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THE 3r +1 PROBLEM, GENERALIZED PASCAL
TRIANGLES AND CELLULAR AUTOMATA

IVAN KOREC!

ABSTRACT. Iterations of the 3x+1 problem are encoded using a 7-state one
way cellular automaton, or, equivalently, a generalized Pascal triangle associated
to a T-clement algebra.

1. Introduction

Let N denote the set of nonnegative integers and define for y € N

Jy+1
2

T(y) = if yisodd, T(y)=

if y is even.

o=

Further, denote T%(y) =y and T"t'(y) = T(T"(y)) for every n.y € N. The
sequence (T%(y), T'(y), T?(y),...) will be called the T -trajectory of y. There

are several unsolved hypotheses connected with the iterations of T'; for example:

3X+1 CONJECTURE. For cvery positive integer y there s n such that
T"(y)=1.

DIVERGENT TRAJECTORY CONJECTURE (ON N). There 1s no y € N
swch that lim T"(y) = oo.

n-—o<
FINITE CYCLES CONJECTURE (ON N). There are only finitely many
y € N such that there 25 n >0 such that T"(y) = y.
Of course, the first hypothesis (called also Syracuse problem, Collatz-IKakuta-
ni problem, ete.) implies the second and the third one. All three hypotheses seem
to be very hard. For references and history see [8] (where, however, the second
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and the third hypothesis are formulated for the set Z of all integers instead of
N).

Generalized Pascal triangles (GPT; they will be defined below in a slightly
modified form with respect to that of [5] and [6]) are structures formed similarly
to the classical Pascal triangle, but instead of 0 and the addition of integers
operations of a finite algebra A are used; A will have one binary operation and
one constant. (The term “algebra” is used in the sense of univeral algebra; the
binary operation need not be commutative or associative etc.)

GPT can be interpreted as computations of one-dimensional cellular au-
tomata (from finite initial configurations); hence e. g. many algorithmical prob-
lems concerning them can be shown undecidable.

Here two algebras (consisting of 7 or 8 elements) will be constructed and
some structural questions about their GPT will be shown equivalent with the
above hypotheses. So we can conclude that these questions about GPT are also
hard. On the other hand, GPT can help us to visualize some results concern-
ing the 3r + 1 problem. In terms of cellular automata, two nearest-neighbour
one-dimensional cellular automata with 7 and 8 states are constructed whose
behaviour is very close to the 3z + 1 problem; in particular, the 8-element au-
tomaton is nilpotent if and only if the 3241 conjecture holds. A similar result is
contained in [1], where, however, only a quasi-cellular automaton is constructed.

2. Generalized Pascal triangles and cellular automata

For every n € N we denote

D":{(I,y)eNxN; z+y2n—1}.

If A is an alphabet (i. c., a finite nonempty set), then A+ will denote the
set of all nonempty words in the alphabet A . The length of a word w will be
denoted Jw]; it must be distinguished from the absolute value of a real by the
context. The 7-th symbol of w will be denoted by w(:); the starting symbol is
w(0) and hence the last symbol is 10 (Jw|—=1) . Also some further usual notations
from the theory of formal languages will be used.

By an algebra we shall always understand an algebra A4 = (A;%,0) of
signature (2,0) and satisfying the identity o* o = o. We shall usually consider
finite algebras; the exceptions will be explicitly mentioned.

DEFINITION 2.1. To cvery algebra A = (A;*,0) and every w € AT, the
function G = GPT(A,w) will be the mapping G: Dp,,y — A defined by the
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formulae
w(x) if z+y=|w| -1,
oxG(0,y —1) if =0, y> ||,
G(z,y) = :
Gz —1,0)x0 if y=0, > |wl|,

Glr—-1,y)*G(z,y—1) f z+y>|w|l, >0, y>0.

The functions of the form GPT(A,w) for a finite algebra A and a word w € A™
will be called generalized Pascal triangles (abbreviation: GPT).

