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VNR rings, Π-regular rings and annihilators
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Dedicated to Aurélie Fhal.

Abstract. Von Neumann regular rings, hereditary rings, semi-simple Artinian rings, self-
injective regular rings are characterized. Rings which are either strongly regular or
semi-simple Artinian are considered. Annihilator ideals and Π-regular rings are studied.
Properties of WGP-injectivity are developed.
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Introduction

This paper is motivated by generalizations of injectivity, namely, p-injectivity
and YJ-injectivity. Recall that

(a) a left A-module M is p-injective if, for any principal left ideal P of A,
every left A-homomorphism of P into M extends to one of A into M
([7, p. 122], [21, p. 277], [22, p. 340] and [26]). p-injectivity is extended to
YJ-injectivity in [34], [35];

(b) AM is YJ-injective if, for any 0 6= a ∈ A, there exists a positive integer n
such that an 6= 0 and every left A-homomorphism of Aan into M extends
to one of A into M ([5], [23], [35], [43]). YJ-injectivity is also called
GP-injectivity in [14], [16].

We call here a left A-module M WGP-injective (weak GP-injective) if, for any
a ∈ A, there exists a positive integer n such that every left A-homomorphism of
Aan into M extends to one of A into M . (Here an may be zero.)
WGP-injectivity is studied in connection with VNR rings, strongly regular

rings and Π-regular rings. YJ-injectivity is also considered in connection with
hereditary rings and semi-simple Artinian rings.
Throughout, A denotes an associative ring with identity and A-modules are

unital. J , Z, Y will stand respectively for the Jacobson radical, the left singular
ideal and the right singular ideal of A. A is called semi-primitive or semi-simple
[15] (resp. (a) left non-singular; (b) right non-singular) if J = 0 (resp. (a) Z = 0;
(b) Y = 0). For any left A-module M , Z(M) = {y ∈ M \ l(y) is an essential left
ideal of A} is called the left singular submodule ofM . Right singular submodules
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are defined similarly. AM is called singular (resp. non-singular) if Z(M) = M
(resp. Z(M) = 0). A left (right) ideal of A is called reduced if it contains no
non-zero nilpotent element. An ideal of A will always mean a two-sided ideal
of A. Thus J , Z, Y are ideals of A.

A is called fully (resp. (a) fully left; (b) fully right) idempotent if every ideal
(resp. (a) left ideal; (b) right ideal) of A is idempotent.

Recall that

(1) A is von Neumann regular if, for every a ∈ A, a ∈ aAa;
(2) A is Π-regular (resp. strongly Π-regular) if, for every a ∈ A, there exists
a positive integer n such that an ∈ anAnan (resp. an ∈ an+1A);

(3) A is a P.I.-ring if A satisfies a polynomial identity with coefficients in the
centroid and at least one coefficient is invertible.

Following C. Faith [7], A is called a VNR ring if A is von Neumann regular
ring. A well-known theorem of E.P. Armendariz and J.W. Fisher asserts that a
P.I.-ring is VNR if and only if it is fully idempotent.

A VNR ring is also called an absolutely flat ring in the sense that all left (right)
A-modules are flat (M. Harada–M. Auslander). This characterization may be
weakened as follows: A is VNR if and only if every cyclic singular left A-module
is flat [30, Theorem 5] (cf. G.O. Michler’s comment in Math. Reviews 80i#16021).

In [26], p-injective modules are introduced to study VNR rings and associated
rings. Indeed, A is VNR if and only if every left (right) A-module is p-injective
([2], [23], [24], [26]). Flatness and p-injectivity are distinct concepts.

