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NECESSARY AND SUFFICIENT CONDITIONS FOR 
THE NONOSCILLATION OF A FIRST ORDER 

NEUTRAL EQUATION W I T H SEVERAL DELAYS 

R. N. RATH 

(Communicated by Milan Medved') 

ABSTRACT. In this paper, necessary and sufficient conditions have been ob­
tained so tha t every solution of Neutral Delay Differential Equation (NDDE) 

(y(t) - J2pjy(t - Tj))' + Q(t)G(y(t - a)) = f(t) 
V j = i ' 

k 
is oscillatory or tends to zero as t -> oo for different ranges of £ ) p •. This paper 

J = I 
improves and generalizes two recent works [DAS, P.—MISRA, N.: A necessary 
and sufficient condition for the solution of a functional differential equation to 
be oscillatory or tend to zero, J. Math . Anal. Appl. 2 0 4 (1997), 78-87] and 
[Parhi, N.—Rath , R. N.: On oscillation criteria for a forced neutral differential 
equation, Bull. Inst. Math . Acad. Sinica 28 (2000), 59-70]. The results of this pa­
per hold for linear, sublinear and superlinear equations. Also, it holds for homoge­
neous equations. The results can be extended to NDDE with variable coefficients 
with out assumption of any further condition on the coefficient functions. 

1. Introduction 

In the present work, the author has obtained necessary and sufficient condi­
tions so that every solution of 

k v / 

y(t) - Y^PM* ~ TJ)) + QWHt ~ *)) = /(«) (E) 
j=i ' 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 34C10, 34C15, 34K40. 
K e y w o r d s : oscillation, non-oscillation, neutral equation, asymptotic behaviour. 
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k 

oscillates or tends to zero as t —•> oo on various ranges of ^ p., where each 
3=1 

pj is a scalar, G G C(R,R), Q G C([0, oo), [0, oo)), / G C([0,oo),R), r̂  > 0, 
a > 0. We further assume the following conditions for its use in the sequel. 

(HJ There exists F G C 1 ([0, oo), R) such that 
F'{t) = f(t) and lim F(t) =0. 

t—>oo 

(H2) G is non-decreasing and xG(x) > 0 for x ^ 0. 

oo 

(H3) / Q ( i ) d i = oo. 
0 

(H4) Let G satisfy Lipschitz condition on the intervals of the type [a, b], 
0 < a < 6. 

The following ranges for p. (j = 1,2,..., k) are considered in this paper. 
k 

(AJ 0 < 2 Pj < 1> where each p. > 0, 
i = i 

k 

(A2) - 1 < X] p,- < 0, where each p. < 0, 
J=I 

fc 
(A3) S Pj < - 1 > w ^ r e each p̂ . < - 1 and p{<-l+52 Pj 

j=i j?-t 

for some i G {1, 2, 3 , . . . , k}. 

k 

(A4) J2 Pj > 15 where each p̂ . > 1 and p. > 1 + J2 Pj 
i = i j#i 

for some z G {1, 2, 3 , . . . , k}. 

Our results also hold for the equation 

• k v / m 

(y(*)-EM*-Ti)) +E^G(»(«-ai)) = /(') (̂  
V 7 = 1 ' .7 = 1 3 

under the assumption 
° ° ™ 

/
7n 

£Q/t)d* = oo (2) 
o i=i 

in place of (H3). 
In the literature very few results (see [1], [8], [9], [11]) are available regarding 

the oscillation criteria for solutions of neutral differential equations with several 
delays. Most of these results are concerned with NDDE's where the several delay 
76 
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terms are not taken under the derivative sign. Virtually these results are related 
to the equation 

m 

(y(t) - py(t - r))' + £ Qj(t)G(y(t - a J) = f(t). (3) 
i = i 

Whatever results we find in the literature for (E) are concerned with mostly (A2) 
as the range for Y^Pj • ft seems that very little work is done in other ranges of 

3 

Pp i.e. for (A2), (A3) or (A4). In a recent paper [13], the author has obtained 
necessary and sufficient conditions so that every solution of 

(y(t) - Py(t -T))' + Q(t)G(y(t - a)) = f(t) (4) 

oscillates or tends to zero, where p is a scalar not equal to ±1 and G, Q, / , 
r , a are same as stated earlier. One may take interest and find that the results 
of [13] are true for the equation (3) under primary assumption (2) in place 
of (H3). Hence it seems equations with several delays outside the derivative sign 
do not pose much of a problem to study. But surprisingly the technique and the 
method used in [13] fail when one attempts to work out the same problem for (E), 
and this really motivated the author for the present work. [5; Lemma 1.5.1] was 
repeatedly used to get the results in [13]. The notes 1.8 given in [5; p. 31] suggests 
to extend Lemma 1.5.1 for application to neutral equations with several delays. 
But it seems hard to prove the extended lemma as suggested in [5]. So the author 
became more interested to study the oscillatory and asymptotic behaviour of 
solutions of (E). 