As an illustrative example, let us imagine the classical Pascal triangle written
in the usual way in a plane. Then it is natural to consider it as the function
P with the domain D; = N x N and satisfying P(z,y) = (’;Ly). The usual
orientation of Pascal’s triangle is in the plane obtained by rotating the axes

% clockwise, and by the reflection which reverses the direction of the axis

y. So the positive z-axis i1s directed down and to the right, and the positive
y-axis is directed down and to the left. (In the rest of the paper we always
represent lattice points in the plane with its axes transformed in this fashion, so
the cellular automata configuration on the line z+y = t appears at a horizontal
line.) The function P can be expressed as GPT(N,1), where N = (N; +,0)
and + is the usual addition on N. This analogy explains the term “generalized
Pascal triangle”. However, P is not a GPT because the algebra A is not finite.
Nice (and very often studied) examples of GPT are Pascal triangles modulo n,
particularly if n is a prime or a prime power. They are obtained if the values of
P are reduced modulo a positive integer n. We can express them in the form
GPT(N,,1), where M, = ({0,1,...,n — 1};+,0) and + denotes addition

modulo n.

DEFINITION 2.3. Let A= (A;*,0) be an algebra, w € At and t € N.
a) The t-th row of G = GPT(A,w), notation: R(A,w;t), will be the word

consisting of
G(0,t+ |w|—1),G(1,t+ |w| = 2),...,G(t + |w| — 2,1),G(t + |w| — 1,0).

b) The substantial part SP(A,w,t) of the t-th row of G = GPT(A,w) will
be the empty word if G(z,t —z) = o for all z € Z; otherwise SP(A,w;t) 1s
the largest connected subword of this row in which both endpoints are distinct
from o.

c¢) lmarg( A, w;t) and rmarg(A, w;t) will denote the number of (occurrences

of) o in R(A,w;t) before and after SP(A,w;t), respectively; if SP(A,w;t) is
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empty then lmarg(A,w;t) = |w| 4+t and rmarg(A, w;t) = 0. (Here lmarg and
rmarg stands instead of “left margin” and “right margin”, respectively.)

The GPT(A,w) can be viewed as the computation of a one-dimensional
cellular automaton, where the t-row corresponds to the configuration of the
automaton at time t. In these terms the element o in the algebra represents
the symbol “blank” (or the quiescent state), and the substantial part SP(A,w,t)
is the shortest connected subword of the t-th row containing all the nonblank
symbols, i.e. containing the interesting part of the configuration. Further, always

R(A w;t) = 0“““5(’4"”3')513(./1, w; t)o”“”“(""””').

The author defined GPT to study the structure of real-time regular systolic
trellis automata, see [2]. However, GPT also describe the computations of one-
dimensional cellular automata (CA) from finite initial configurations. The 0-th
row corresponds to the initial configuration, and every subsequent row corre-
sponds to one step of computation. Particularly, GPT immediately correspond
to computations of so called one-way CA, which are CA where the neighbour-
hood of a cell consists of the cell itself and its right neighbour, see [3]; of course,
the left neighbour can be considered as well. For other types of neighbourhood it
is suitable to consider several consecutive elements of a CA as one element of the
algebra A. Particularly, for the most usual 3-element neighbourhood pairs of
cells will be considered. There are two partitions of the cells of a 1-dimensional
CA into pairs of consecutive elements. One such partition will be considered in
even moments and the other in odd moments of the discrete time.

DEFINITION 2.4. A GPT G will be called nilpotent if G(z,y) = o for all but
finitely many pairs (x,y) € D. An algebra A = (A;*,0) will be called nilpotent
if for every w € AT GPT(A,w) is nilpotent.

DEFINITION 2.5. A language L will be called a simple linear language of
degree at most k if there are words wo,vy,uy,vy,... , Uk—1,Vk, Uk such that

L= {uozyfulv;uz...uk_lviuk | ¢ >0}. (2.5.1)
The set
v
{ 1 L N SR Ukl} (2.5.2)
|U]U2...Uk| ]vlvg...vkl |U1’U2...Uk|

will be called a type of L (here |vivy...vk| #0 is assumed).
A language L will be called simple semilinear language (abbreviated: SSI
language) of degree at most k if L 1is a disjoint union of finitely many simple

linear languages of degree at most k. The union of (some) types of these linear
languages will be a type of L.
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L unll be called a SSL langnage of degree k if L 1s a SSL language of degree
at most & but it 1s not a SSL language of degree at most k— 1. L will be called
a SSL language if it is an SSL language of degree at most k for some k € N.