A is called left YJ-injective if AA is YJ-injective. YJ-injectivity is defined simi-
larly on the right side. If A is right YJ-injective, then Y = J [34, Proposition 1]
(this is the origin of our notation). Also, A is right YJ-injective if and only if for
every 0 6= a ∈ A there exists a positive integer n such that Aan is a non-zero left
annihilator [35, Lemma 3] (cf. also [16, Lemma 1], [23, p. 31], [43, Corollary 2]).
In recent years, p-injectivity and YJ-injectivity have drawn the attention of many
authors (cf. [2], [5], [7], [10], [14], [16], [18], [21], [22], [23], [24], [29], [43]).

A is called a left WGP-injective ring if AA is WGP-injective. WGP-injectivity
is defined similarly on the right side. Note that [43, Theorem 3] ensures that A
is a Π-regular ring if and only if every left (right) A-module is WGP-injective.

C. Faith proved that if every cyclic left A-module is either isomorphic to AA
or injective, then A is either semi-simple Artinian or a left semi-hereditary simple
domain [7, p. 65]. In [31, Theorem 1.5], the “p-injective analogue” of Faith’s result
is proposed (cf. [7, p. 65]). Following [31], we write “A is left PCP” if every cyclic
left A-module is either isomorphic to AA or p-injective. Recall that a left ideal
I of A is a maximal left annihilator if I = l(S) for some non-zero subset S of A
and for any left annihilator K which strictly contains I, K = A. In that case, for
any 0 6= s ∈ S, I = l(s). A maximal right annihilator is similarly defined.
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1. WGP-injectivity, VNR rings and annihilators

K. Goodearl’s book [9] has motivated a large number of papers on von Neu-
mann regular rings and associated rings. Our first result extends semi-prime
self-injective case.

Proposition 1.1. Let A be a semi-prime right WGP-injective ring. Then C, the
center of A, is VNR.

Proof: If u ∈ C, u2 = 0, then (Au)2 = Au2 = 0 implies that u = 0 (A being
semi-prime), whence C must be reduced. Now for any 0 6= c ∈ C, since A is
right WGP-injective, there exists a positive integer n such that every right A-
homomorphism of cnA into A extends to an endomorphism of AA. Since C is
reduced, we have cn 6= 0. For any v ∈ l(r(Acn)), since r(cn) = r(l(r(cn))) ⊆ r(v),
we may define a right A-homomorphism h : cnA → A by h(cna) = v(a) for all
a ∈ A. Then there exists y ∈ A such that v = h(cn) = ycn ∈ Acn. We have
shown that Acn = l(r(Acn)). Clearly, r(Ac) ⊆ r(Acn). If w ∈ r(Acn), (Acw)n ⊆
(Ac)nw = Acnw = 0 which implies thatAcw = 0 (A being semi-prime). Therefore
r(Acn) ⊆ r(Ac) which yields r(Ac) = r(Acn). Then c ∈ l(r(Ac)) = l(r(Acn)) =
Acn. If n > 1, c = cdc for some d ∈ A. If n = 1, Ac is a left annihilator. In any
case, Ac must be a left annihilator for each c ∈ C. Since c2 = 0, Ac2 is a left
annihilator and we have just seen that, in that case, c ∈ Ac2. Therefore c = cbc
for some b ∈ A. Now set z = c2b3. Then czc = (cbc)bcbc = (cbc)bc = c and
c2b = bc2 = cbc = c. For every a ∈ A, bc2a = ca = ac = abc2 = c2ab and hence
b3c2a = c2ab3. Therefore za = c2b3a = b3c2a = c2ab3 = ac2b3 = az which shows
that z ∈ C. We have proved that C is VNR. �

An interesting corollary follows.

Corollary 1.1.1. If A is a semi-prime Π-regular ring, then the center of A is
VNR.

