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(Communicated by Martin Skoviera) 

ABSTRACT. Some properties of G(8, 3) are presented showing its uniqueness 
among generalized Petersen graphs. 

For a positive integer n > 3 and 1 < r < n / 2 , the generalized Petersen graph 
G(n,r) has vertex set {UQ^U-^, ... ,un_1,vQ)v1:... ,vn_1} and edges of the form 
uivi, u{ui+l, v{vi+r, i G { 0 , 1 , . . . , n — 1} with arithmetic modulo n . 

In [6] the automorphism group of G(n,r) was determined for each n and 
r . With the exception of the dodecahedron G(10,2), the generalized Petersen 
graph G(n, r) is vertex-transitive, if and only if r2 = i t l (mod n ) . Furthermore, 
G(n,r) is a Cayley graph if and only if r2 == 1 (mod n) ; see [9], [10]. Finally it 
was also shown in [6] that G(n,r) is arc-transitive if and only if 

(n,r) e {(4,1), (5, 2), (8, 3), (10, 2), (10, 3), (12,5), (24, 5 )} . 

Note that G(4,1) is the cube, and that 67(8, 3), G(12,5) and G(24, 5) are its 
covers ([3]). On the other hand, G(5,2) is the Petersen graph whose canonical 
double cover is G(10, 3), while G(10, 2) arises as a double cover of its pentago
nal embedding in the projective plane. G(8, 3) is known as the Mobius-Kantor 
graph ([3]), since it is the Levi graph of the unique 83-configuration. Similarly, 
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G(10,3) is the Levi graph of the Desargues 103-configuration and G(12,5) is 
the Levi graph of one of the 229 123-configurations (see [8]). The number of 
^-configurations was recently computed up to n < 18 in [1]. 

We support our claim from the title by the following facts. G(8, 3) is the only 
generalized Petersen graph except for the trivial examples G(n, 1), n > 3, that 
is a Cayley graph of a dihedral group. More precisely, it is a Cayley graph T for 
the dihedral group 

D8 = (x, y | x8 = y2 = 1, x " 1 = yxy) 

of order 16 with respect to the generating set {y, xy) x3y} which clearly identifies 
the two bipartition sets. This fact is not mentioned in [4] where G(8, 3) is given 
as an example of the Cayley graph for the group (2,2, 2)2 . 

Note that any bipartite Cayley graph of a dihedral group Dn with respect 
to a generating set consisting solely of reflections xfy, where t E T C Zn and 
0 E T , can be described by its symbol T . This, in turn, can be put in one-to-one 
correspondence with a positive integer N via its binary notation: 

7V ÒQ2"-1 + + K_Л + b, un-2 n - 1 

by letting t E T if and only if bt = 1. In this way we get a graph H(N) for 
each integer N called the Haar graph of TV (see [7]). Clearly, G(2m + 1,1) 
does not have a Haar graph representation, whereas G(2m, 1) = H(22m~1 + 3) 
and G(8, 3), the only other generalized Petersen graph that is a Haar graph, is 
isomorphic to H(133). 

FIGURE 1. Two views of the Mobius-Kantor graph G(8, 3) = H(133). 

To continue with special properties of G(8,3) we turn to Z^-covers, k > 2, 
of complete graphs. It is proved in [5] that 2-arc-transitive connected Z^-covers 
of Kn exist only for k = 2,4. The case k = 2 gives rise to the canonical double 
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cover Kn n — nK2 , whereas in the case k = 4 such a graph exists and is unique if 
and only if n = p25+1 + 1, where p is a prime congruent to 3 modulo 4. G(8, 3) 
is the smallest member in this family and corresponds to the pair (p, s) = (3,0). 
It is obtained from K4 with vertices 0 ,1 ,2 ,3 , by assigning voltage 1 to the 
three arcs 12, 23, 31 and voltage 0 to all other arcs. The next case exists for 
(p,s) = (7, 0) and yields a 7-valent graph on 32 vertices, a 4-fold cover of K8. 

Like all cubic Haar graphs, G(8, 3) embeds in a torus with hexagonal faces 
only (see [11]), which implies that it has the infinite hexagonal lattice graph H^ 
among its covers. A toroidal hexagonal embedding of G(8, 3) can be obtained 
by taking the Cayley map for the dihedral group Ds with an arbitrary cyclic 
permutation of the generating set {y, xy, x3y}. By [12; Theorem 2] one can prove 
that the resulting embedding is not regular. 

Also, let us mention that the automorphism group Aut G(8, 3) has order 96 
and is the group T of T h o m a s T u c k e r , the only group of genus 2 (see [14]). 
The Cayley graph for T that embeds in double torus is depicted in Figure 2. 

Í..J Ч ^ ч^ A. 

L. 

\ y 
i v 

i 

x~\ 

F I G U R E 2. A Cayley graph for the automorphism group T of O(8,3) embedded 
in double torus. One can easily read off the presentation T = (a, b, c | a 2 = b'2 = 
c2 = (ab) 2 = (ac)3 = (be)8 = 1). The m a p is dual to the barycentric subdivision 
of the m a p of G(8,3) in Figure 1. 

The graph G(8, 3) also has a regular octagonal embedding in the double 
torus shown in [4; Figure 3.6.c]. This embedding can be constructed from the 
presentation T = (a, b, c | a 2 = b2 = c 2 = (ab)2 = (ac)3 = (bc)s = 1) by taking 
the orbits of (a, c) as vertices, the orbits of (a, b) as edges and the orbits of 
(6, c) as faces. Since the map is reflexible and bipartite its Petrie dual is also 
orientable, regular (and reflexible). Hence G(8, 3) admits a regular 12-gonal 
map in the triple torus. 

As a final remark, we would like to point out the reference [13] that came to 
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our attention during the revision of this manuscript, in which the author studies 
the map in Figure 1 and other regular maps that result from branched covering 
of the standard Q3 in the sphere. 
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