A GPT G will be called SSL GPT (of degree [at most] k) if the set of its
rows s a SSIL language (of degrec [at most] k). Analogously for types of GPT.

An algebra A = (A;*,0) wnll be called an SSL algebra (of degree at most k)
if for cvery w € AT GPT(A,w) is SSL (of degree at most k). It will be called
SSL algebra of degree k af it 1s of degree at most k but it 18 not of degree at
most k—1. A finite set X of positive rationals not greater than 1 will be called

a type of A if for every w € A1 the set X s a type of GPT(A,w).

A SSL language can have several types. The degree of a simple lincar language
is less than or equal to that the cardinality of any of its types. Notice that a
SSL algebra need not be SSL one of a (finite) degree (and need not have a type)
because the degrees of its GPT can be arbitrarily large. A nilpotent algebra is
a SSL algebra of degree 1 but the converse does not hold.

Some of the above defined propertics can be characterized as follows.
G = GPT(A,w) is a SSL GPT of degree at most 2 if and only if the set of
its rows is a context-free language. G is a SSL GPT if and only if for every
¢ € A the set G~ '{c} is definable in Presburger arithmetic. Since Presburger
arithmetic is decidable many algorithmic problems which are undecidable for
general GPT become decidable for SSL GPT (and for the corresponding cellular
automata as well).

3. Simple semilinear GPT and the 3z + 1 problem

The operators DIV, MOD will denote the quotient and the remainder
by integer division (as in the programming language PASCAL). Floors | | will
denote the integer part of a real number.

DEFINITION 3.1. Let A, = (Ay;%,0), where A; = {0,0,1,2,3,4,5} and the
operation * 18 defined by

(3x) MOD 6+ (3y) DIV6  if z#0, y#o,

o if z=o0, y€ {001},

r+xy=14( (3y) DIV 6 if z=o0,y€{23,4,5}, (3.1.1)
4 if z€{1,3,5}, y=o,
o if z€{0,2,4}, y=o.

The algebra A; and one of its associated GPT are displayed in Figure 1.
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Algebra A:

*
o
o
[

'o! — ’.’ in GPT

NP W= OO0
w0 SO OO
WOoOwWowoo
WO wWowoo
R W A AN
B s e | W
NN |
AN [

Initial word w='0102000101000510000520’

GPT(A,w), rows 0..60, columns -40..36

w-2221342222142222'215243

S P e 170542 .7,

....2422222;2222214234T

ast . T T 2033 40
""{""‘f""'1‘455'

AR SRV RS 0 -3 5 35 S
L e e T T e 1240

'R SRS RV R - I 5
B D S B30 313 D

Ry SR ST T 3035 I S

IO AP R 3% D6 U6 O - S

1 s T 100335 47
2 13528 4
L T T e s 428 .
.{.....*..... 225124

L LU ......112342.
(103 N S AR Y S S

Figure 1.
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Let us consider the leftmost maximal segment without o in cach row. If we
consider these segments as integers in number base 6 we obtain the sequence

38,19, 58,29, 88, 44,22, 11,34,17,52,13,. .. .

. . . . s
Notice that every member @ is followed by 3o + 1 if + is odd and by =
if © is even. The same holds for the sequence of k-th maximal segments,
k=1,2,3,..., provided that these segments exist and are not glued together

with the other segments. We shall prove these facts below.

Assume that the substantial part of a row of GPT(A,,w) does not contain
any o. (This assumption is not fulfilled in Figure 1; however, any maximal
segiment of a row not containing any o can be considered as well.)