Theorem 1.2. The following conditions are equivalent for a ringA with center C:

(1) A is VNR;
(2) A is a semi-prime ring such that for each non-zero ideal T of C, A/AT is
a VNR ring;

(3) A is a semi-prime right WGP-injective ring such that for each maximal
left ideal M of C, A/AM is a VNR ring;

(4) A is a Π-regular left PCP ring;
(5) A is a left PCP ring containing a non-zero WGP-injective left ideal;
(6) A is a left PCP ring containing a non-zero WGP-injective right ideal;
(7) A is a left non-singular ring such that every proper finitely generated left
ideal is either a maximal left annihilator or a flat left annihilator of an

element of A.
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Proof: It is clear that (1) implies (2) through (7).
Assume (2). We know that C is a reduced ring. For any 0 6= t ∈ C, ACt2 = At2

and since A/At2 is VNR by hypothesis, then t+At2 = (t+At2)(a+At2)(t+At2)
for some a ∈ A and t − tat ∈ At2. Since tat = at2 ∈ At2, then t ∈ At2 which
yields t = tdt for some d ∈ A. As in Proposition 1.1, with z = t2d3, we have z ∈ C
and t = tzt. Therefore C is VNR and for any maximal ideal M of C, A/AM is a
VNR ring by hypothesis. Thus (2) implies (1) by [1, Theorem 3].
(3) implies (1) by [1, Theorem 3] and Proposition 1.1. (4) implies either (5)

or (6).
Assume (5). Since A is left PCP, A is either VNR or a simple domain [31,

Theorem 1.5]. In case A is a simple domain, let I be a non-zero left ideal of A
which is WGP-injective. For any 0 6= d ∈ I, there exists a positive integer n such
that every left A-homomorphism of Adn into I extends to one of A into I. Let
j : Adn → I denote the natural injection. Then dn = j(dn) = dny for some y ∈ I.
Since A is a domain, 1 = y ∈ I which yields I = A. For any 0 6= b ∈ A, there
exists a positive integer n such that every left A-homomorphism of Abm into A
extends to an endomorphism of AA. Define g : Abm → A by g(abm) = a for all
a ∈ A. Then 1 = g(bm) = bmz for some z ∈ A. This shows that every non-zero
element of A is right invertible (and hence invertible) in A. In that case, A is a
division ring. Thus (5) implies (1).
Similarly, (6) implies (1).
Assume (7). Suppose there exists a principal left ideal P of A which is not the

flat left annihilator of an element of A. Then P 6= 0, P 6= A, and P = l(u), u ∈ A,
is a maximal left annihilator. P cannot be essential in A (because Z = 0). There
exists 0 6= c ∈ A such that P ∩ Ac = 0 and F = P ⊕ Ac is a finitely generated
left ideal of A. If F 6= A, then F is a proper left annihilator of an element in any
case. Now P ⊂ F ⊂ A (strict inclusion) which contradicts the maximality of P .
Therefore F = A and P is a direct summand of AA which contradicts our original
hypothesis. We have proved that every principal left ideal of A must be a flat left
annihilator of an element of A. For any 0 6= a ∈ A, Aa = l(v), v ∈ A, in any case.
Now Av ≈ A/l(v) implies that A/Aa is a finitely related flat left A-module and
hence projective [4, p. 459]. Therefore AAa is a direct summand of AA. Thus (7)
implies (1). �

Singular modules play an important role in ring theory [7, p. 180]. For an
exhaustive study of non-singular rings and modules, consult the standard reference
[8]. Rings whose singular right modules are injective (noted right SI-rings) are
introduced and studied by K. Goodearl who proved that right SI-rings are right
hereditary (cf. for example [2]).
Indeed, it is sufficient that all divisible singular right A-modules are injective

for A to be right hereditary (cf. [31, Theorem 2.4]). We know that if A is right
non-singular, for any injective right A-module M , the singular submodule Z(M)
is injective [25, Theorem 4]. Also if A is right self-injective regular, for any
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essentially finitely generated right A-moduleM , Z(M) is a direct summand ofM
[41, Corollary 10].

We now give two examples of quasi-Frobenius rings which are neither hereditary
nor VNR.

Example 1. If A denotes the rings of integers modulo 4, then A is also a com-
mutative principal ideal quasi-Frobenius ring which is not hereditary, VNR.