The results of this paper hold when G is linear, sublinear or super linear, also 
when f(t) = 0. This paper is an improvement and generalization of the work 
in [2] (see Remark 2) where the results are true only for sublinear equations 
and non-homogeneous equations. While studying the same problem in [13], / 
is assumed to be non negative and G is assumed to be Lipschizian. But in the 
present work there is no such restriction on / , that means / can be ultimately 
positive, negative or oscillatory. We could relax the Lipschitzian condition on G 
for the range (Ax), but not for other ranges of p-, i.e. for (A2), (A3) or (A4). 
Hence this paper is an improvement and generalization of [13] also. 

The authors of the paper [2] have rightly observed that there are very few 
results concerning necessary and sufficient conditions for oscillation of all solu­
tions of (4) except a few with f(t)=0 and the coefficient functions are real 
constants (see [6], [7]). The oscillatory behaviour of such equations are usually 
characterized by the non existence of real roots of the associated characteristic 
equations. The present work is an attempt in this direction, where all the four 
theorems provide both necessary and sufficient conditions for the oscillatory and 
asymptotic behaviour of all solutions of (E). 
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By a solution of (E) we mean a function y G C([T-r, oo),R) such that 

[y(t) — 1L PjV(t — Tj)) ls continuously differentiable and (E) is satisfied for 
V j=1 J 
t > T, where r = max{T1,T2,...,Tk,a} and T is depending on y. Such a 
solution of (E) is said to be oscillatory if it has arbitrarily large zeros, otherwise, 
it is called nonosdilatory. 

k 

Special remark. Hence forth it is to be understood that ]CHj means ]T p 

and J2 Pi means ( ]T p, J — pi for some i G {1, 2 , . . . , k}. 

2. M a i n resu l t s 

THEOREM 2.1. Let (Hx) and (H2) hold. Suppose that p, is in the range (Ax). 
Then every solution of (E) is oscillatory or tends to zero as t —> oo if and only 
if (H3) holds. 

P r o o f . Let us first prove the sufficiency part. Let (H3) hold. Suppose that 
y(t) is a non-oscillatory solution for t >t0. Setting 

(̂t) = y(*)-X)^*"7i) (5) 
and 

w(t) = z(t)-F(t) (6) 

for t > t0 + r, we obtain 

w'(t) = -Q(t)G{y(t-a)). (7) 

If y(t) > 0 for large t, then i/j'(£) < 0, which implies that w(t) > 0 or uv(£) < 0 
for t > tx > t0 -f r. In both the cases we claim that y(t) is bounded. If not, then 
there exists a sequence (tn) such that tn —.> -foo, 2/(£n) —> -f-co as n -» oo and 
y(tn) = max{H(s) : tx < s < tn}. We may choose n sufficiently large such that 
tn-r>t1. Then 

™(*J = »(*») ~ E^i»(*n - rj) - F(tJ 

implies that w(tn) —» oo as n -» oo, a contradiction whether Hj(£) > 0 or 
Hj(£) < 0. Hence our claim holds and as a consequence liminf ?/(£), limsupH(£) 

t->oo <—yoo 
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and lim w(t) exists. If liminf y(t) > 0, then y(t) > (3 > 0 for t > U > L . 
t—>oo t—>oo 

Hence 
t t 

J Q(s)G(y(s - a)) ds > G(f3) j Q(s) ds , 
tz ts 

where t3 > t2 implies that 

oo 

Q(s)G(y(s-a)) ds = oo (8) 

t3 

due to (H3). However, from (7) one obtains 
oo 

oo 

/ ' 

[Q(s)G(y(s-a))ds<oo, (9) 

a contradiction. Thus liminfy(t) = 0. Let lim w(t) = t £ R. Then from ( E ) 
i->oo t—>oo 

it follows that lim z(i) -= -?. If -? > 0, then 
£—>oo 

0 < t = lim *(*) = liminf (y(t) - T V y ( t - r-)) 
t—>oo t—>oo \ --—--' •* -/ / 

< liminf y(t) + limsupf- V V y ( £ - T , ) ) 
*->oo t^oo \ --—-̂  •/ ' / 

< V l i m s u p ( - p . p ( t - r . ) ) 
* — ' * ->oo ^ ^ 

= E ( ^ i %&*»('-ri)) = 0' 
a contradiction. If £ < 0, then 

0 > t = lim *(*) = limsup(i/(t) - VV-yO* - r ) ) 