If we understand o as a blank, then the way how a row of a GPT( Ay, w) 1s
formed from tlic previous row resembles multiplying by 3 in the nunber system
with base 6. In such multiplication the digits 0 or 3 would arise without a
carry, any carry is at most 2, and hence their sum 1s less than 6. Therefore
the carry on one position cannot influence the carry on the next position. (The
situation is very similar to that with multiplication by 5 in the usual decadie
system, where 0 or 5 arises without a carry, and the carry can bhe at most 4.)
There 1s a difference at the right end, where:

erther 4 ariscs instead of 3; so 3u + 1 is obtained instead of 3u;
or the rightmost zero is lost; so 3u is divided by 6, and %u is obtained.

. +

To formulate the result strictly, for every w € (A;={0}) " denote by valg(w)
the integer represented by w in the number system with base 6 (leading zeros
are allowed). The above considerations give:

LEMMA 3.2. Let w € Al+ and t € N be such that o docs not occur in
SP(Ay,wit) and let w = valg(SP(A,,w;t)). Then o does not occur
i SP(A),w;t +1) and

Ju+1 if  woas odd,
val(,(SP(Al, wit+1)) = { I i s eoen (3.2.1)

Proof. Let us consider all integers written in base 6. Let wp, wp—y, ..., U1,
o be the digits of u = valc,(SP(.A| .05 1)) denote also 1,4y =0 and u_y =o.
If ug is odd, let vy, vy, .... v1.vg be the digits of v = 3u + 1. The j-th digit
(from the right end) of any » € N can be expressed as (r MOD 6/*!) DIV 6/
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or (z DIV 67) MOD 6 and therefore for 1 < j < n we have:

= (v MOD ¢*) DIV ¢/ = ((1+ im.e") MOD 67+') DIV ¢’

(1 + Z3u 6 ) MOD 6’“) DIV 6/

( =0

((1 +Z3u 6) DIV 6]) MOD 6
1=0

j—2

(

((1+ 3 3ui6") + (3u,-1.6" + 3u,.6/) ) DIV 6) MOD 6

1=0
= ((3u;-y + 18u;) DIV 6) MOD 6
= ((3u;-1) DIV 6 + (3u;)) MOD 6
= (3u;) MOD 6 + (3uj—;) DIV 6 = u; xuj_; .

Il

For vy we have
vy = ((1 + Z 311,'.6’) DIV 60) MOD 6 = (3up +1) MOD 6 =4 =ug *o.
1=0

So we have obtained v = 3u 4+ 1 = valg(SP(A;,w;t + 1)) . The proof for wup
even is similar. However, since up * 0o = o, it is suitable to denote the digits of

v=Yu by vp,vn_y,..

5 ,v1. Then vy = uj * uj_y can be proved analogously. O

There is a difference between (3.2.1) and the definition of T': the expression
. Ju+1
3u + 1 occurs here instead of -T+~ . Therefore the sequence

(valg(SP(Ay,wit)); t=0,1,2,...) (3.2.2)

is not exactly the T-trajectory of valg(SP(Ay,w;0)) . However, this T-trajectory
1s contained in (3.2.2) as a subsequence. (To obtain it, all iimmediate successors
of odd members must be removed from (3.2.2).) It is clear that this difference is
not substantial for considerations below.

LEMMA 3.3. Let w € (A — {O})+, w(0) # 0 and ¢ = liminf T" (valg(w)) .
Then
llwl| = llim Imarg(A, w;t)

t (3.3.1)

&
cr
N
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extsts and
() Iwl=3 i o=1,
(i) logg2 — 9072

(i) [lw]| =logg2 # ¢ =oo.

< |lw]l < logg2 if 1< q< oo,

Proof. (Notice that the 3z + 1 conjecture implies ¢ = 1 for all considered
w.) Assume that w is fixed and for every t € N denote

a; = vale (SP(A,‘LU,t)) , bl =ay- 6rmarg(A,w;t) :

notice that b, = valg(R'(A,w;t)), where R'(A,w;t) is the ¢-th row
of GPT(A,w) with all o replaced by 0. Then for every t € N we have

Imarg(A, w;t) + |logg b] = Jw|+t+ 1.

