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ALMOST-EVEN FUNCTIONS AS SOLUTIONS 
OF A LINEAR FUNCTIONAL EQUATION 

WOLFGANG SCHWARZ 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. Let / be an almost even function in B2+rj, which is pointwise 
represented by its Ramanujan expansion. A (complicated) method is given in 
order to show a result which is easily accessible otherwise: If for all n outside 
some "exceptional set" € with upper density 0 the function n i—> g(n) = n • f(n) 
satisfies the functional equation g(n) = g(t) + g(n — t) for all £, 1 < t < n, then 
g(n) = 7 • n identically. 

1. Introduction and notation 

Having seen the paper [2] by P h a m v a n C h u n g and the deep paper 
[4] by C l a u d i a S p i r o, where the multiplicative solutions of the functional 
equations f(m2 + n2) = f{m2) + f(n2) resp. f(p + q) = f(p) + f(q), p, q prime, 
are given, the author tried to obtain some results about solutions of functional 
equations by almost-even functions. This (complicated) method does not seem 
to work for the problems treated in [2] and [4], but a (trivial) result can be 
obtained. The author hopes for further, non-trivial applications of this method. 

We need some notation. 

Note. With the abbreviation e(a) = exp(27ria), Ramanujan's sum is 

->(»)= E d^)= E e(7-)-
d|(r,n) l < a < r 

gcd(a,r) = l 

For an arithmetical function / : N —r C, define, if the limits involved do exist, 
the mean-value 

M(f)= lim - E j » > 
x—i»oo X ^—^ 

n<x 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11A25, 11K65, 39B10. 
K e y w o r d s : almost even arithmetical function, Parseval's equation, Ramanujan expansion, 
linear functional equation. 
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the Ramanujan coefficients 

arU) = щ-M{f.cr), r = l,2,..., 

and the semi-norms 
i 

Г 1 ---. 1 я 
> 1. = { l i m s u p - - . £ | / ( n ) | « V , q 

v n<x 
\\q 

The closures of the space 

£ = Lin c {c r , r = l , 2 , . . . } 

with respect to the norm || • || are the spaces Bq of q-almost-even functions 

(<?>!)• 

2. Results and proofs 

We start with a nearly trivial result. 

PROPOSITION 2 .1 . If an arithmetical function / : N -> C in B2 satisfies 

| M ( / ) | 2 = M ( | / | 2 ) , (1) 

OO 

and if the Ramanujan expansion ^ a
r ( / ) ' cr(n) °f f ^s P°intwise convergent 

r = l 
to / ( n ) , then f = M ( / ) is constant. 

R e m a r k 1. For functions in B2 the mean-values M ( / ) , M ( | / | ) , and A-T(|/|2) 
do exist. By the Cauchy-Schwarz inequality, | M ( / ) | 2 < M ( | / | 2 ) . 

R e m a r k 2. The Ramanujan expansion of additive or multiplicative functions 
/ G B2 (with mean-values ^ 0) is pointwise convergent to / ( n ) . See [1] and 
[3; Chapter VIII]. 

P r o o f of P r o p o s i t i o n 2 . 1 . c1(n) = l , s o the Ramanujan coefficient 
ax(f) is 

fll(/)= lim - ^ / ( n ) C l ( n ) = M ( / ) . 
n<x 

Parseval's equation (see, for example, [3]) states that 
OO OO 

M{\f?) = E lftr(/)|2 • V(r) = |M(/)|2 + £ M/)|V(r), 
r = l r=2 

therefore, by (1), | a r ( / ) | = 0 for any r > 2. The convergence of the Ramanujan 
expansion implies / ( n ) = M ( / ) for all n G N. • 
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COROLLARY 2 .1 .1 . If f E B2 is multiplicative, and satisfies 

\M(f)\2 = M(\f\2)^0, 

then f = 1 is constant. 