> lim sup y(t) + liminf ( V -p,y(t - r ,)) 
t->oo t _ > 0 0 V ^ - ^ J J / 

> lim sup 2/(0 + ^ lim sup(-pfl(t - r^)) 
£—>oo t—>oo 

> ( l i m s u p i / ( « ) ) ( l - ^ P i ) . 

Hence if limsupy(t) > 0, then we obtain 0 > t > 0, a contradiction. If 

limsupy(i) = 0, then lim y(t) = 0. Hence £ = 0. Again proceeding as above 
t-»oo * - " » 

we get 
0 = I = limsup«(-) > (limsupy(t)) (1 - Yip, -1 , 
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which implies limsupy(t) < 0. Hence lim y(t) = 0. If y(t) < 0 for large t, then 
t->oo *-+°° 

we proceed as above and prove lim y(t) = 0. Thus the sufficiency part of the 
£—>OO 

theorem is proved. 
In order to prove that the condition (H3) is necessary, we assume that 

OO 

f Q(t) d£<oo, (10) 

0 

and show that (E) admits a positive solution which does not tend to zero as 
t—? oo, when the limit exists. From (10) and (HJ, it follows that there exists 
t1 > 0 such that if t > tx, then 

OO 

G(l)y*Q(i)dt<(l-5>.)/l0 
t 

and 

| F ( f ) | < ( l - £ P j ) / l 0 . 

We set X = BC([t1, oo), R) , the space of real valued bounded continuous func­
tions on [tpoo). Clearly, X is a Banach space with respect to "supremum" 
norm. Let K = {x G X : x(t) > 0, t > tx}. Thus X is a partially ordered 
Banach space ([5; p. 30]). For w, i jGl ,we define u < v if and only if v — u G K. 
Let 

S= {ueX : ( l - £ P j ) / 1 0 < ^ ( 0 < 1 for all te [^,00)}. 

If u0(t) = ( l - E P j ) / 1 0 > t>t^ then u0 G S and u0 = infS. Let y C 5* C 5 . 
If ^0(£) --- sup{.v(£) : v G £*} , then .v0 --- sup 5* and v0 G 5* . For y E S, define 

' r i / ( * ! + r ) , t G [ ^ , ^ + r ] , 
OO 

Tj/(t) = < EPil/(* - Tj) + jQ(s)G{y(s - a)) ds 

+ F(t) + ((l-ZPj)/5) 

Thus Ty is a real valued continuous function on [£-_, 00) for every y G 5 . Further, 

- w < ( E ^ ) + ((1 - E ^ ) / 5 ) + ((1 -1> , ) / 5 ) 
= (2 + 3 ^ ) / 5 < l 

and 

Ty(t) > (F(t)) + ((l - £ P j ) / 5 ) > (-(l - 2>,)/lo) + ((- - EP,)/5) 

= ( ( 1 - E P J ) / 1 0 )
 for * - - * i -

80 
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Hence Ty e S for every y e 5, that is, T: S -> S. Let yvy2,e S. If yl<y2, 
then T ^ < Ty2. Hence T has a fixed point y0 G S by Knaster-Tarski fixed 
point theorem (see [5; Theorem 1.7.3]). Thus yQ is a positive solution of (E) on 
[tx, oo) such that lim inf y(t) > 0. This completes the proof of the theorem. D 

ť->oo 

Remark 1. (Hx) *=> / f(t) át < 0 0 . 

Remark 2. Theorem 2.1 is an improvement and generalization of the work in [2] 
in view of Remark 1, and it also improves [13; Theorems 2.2, 2.3, Corollary 2.4]. 

THEOREM 2.2. Let J^Pj be in the range (A2). Suppose that (Hx) and (H2) 
hold. Then 

(i) (H3) holds implies every solution of (E) oscillates or tends to zero as 
t -» oo; 

(ii) every solution of(E) oscillates or tends to zero as t -> oo such that (H4) 
holds implies (H3) holds. 