Further denote

1 if a; 1s even,
Cy =

1+ 1 if a; 1s odd.
3(1;

Then biy; = 3bscy for all ¢t € N. Now distinguish two cases.

If ¢ is finite, then the sequence (ag,aq,az,...) is ultimately periodic and
contains ¢ infinitely many times. Let a, = a; = ¢ for some r,s € N, r < s,
s —r minimal. Then the fractional parts of logg b, , logg b, are equal,
by = 3* "brcrcrtq ... cs—1 and hence

_ Imarg(A, w; s) — Imarg(A,w;r)

[l

(Jwl + s+ 1 — [logg bs)) —

S —

lw| + 7+ 1 — [logg b,])

i

s =1 —logg by +logg b, (s—1) (1 —logg3) —logg(creryr ... cs—1)

S —7r S =T

s—1

1
:10g62'— 3—_7;10366“

To estimate the last sum, denote by k the number of odd integers in the finite se-
quence (@r,@r41,-..,0s—1). Positive members of the estimated sum correspond

to odd a; and do not exceed logg (1 + L), the other members are equal to 0.

3q
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Since obviously k& > 0 we immediately obtain |Jw|| < logg 2. For the other
inequality notice that

s—r—k 3"' Gk
a,:asza,-BkcrcH_]...c,_]-(%) >a,-§s—_—r_—k:ar-2s_r .
Therefore 6F < 2*°~" and hence o, < logg 2. So we obtain
« k I 1 1 _ 0.072
;logsc,< PR lOgﬁ (1+§;]—) <10g62-1-ﬁ'§'"3? < T,

and (ii) is proved.
The above consideration holds also for ¢ = 1. In this case s =r+3, a, = 1,

ary1 =4, ar40 = 2, by = 6%b,, hence k =1 and [jw| = :l? Of course, this
result also can be obtained in a much simpler way.
Now consider the case ¢ = co. For every t € N we have
[Imarg(A,w;t) —t-logg 2| = [Jw| +t+ 1 — [logg b ] —t - logg 2|
< “wl +t 41— [logg(3'bococy ...ci—1)] —t - logg 2|
< K(w) + logg(cocy - .. ci—1),

where K(w) does not depend on t. Therefore ||w| = logg 2 will be proved (with

extra to spare) if we show

coCy ... o1 <Vt for all t > 2. (3.3.2)

, where

a+1
a

The factors ¢, # 1 here are pairwise distinct and are of the form

a > 120 and with at most one exception (corresponding to the first odd a, )
a = 43 (mod 18). Consider all ¢, # 1 in descending order and estimate every

¢? by a product of nine consecutive numbers of the form ﬂ%fi .
m = 90,91,.... So for t > 2 we obtain

99491

9 m+1 99 + 9¢
] . Cp— < = <t,
(cocr...co—1) H - o1

m=91

what immediately implies (3.3.2). a
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LEMMA 3.4. For every w € (A — {0})+ and ¢,d € N, GPT(A;,owo?)
s simple semilinear if and only if the T -trajectory of valg(w) 1s wltimately
periodic. Moreover, in this case {||w]|,1} is its type and its degree 1s at most 2.

Proof. The considered properties of GPT are not changed by deleting
several of its initial rows. If w € {o0,0}%, then after several steps rows consisting
of only o are obtained. Therefore GPT(A, w) is nilpotent, and hence its degree
is 1 and its type is {1}. So we may assume that a nonzero digit occurs in
w. The parts of, of of w cause only (additional) margins of widths ¢, d
consisting of o in GPT(A,w). Therefore we may assume ¢ = d = 0 without
loss of generality. Finally, the leading zeros vanish in the first several steps, and
so we may assume w(0) # 0. Together, we may assume that w satisfies the
assumptions of Lemma 3.3. Let us also use the notation from it and its proof.