P r o o f . According to [3; Chapter VIII.5], the Ramanujan expansion of a 
multiplicative function with M(f) ^ 0 is pointwise convergent, and / ( l ) = 1 
implies f(n) = 1 for all n. • 

In order to give a trivial application of Proposition 2.1, we consider the often 
solved functional equation 

g(n + m) = g(n) + g(m) (for every m,n). (2) 

Of course, this functional equation is trivially solved by g(2) = 2 • g(l), #(3) = 
3 • g(l), e t c The aim of the paper is to present another method for solving 
functional equations. 

COROLLARY 2.1.2. Assume that g satisfies the functional equation (2). and 

that n i-» f(n) = ------- is in B2 and is represented by its Ramanujan expansion. 
Then f = M(f) identically, and g(n) = M(f) • n. 

P r o o f . Without loss of generality, we may assume that / is real-valued.1 

Put / (0) = 0 for simplicity. Then, using the functional equation (2) in the form 
f(n + m) = f(n) • —£—\- f(m) • -*£—, we calculate 
J \ j J \ / n+m J v ' n+m ' 

M(f2)= lim ì -£ / (n ) - / (n ) 
n<x 

= 'l-J*E/м-K£{»'лч + »-л < )}) 
n<x ^k+Є=n ' 

= }™jY.f("Уè*2-p-m 

n<x Є<n 

= lim - . .£ ' / ( / ) • V IЏ. 
e<x e<n<x 

xlí f = u + iv, then 

A í ( | / | 2 ) = M(u2) + M(v2), and | A / ( / ) | 2 = \M(u)+iM(v)\2 = | M ( M ) | 2 + \M(v)\2 . 
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From Y^ f(n) ~ M-x, with the abbreviation M = M(f), we obtain by partial 
n<x 

summation, 

L l ^ = £/<»>• W .:«•»•? 
'—~ £<n<x J

Ł £<n<u 

-. (i) + f (i-i)+./<*(-л+.м>Š 
£ 

-GK-NK- fN) 
«G)-(И)-

(4) 

Therefore 

M(/ 2 ) = lim f • £ (м • /(*) - м • /rø • 1) + 0 ( ì • £ |/røl) (5) 

Notice that lim x~l £ |/(*?)| = \\f\\x < | |/ | |2 < oo. By partial summation we 
x-+°° ^<x 

obtain 
X 

£ f(l) -l = M-x2 + o(x2) - f(M-u + o(u)) du = ^Mx2 + o(x2). (6) 

Therefore, we deduce from (5) and (6) 

M(f2) = lim -?- • JM 2 • x + o(x) - ^ M 2 • x j + o(l) = (M(f)f , 
x—>oo X L -- J 

and the result follows from Proposition 2.1. • 

With the same proof, the result is easily extended. 

PROPOSITION 2.2. Let f G B2+T1 for some rj > 0 be pointwise represented by 
its Ramanujan expansion, and let M(f) ^ 0. Define the function g by g(n) = 
n • f(n). Assume that the functional equation 

g(n) = g(n-£) + g(£) for all *f, l<£<n, 

holds for all n G N \ £. where £ C N is a subset with upper density d(£) = 
limsup^ • £ 1 = 0. TTien 

ж->co n<x,nЄ£ 

f = M(f) is constant. 
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We follow the same pattern of proof as before. Without loss of generality, / 
is real-valued. Notice that (by Holder's inequality and d(£ = 0)) 

E i/нi2 í- ( E i/w 2+" • ( E i) ̂  = °( 
x,nЄ£ ^ n<x ^ n<x,nÇ:£ ' 

x). (7) 
n<x, nЄ£ 

Paying attention to | X. ^ ' /C0| < Yl n ' /CO ^ n2 •> an(^ using the Cauchy-
£<n £<n 

Schwarz inequality, we get 

E L^jx2-E^-/w«(Ei/(-)i2)"-( E -)* = '(*)• w 
n<x,n££ £<n ^ n<x ' ^ n<x,n££ ' 

Splitting the sum ]T in (3) into two sums ^ + ^ , and using the 
n<x n<x,nf£ n<x,n££ 

two estimates (7) and (8) just deduced, we obtain 

w2) = Д- l -E^)- E 
f(n) 

£<x £<n<x 

and then the proof is finished as earlier. 
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