, \ldots, n)$. Then $\int f_{M} \mathrm{~d} \mu=\int \bigoplus_{i=1}^{n} v\left(B_{i}\right) \chi_{A_{i}} \mathrm{~d} \mu=\bigoplus_{i=1}^{n} \int v\left(B_{i}\right) \chi_{A_{i}}$ $=\oplus_{i=1}^{n} \mu\left(A_{i}\right) v\left(B_{i}\right)=\int \oplus_{i=1}^{n} \mu\left(A_{i}\right) \chi_{B_{i}} \mathrm{~d} v=\int g^{M} \mathrm{~d} v$. Thus $\varphi(M)=\psi(M)$ on R. Let \mathcal{M} be a class of all sets $M \in \mathscr{S} \times \mathscr{T}$ such that $\varphi(M)=\psi(M)$. Then \mathcal{M} is a monotone class by the continuity of φ, resp. ψ, and $\mathscr{R} \subset \mathcal{M}$. Thus $\mathscr{S} \times \mathscr{T} \subset \mathcal{M}$.

We shall write $\mu \times v$ for a function φ and we shall call it a product of \oplus-measures μ, v.

Let h be a real function on $X \times Y$. For all $x \in X, y \in Y$ let us define real functions h_{x}, h^{y} on Y, resp. X, in the following way: $h_{x}(y)=h(x, y), h^{y}(x)=h(x, y)$.

Theorem 10. Let $h: X \times Y \rightarrow\langle 0, \infty)$ be an integrable function. Then the functions $f: X \rightarrow\langle 0, \infty), g: Y \rightarrow\langle 0, \infty)$ defined as follows: $f(x)=\int h_{x} \mathrm{~d} v, g(y)=$ $\int h^{y} \mathrm{~d} \mu$ are integrable and moreover $\int h \mathrm{~d} \mu \times v=\int f \mathrm{~d} \mu=\int g \mathrm{~d} v$.

Proof. 1) First let $h=\chi_{E}, E \in \mathscr{S} \times \mathscr{T}$. Then $h_{x}=\chi_{E_{x}}$ and $f(x)=\int h_{x} \mathrm{~d} v=v\left(E_{x}\right)=$ $f_{E}(x)$. Thus $\int h \mathrm{~d} \mu \times v=\mu \times v(E)=\int f_{E} \mathrm{~d} \mu=\int f \mathrm{~d} \mu$.
2) Let h be a NSF on $X \times Y$. Then $\int h \mathrm{~d} \mu \times v=\oplus_{i=1}^{n} \alpha_{i} \mu \times v\left(E_{i}\right)=\bigoplus_{i=1}^{n} \alpha_{i} \int \chi_{E_{i}} \mathrm{~d} \mu \times$ $v=\oplus_{i=1}^{n} \alpha_{i} \int\left(\int \chi_{\left(E_{i}\right)_{x}} \mathrm{~d} v\right) \mathrm{d} \mu=\oplus_{i=1}^{n} \int \alpha_{i} v\left(\left(E_{i}\right)_{x}\right) \mathrm{d} \mu=\int \oplus_{i=1}^{n} \alpha_{i} v\left(\left(E_{i}\right)_{x}\right) \mathrm{d} \mu$ $=\int\left(\int h_{x} \mathrm{~d} v\right) \mathrm{d} \mu=\int f \mathrm{~d} \mu$.
3) Let h be an arbitrary non-negative function on $X \times Y$. Take NSF-s h_{n} $(n=1,2, \ldots)$ such that $h_{n} \uparrow h$ and denote $f_{n}(x)=\int\left(h_{n}\right)_{x} \mathrm{~d} v$ for all $x \in X,(n=$ $1,2, \ldots)$. The functions $f_{n}(n=1,2, \ldots)$ are μ-measurable, thus the $\lim _{n \rightarrow \infty} f_{n}$ is μ-measurable. By the theorem $6 \int h \mathrm{~d} \mu \times v=\lim _{n \rightarrow \infty} \int h_{n} \mathrm{~d} \mu \times v=\lim _{n \rightarrow \infty} \int f_{n} \mathrm{~d} \mu$
$=\int \lim _{n \rightarrow \infty} f_{n} \mathrm{~d} \mu=\int\left(\lim _{n \rightarrow \infty} \int\left(h_{n}\right)_{x} \mathrm{~d} v\right) \mathrm{d} \mu=\int\left(\int \lim _{n \rightarrow \infty}\left(h_{n}\right)_{x} \mathrm{~d} v\right) \mathrm{d} \mu=\int\left(\int h_{x} \mathrm{~d} v\right) \mathrm{d} \mu$ $=\int f \mathrm{~d} \mu$.
The function f is integrable since h is integrable. By the same arguments one can prove that g is integrable and $\int g \mathrm{~d} v=\int h \mathrm{~d} \mu \times v$.

REFERENCES

[1] ГОЛЬДБЕРГ, А. А.: Интеграл по полуаддитивной мере и его приложение к теории целых функций. Матем. сборник. Т. 58 (100), 1962.
[2] HALMOS, P.: Measure Theory. New York 1950.
[3] KALAS, J.: Предельные теоремы касающиеся интеграла по полуаддитивной мере. AMUC 37, 1980.
[4] RIEČAN, B.: An extension of the Daniell integration scheme. Mat. Čas. 25, 1975, 211-219
[5] RIEČANOVÁ, Z.: About σ-additive and σ-maxitive measures. Math. Slovaca 32, 389-395, 1982.
[6] SHILKRET, N.: Maxitive measure and integration. Indag. Math. 33, 109-116, 1971.
[7] ŠIPOŠ, J.: Integral with respect to a pre-measure. Math. Slovaca 29, 141-155, 1979.
Received September 2, 1983

Katedra matematiky Elektrotechnickej fakulty SVŠT Gottwaldovo nám. 19
81219 Bratislava

ИНТЕГРИРОВАНИЕ ПО \oplus-МЕРЕ
Ivica Marinová
Резюме

В статье показано, что как интегрирование σ-аддитивных мер и σ-макситивных мер, так и произведение этих мер можно рассматривать одновременно.