If ¢ is finite and a, = a,, r < s, then for every t > r
R(A,w;t +s—1)=0R(A w;t)o’, where

¢ = lmarg(A, w;s) — lmarg( A, w;r), f = rmarg( A, w; s) — rmarg( A, w;r);

for t = r it can be verified directly, for t > r by an casy induction. Therefore the
set of rows of GPT(A,w) can be written as a disjoint union of a finite language
(consisting of the first s rows) and s — r simple linear languages of degree 2,
one for every R(A,w;t), s <t < 2s—r. Every of them can be represented in
the form (2.6.1), with

k=2, wgpug€{o}*, vi =0, wu =SP(Aw:t), vy = of,

and its type is {?-_%7— , 1} = {Hw”,l} . (Notice that r <t < s cannot be used

instead of s <t < 2s — 1 because in this case the number of o in R(A.w;it)
could be insufficient.)

If ¢ is infinite, then for every v € (A — {0})+. u(0) # 0 there is a row of
GPT(A.w) the substantial part SP(A, w;t) of which begins with w. (Roughly
speaking, because for every such w and every positive real .3 there are infinitely
n € N such that the initial digits of 33" coincide with w. This fact follows
from the irrationality of logg 3 and Example 2.1 of [7], where it is proved that for
every irrational real a the sequence of fractional parts of (n-a: n=0.1.2....)
is uniformly distributed in [0,1).) Therefore GPT(A. ) is not SSL hecause in
every simple semilinear GPT the number of distinet row segments of length !
grows only polynomially with [. O

(@2
it
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THEOREM 3.5. (i) The algebra Ay, 1s a SSL algebra of degree 2 1f and only
if the 3z + 1 conjecture holds.

(11) The algebra A; 1s a SSL algebra if and only if the Divergent trajectory
conjecture (on N) holds.

(111) The algebra A, is a SSL algebra of a finite degree if and only if both the
Dwvergent trajectory conjecture (on N) and the Fintte cycles conjecture (on N)

hold.

Proof. We shall use notation from Lemma 3.3 and its proof, particularly

lw|l defined in (3.3.1). Let us consider GPT(A;,w) for some fixed w € A} .
The word w can be written as

w = 0 D, 0 Mw,0?) owgot M) (3.5.1)
where wy,wy, ... w0k € (A — {u})+ and e(1),...,e¢(k — 1) are positive. Anal-
ogously every row R(A;j,w;t), t € N can be divided into I'(t) segments from
AT and segments from {o}*. The function I(t) is non-increasing because
t+xy#o forall z,y€e (A; — {0})+ . Therefore we may assume that K(#) = k
for all t € N (we leave out several first lines if necessary); analogously we may
assume w;(0) # 0 for all 7 € {1,...,k}. If we imagine a blank instead any

, then GPT(A,,w) can be couslder(‘(l as a superposition of k distinct GPT
which do not influence cach other:

GPT(A;, 0 Mw,0?), 1<i<k, (3.5.2)

(where ¢(2), (l( i) can be expressed by e()), |w,|). Particularly, GPT(A;, w) is
SSL GPT if and only if all (3.5.2) are SSL GPT‘ in this case the union of their
types is a type of GPT(A;.w). Finally, let us denote ¢, = liminf 7" (w;) for

n—onc
every i, 1 <7 < k. We shall use the relation between |wq] and ¢; deseribed
in Lemma 3.3.

Let A; be a SSL algebra of degree 2. To prove the 3r + 1 (‘()uj( (‘tllr( takt
an arbitrary integer y > 0. Let wy be such that valg(wy) = w9(0) # 0
w; =1 and let w = w;0%w, (this is a special case of (3.5.1) for A =2). Slll(‘(

GPT(A;,w) is a SSL GPT of degree at most 2 we have |Jwq]| = |jw]| = %,
and hence ¢ = 1, which implies T"(y) = 1 for some n. Conversely, let the
3r + 1 conjecture hold. Then for every word (3.5.1) we have |Jw,|| = - all

3
1.1 <1< k. Then GPT(A;,w) is a SSL GPT of degree at most 2. (After the

reductions above this degree is less than 2 only if A =0,1.¢. w € {0}+ Hence

Aj 1s a SSL algebra of degree (at most) 2, and the ﬁrst part of Th(‘or(‘m 3.5 1s
proved.
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If the Divergent trajectory conjecture (on N) holds then for every word
w € Af all ¢; are finite, and hence A; is a SSL algebra. Conversely, let 4,
is a SSL algebra. For every y € N there is w such that valg(w) = y, and by
Lemma 3.4 the T -trajectory of y is periodic. So the second part of Theorem 3.5
is proved.