P r o o f . Let us prove (i). Suppose (H3) holds, and y(t) be an ultimately 
positive solution of (E) for large t. Then setting z(t) and w(t) as in (5) and 
(6), we obtain (7), which implies w(t) > 0 or w(t) < 0 for t > tx. Suppose 
w(t) > 0 for t > L , which implies lim w(t) = £ e R exists. From ( H J , it 

t—>oo 

follows that lim z(t) = £. As z(t) > 0, so £ > 0. We prove y(t) is bounded 
t-»oo 

and liminf y(t) = 0 as in Theorem 2.1. We claim that £ = 0; if not, then £ > 0 
which implies 

£ = lim z(t) = liminf (y(t) - Y^pMt - r ) ) 
t—>CX) t->oo \ -"—-' / / / 

< lim inf y(t) + limsupf Y] -p7-y(t - r ) J 
t->oo t->oo \ ^ - ^ ^ J / 

< V - p . lim sup y ( t - r . ) 
* — ' J *->oo ^ 

< f-Vp.^limsupy^) 
\ *-** J ' t-*OQ 

= (— V^ P * ) m > where m = lim sup Zl W • 

Hence we get 

m>(e/-J2Pj)>ł- ( П ) 
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Again 

£ = limsup*(t) = limsup(j/(f) - ^PjVtt ~ rM 
t-¥00 t->00 ^ 

> limsupy(t) + liminf ( V -p,-2/(* - r
7)) 

t_>oo *-+°° V -C^ •/ / 

> m + V liminf (-jp -y(* - r,)) 

>m + 'E-pj(]imMy(t-Tj))=m, 

a contradiction due to inequality (11). 
Therefore we conclude £ = 0 and from z(t) > J/(*), it follows that lim sup y(t) 

V t->oo 
< 0. Hence lim y(t) = 0. Further if w(t) < 0, then either lim w(t) = - co or 
~ <->oo *-»°o 
lim w(t) = £ < 0. In both the cases lim z(t) = £ < 0, which is a contradiction. 

*->oo v ' t->oo v 7 

The case when y(t) < 0 for large t can be dealt with similar arguments as above. 
Hence (i) is proved. 

Next let us prove (ii). Suppose to the contrary (H3) does not hold, that is 

oo 

[ Q(t) d t<oo. 
0 

From this and (HJ , we can find tx > 0 such that for t >tx 

oo 

KJQ(S) ds<(i + Y,Pj)/5 and
 IFWI <{1 + E ^ ) / 1 0 ' 

t 

where K = max{G(l), Kx} , Kx is Lipschitz constant of G in [ ( l + £ P j ) / l 0 , l ] . 
Let 

X= [xGBC([^,oo) ,R) : (l + EPj)/10^x(t)<l for all te [^,oo)}. 

For u, v e X, we define 

d(u,i/)=sup{\u(t)-v(t)\: * > * . , } . 

Hence (X, d) is a complete metric space. For y e X, define 

T y f o + r ) , J E ^ + r ] , 

E P i » ( * - ^ ) + ( ( 1 - 4 ^ ) 7 5 ) Ty(t) = { 

+ ІQ(s)G(y(s-a))ds + F(t), 
t 

t>tг+r. 
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Clearly, Ty(t) is continuous for t > tx and for t > tx + r 

r 2 / ( t )<( l -4^p j ) /5+( l + V2p.)/5 +( l + £p.)/lO 

= (i-E-'i)/2<1 ' 

Ty(t) > {£Pj) + ((i-4Ei»i)/0 " ((i + E ^ / w ) 

= (i + E^)/10-

Thus T: X -> X. Further for y15y2 G X, 

d(TyvTy2) < (|X>;| + (l + E ^ ) / 5 ) ^ ! ' ^ ) • 

Hence T is a contraction. From the Banach fixed point theorem it follows that 
T has a unique fixed point y0 G X which is the required positive solution such 
that liminf yQ(t) > ( l + ]£?,•)/10- Hence the theorem is completely proved. • 

t-юo 

THEOREM 2.3. Let Y^Pj ^e ^n ^ e ran9e (A3). Suppose that (Hx) and (H2) 
hold. Then 

(i) (H3) holds implies that every solution of (E) oscillates or tends to zero 
as t —•> co; 

(ii) every solution of(E) oscillates or tends to zero as t -> co such that (H4) 
holds implies (H3) holds. 