For the third part we may assume that the Divergent trajectory conjecture
(on N) holds (and that A; is a SSL algebra). If the Finite cycles conjecture
(on N) does not hold, then there is an increasing sequence of posiyive integers
(yi; 1 =1,2,3,...) such that y; = T™(y;) for some n = n(z). Then there is a
sequence of words (wy; 1 =1,2,3,...) such that

lwrll < [lwall < flws]| < ... . (3.5.3)

(By Lemma 3.3, the sequence (3.5.3) converges to logg2.) If we take its first &
members and choose e(7) in (3.5.1) sufficiently large, then GPT(A;,w) will be
a SSL GPT of degree k. Therefore the degree of A; cannot be finite. Conversely,

if Ay is a SSL algebra of no finite degree, then words w; € (A — {0})+ which
satisfy (3.5.3) exist. Then y; = valg(w;) form a counterexample for the Finite
cycles conjecture (on N). O

Remark 3.6. Since the 3z + 1 conjecture was verified up to 24 Lem-
mas 3.3 and 3.4 leave only an interval of length less than 107'* for possible

values of ||w|| distinct from 1 and 1. (Note: JJw|| = 1 is possible only for

3
w € {o0,0}1.)

4. Nilpotent GPT and the 3z + 1 problem

The nilpotency of a GPT is a simpler and more transparent property than
simple semilinearity. Therefore it would be nice to replace the SSL algebra in
Theorem 3.5 by a nilpotent algebra. We can do it for the first part of Theo-
rem 3.5, but the cardinality of the algebra will increase to 8.

DEFINITION 4.1. Let A, = (A,;h,0), where Ay = {0,0,1,2,3,4,5,1} and
the operation b s defined by

0 if =1 y=o,
rhy=<1 if z=o0,y=2,

' xy' otherwise,

where * 18 as in Ay and ' =xv if 2 #1 and ' = 1.

The algebra A; and one of its GPT are displayed at Figure 2.
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Algebra A: * 1 00123451
(<] coo0oI1220 o’ — .’ in GPT
0]lo0011220
1 43344553
2100011220
314334456563
4 00011220
51433445653
I1 |0334456563

Initial word w='0011220053540142500133’

GPT(A,w), rows 0..59, columns -40..36 :

001122, 5354 .14265 . 133
. 00341 2455 65124 .°.7444
. 01504 .12 2 54°./2734 2 .7.222.
0653 2. 4126 .'1.161 LI 1 L.
.7.]2447.7.7204724°.365634°.°.7334 ..
LIT22.7.1021°2°.7154°86 . 145 . .
.41 . . 3,104 . 66524 ..624".
.J204°.7.71332 .7./2565 42 .°.°2412.
I02. . 444 .. 12561 .21 ..
3.1 222 4234 .. 404 .
173 4°.7.71.11 ..21718 .,202 .
. 4.5 . 334°.°.'I0354.1.01 .
.7.224°.7.714 58 . 3155 3,04 .
S O b R 6§24 .°.'13564.1732.
SR T SR Y S5 R 4 5565 4 4 .
s U2 .7.225654 .°22 .
..5 4 . 404 .7.'10172° 8585 1710,
..2.5 202 .. 342654 .34 ..
102 40 ‘170 1 .15 1725 7108 LT
. 472°.7.7.73.04 .. 63424 .54 .
21 o132 077248512 .28 L0,
‘'T04 ... 44 .7.7.'1"2234.'124.
., 32 .. 22 . .. 4115 4 2 .
e e e 14°.°.7.7I1 L.T.l203547.°21 .
PO - T 34 .°.7.'1701565 .'1.04".
13 - JC S B .. 30564 .32.
2 T 5407132665 071 4
.. 4. 25 .. 442654 .5 .
LT T 28 22128 002740
P 42 .°.7.'171704 241 2.
k0 R I ¢ .. 3321204 .
e e e e e . ‘To4a .. .14 4 0402
3 2. .. 520201 . .
e e e e e 1747.7.7.7.'224 01004 .
e e e e e e e e e e 5 LU'10270003.0,20.
b T 24777 40013 .
T 20004234 .
.47 1000215 .
T2 T30 0106 4.
e e e e . . ... ... .. .13003265
40 . . . L L. 4301424