P r o o f . First let us prove (i): Suppose that (H3) holds and y(t) be an 
ultimately positive solution of (E). Then setting z(t) and w(t) as in (5) and (6), 
we obtain (7), which implies w(t) > 0 or w(t) < 0 for t > tx. Suppose w(t) > 0 
for t > t, , which implies lim w(t) = £ € M. Hence lim z(t) = £ > 0. We prove 

t—>oo t—>oo — 

y(£) is bounded and liminf y(t) = 0 as in Theorem 2.1. Then 
t—>-co 

e = lim z(t) = liminf (y(t) + £ - P ^ ~ T^) 

< lim sup (y(t) + J ^ -py(t - r . ) ) + lim inf -p.j,( t _ T ) 
t-+oo \ T - : J J / t-*00 l (12) 

= (1-.&;) l imsuP2/( t)> 
V jik. J t^oo 
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and 
£ = lim z{t) = limsup(H(t) - Y V y ( £ - r-)) 

lim inf y(t) + lim sup ( V" -p7-y(* - r ) J 

limsup(-p iy(t - r.)) + liminf ( ^ -Pjl/C* - r-) 
t -+oo t—>oo \ 

> -p.limsupj/(t) + Y^ liminf ( -p . y{t - r,)) 

> - p . limsupy(t) + V ( - p 7 ) liminf y(i - r ) 

> - p . limsupy(t). 
i->oo 

From the inequalities (12) and (13) we obtain 

( l - V V ) limsupy(t) > -p.limsupy(£), 

which implies 

(13) 

. . . . , w t -»oo 

U 1 - £ P j ) + ^ i ) -»msupy(ť) > 0. 

Hence by (A,) we obtain limsupH(t) < 0. Thus we have lim y{t) = 0. If 

w{t) < 0, then lim w{t) = —oo or lim w{t) = £ < 0 exists. In both the cases 
t—>co £—»oo 

we get z(£) < 0 for large t, a contradiction. We can use similar arguments for 
the case y{t) < 0 for large t, hence (i) is proved. 

Next let us prove (ii). If possible, let 

dt < oo. 
o 

Choose 

j (t) 
0 

o < £ < ( $ > , . ) - I - P І , 
4 ЗФІ ' 

0 < Л > £ ( l -^ ) / ( (g P j ) - l - f t ) . 

!t 

H = -(\ + є)/Pi and /г=(-(A + Є ) ( l - V 2 p . ) + p . ( £ - Л ) ) / p ? 
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clearly H > h > 0. Then one may complete the proof by proceeding as in the 
proof of Theorem 2.2 and with the following changes: 

oo 

K f Q(s) ds < | - and \F(t)\ < - | for t > tx, 

t 

where K = max{I^l5 G(H)}, Kl is the Lipschitz constant of G in [/i,-H], 

X = ix e J5C([^,oo),R) : h < x(t) <H for all te [^,00)} 

and for y £ X, define 

тy(t) = { 

00 J r l > t J- Ţ 

~І I Q(s)G(y(s -*))às-£- ±F(t + тt), - ' ' 
t + Ti 

I Ty^+r), tefa^+r], 
where r = max{<r, r l 5 r 2 , . . . , Tk} . Clearly, T: X -> X and 

d(TyvTy2) < fid(yvy2) where 0 < lx = ( ( _ & i ) " 1 " f ) / p i < 1 -

Hence equation (E) admits a solution y0(£) on [^+r, 00) with 0 < h < 
y0(t) < H by Banach contraction principle. Thus the theorem is proved. • 

EXAMPLE 1. We may note that y(t) = e* is an unbounded positive solution of 
the equation 

(y(t) - 2y(t - \n2) - 6y(t - ln3))' + 2ey(t - 1) = 0, t>2. 

Here YJPJ
 1S m ^ e r a n g e (A4). 

The above example is a source of motivation for the next theorem. 

THEOREM 2.4. Let YJPJ ^e zn ^e range (A4). Suppose that (HJ and (H2) 
hold. Then 

(i) (H3) holds implies that every bounded solution of (E) oscillates or tends 
to zero as t -» 00 ; 

(ii) every bounded solution of (E) oscillates or tends to zero as t —> 00 such 
that (H4) /io/ds implies (H3) /io/ds. 

P r o o f . First let us prove (i). Let y(t) > 0 be any bounded nonoscillatory 
solution of (E). Setting z(t) and w(t) as in (5) and (6), we obtain (7), which 
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implies w(t) > 0 or w(t) < 0 for i > ix . In any case lim w(t) = £ G R exists 
t—>OO 

and by (H,), we get lim z(t) = £. We prove liminf j/(i) = 0 as in Theorem 2.1. 
t—>OO t—>OO 

Let limsupy(i) = m. If £ > 0, then 
t ->OO 

jӯ-ѓ 

0 < £ = l i m m f ( y ( i ) - X : P j ^ - ^ ) ) 

< limsupy(i) + liminf ( V -p7;y(i - r ) ) 
t_>oo t->oo V--—' J J J 

< m + liminf (-p. y(t-T,)) + lim sup ( Y ^ - p M t - r ) 

< (1 - p.)m + ] T limsup(-pj2/(i - r .̂)) 
. . . t—>OO 

3^1 

< (1-Pi)m. 