21305612,
‘1043234 .
e e e e e e e e e e 321415 .

1406505 4.
45F . . . . L e e 6502325 .
e e e e e e e e e . Ll273.1T174°2° 4.

.101°3°35 172 .

e e e e e e e e e e 34456534 .
T 182248
S50F . . . .. oL 541224 .

e e h e e e e e e e e e .7.2.6 0412 .
.'1I'23204 .
e e e e e e e e e e . 41402.
T 205001
ss b . L LT 10273004
e e e e e e e e e e 3,113 2.
1737374 4",
. 4 452 .
2224

Figure 2.
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Algebra A: * 0012345F
olooo11220] ’0—"’.’ in GPT
0lo0011222
1 | F3344565%5
200011222
3143344656565
4 100011222
56143344663
F|l]o0334456502

Initial word w=’0011220053540142500133’

25

30

35

40

45

50

55

GPT(A,H), rows 0..59, columns -40..36 :

001122.. 5 354 .142565 . 133

. 00341 2455 5124 . .444

L0150 F ."172254.'2342 .°.7222

.0532..4125.1151 111 L.
..244.°.20424.353F . . 33F.

1152t s 208 13850477173 20 .
L3 4% 20452  aTs s s L aa”,
155 0. . . 1215 2280604 .02 2 .
R -5 S s SHUEUIE Bt U 30 -SSP
205g. .7 0202 .. .03 4254 T3 F ..
4. . 1%017. . 105 15278 1Ts L
L4527 3 0 F .. .53 4724 .54 .
21571732 245172 2.
10 F et 223 4" o)

.42 .°.°.71710424 1 2.
. R 3321204
D10 F ... 1440402
.32 ... 520201
e e e e e e e 174 . .°.°.24 0100 F
s 01200302
F .o o o o s 2.8 400131 . .
e e e e e e e 2.°.7.7.)20004 3F .
4°.°.7."."17000215

RS |
2T 124 221728 00240
.

Figure 3
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In most situations the new element I can be replaced by 1 without influ-
encing the next row. The only exception is 1® o, when o arises instead of 4.
Together with o @ 2 = T it causes the substantial part consisting of only digit
2 to vanish (i.e., become empty) in two steps. So periodical “tails” consisting
of (repeated) 4,21 in GPT(A,,w) are removed from GPT(Az,w). Therefore

the following statements hold:

LEMMA 4.2. For every w € (A, — {o})+, GPT(A2,w) 13 nilpotent if and
only if there 1s n such that T" (valg(w)) = 1.

THEOREM 4.3. The algebra Ay 13 nilpotent if and only if the 3x+1 conjecture
holds.

Analogously as 1 was split into two elements 1, I in the above construction
of A,, alternatively a similar splitting of the other elements of the periodical
tails can be used. We shall formulate the result for the element 4, without proof,
which is alinost the same as above.

DEFINITION 4.4. Let A3 = (A;;®,0), where Az = {0,0,1,2,3,4,5,F} and
the operation @ 13 defined by

o if r=o,y=F,
roy=4¢ F if =1, y=o0,

' xy' otherwise,

where * 18 asin A and o' =2 if t #F and F' =4.

Notice only that the new element F arises usually at the right end of the
substantial part of a row of GPT(Aj3,w). An example is displayed in Figure 3.

THEOREM 4.5. The algebra Ay s nilpotent if and only if the 3xr+1 conjecture
holds.
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