Hence m = 0 as p. > 1, which implies lim y(t) = 0. 
1 t—>OO 

If £ < 0, then we get 

£ = lim z(t) = liminf (y(i) - W - y f t - r ) ) 
t ->OO t ->OO \ - -—' / -/ / 

< limsup7/(i) + liminf ( V" -p7y(i - r ) ) 
< limsupH(i) + liminf(-p.y(i - r-)) + lim sup ( V -P ,y(i - r ) ) (14) 

t->OO t->OO t->oo \ ~f. / 

<{1-Pi)m + Y] -p- lim inf y(i - T ) 

* •* ^ t—>OO J 

= ( l - p . ) m , 

and 
^ = limsupz(i) = limsup(y(i) - y~V-.y(i ~ TiH 

t->co t->oo V ^ — ' ^ J 7 

> liminf y(i) + limsupY^ -p-y(i - r ) 
t ->oo ^ ^ o o *-*< J J 

> limsup(-p-H(i - r^)) + liminf ] T -p j2/(i - r.) 
t—>OO t->OO 

.77^ (15) 
> -p i l im in fy ( t -T i )+ ( - V V - limsup?/(i - r ) j 

3y£* 

Y^Pj) limsupy(i) = \-Ylpj)m' 
. . . / t—>OO \ . , . / 

3^i 3& 

4 jVѓ 

- p . l iminfy( i -т) 
•' t—>OO J 

jфi 
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From inequalities (14) and (15) we obtain 

(i-Pi)m>t> ( - ! > > ; ) J I 

which implies 

Hence limsupy(t) < 0 since p{ > 1 + Y Pj > which implies lim y(t) = 0. Hence 
i->oo fri J t-^°° 

(i) is proved. Proof of (ii) is similar to the proof of Theorem 2.2(ii), hence it is 
omitted. • 

Remark 3. [13; Theorems 2.5, 2.6, Corollary 2.7] are particular cases of The­
orem 2.4 of this paper. 

Remark 4. We may note that the conditions p{ < - 1 + YlPj m (A3) and 

Pi > 1 + YlPj m (A4) are essential for both the necessary and sufficient part 
j^i 

of the proofs of the Theorems 2.3 and 2.4. 

EXAMPLE 2. Consider 
(y(t) - \y(t - In2) - \y(t - In3))' + e2t~3 y3(t - 1) = 2e"<, * > 2 . 

From the sufficiency part of Theorem 2.1 it follows that every solution is oscil­
latory or tends to zero as t -» oo. In particular, y(t) = e~~* is a solution of the 
equation, which tends to zero as t -> oo. Here 0 < YlPj < 1-

EXAMPLE 3. Clearly y(t) = 1 + (1/t) is a bounded positive solution of 

(y(t) - \y(t - 1 ) - \y(t - 2))' + r 2 ( i - r 1 ) 3 ! , 3 ( t - 1 ) 

= ((* - 1 ) - 2 / 2 ) + ((* - 2 ) - 2 /3 ) , * > 3 . 

This illustrates the necessary part of Theorem 2.1. Here Q(t) = t~2(l — t~1)3 

and it does not satisfy (H3). 

Note. Similar examples as above can be found out to illustrate the The­
orems 2.2, 2.3 and 2.4. 

Remark 5. One may easily find that our results hold for the solutions of the 
equation with variable coefficients, i.e. for the equation: 

(y(t) - E^(*)y(* - Tj)) + £Q,-(t)Gfo(i - "j)) = f(t) • (F) 
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Here the primary assumption is (2), where p- G (7([0, co),R) and 0 < 
£]limsupp(£) < p < 1, p is a scalar. This result improves [11; Theorem 2.2] 

t-+oo 

for n = 1. Similarly, one may study the same problem for (F) in other ranges 
ofp.(i). 
Remark 6. The author is pained for not being able to find answer to the 
problem: Can we obtain necessary and sufficient conditions for all solutions of 
(F) to oscillate or tend to zero under assumption (2), and with no extra condition 
on G when YlPjtt) — -k---
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