Example 2. LetK denote a field, A the commutativeK-algebra with the basis 1,
a, b, c and the multiplication 1r = r1 = r for all r ∈ A, ab = ba = 0, a2 = b2 = c,
ac = ca = bc = cb = c2 = 0. If J stands for the Jacobson radical of A, we
have J2 = Soc(A) = cA and A is a quasi-Frobenius ring but A/J2 is not quasi-
Frobenius. Consequently, A is not a principal ideal, hereditary, VNR ring.

Proposition 1.3. The following conditions are equivalent:

(1) A is a right hereditary ring;
(2) any right ideal of A is either projective or a p-injective right annihilator;
(3) any right ideal of A is either projective or a YJ-injective right annihilator.

Proof: It is clear that (1) implies (2) while (2) implies (3).
Assume (3). Suppose that Y 6= 0. If 0 6= y ∈ Y , there exists a complement right
ideal K of A such that L = yA ⊕ K is an essential right ideal of A. If LA is
projective, then so is yAA which implies that r(y) is a direct summand of AA.
But r(y) is an essential right ideal of A which yields r(y) = A, whence y = 0,
a contradiction! Therefore L is YJ-injective right annihilator. Then yAA is YJ-
injective (being a direct summand of LA). There exists a positive integer n such
that yn 6= 0 and any right A-homomorphism of ynA into yA extends to one of A
into yA. Let j : ynA → yA be the inclusion map. There exists w ∈ A such that
yn = j(yn) = ywyn, w ∈ A. Now ynA ∩ r(yw) = 0 which implies that yn = 0
(because yw ∈ Y ). This contradiction proves that Y = 0. For any right ideal R
of A, there exists a complement right ideal C of A such that E = R ⊕ C is an
essential right ideal of A. If E is a YJ-injective right annihilator, we have E = A
(in as much as Y = 0). In any case, RA is projective and (3) implies (1). �

The next result seems to be new.

Proposition 1.4. If A is left duo, then either A is a left non-singular ring or
Z ∩ J 6= 0

Proof: Suppose that Z 6= 0 and Z ∩ J = 0. Since Z 6= 0, there exists 0 6= z ∈ Z
such that z2 = 0 [29, Lemma 2.1]. Then (Az)2 = AzAz ⊆ Az2 = 0 implies that
Az ⊆ J (every nil left ideal of A is contained in J). Therefore z ∈ Z ∩ J = 0
a contradiction! We have shown that either Z = 0 or Z ∩ J 6= 0. �
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Corollary 1.4.1. If A is left duo, left WGP-injective, and Z ∩ J = 0, then A is
strongly regular.

Proof: By Proposition 1.4, Z = 0. Since A is left duo, A is reduced (cf. [28,
Lemma 1]). Then, A being left WGP-injective, it is left YJ-injective and we know
that a reduced left YJ-injective ring is strongly regular [35, Lemma 5]. �

A P.I.-ring whose essential left ideals are idempotent needs not be even semi-
prime, as shown by the following example.

Example 3. If A denotes the 2×2 upper triangular matrix ring over a field, A is
Π-regular, P.I.-ring whose essential one-sided ideals are idempotent but A is not
semi-prime (the Jacobson radical J of A is non-zero with J2 = 0).

Proposition 1.5. Let A be a P.I.-ring whose essential left ideals are idempotent.
Then every prime factor ring of A is simple Artinian.

Proof: Let B denote a prime factor ring of A. Then every essential left ideal of
B is idempotent. For any 0 6= b ∈ B, set T = BbB. Let K be a complement left
subideal of T such that L = Bb ⊕ K is essential in BT . Since BT is essential in

BB (B being prime), then BL is essential in BB. Now L = L2 and b ∈ L2. If

b =

n∑

i=1

(bib+ ki)(dib+ ci), bi, di ∈ B, ki, ci ∈ K,

then

b −

n∑

i=1

(bib+ ki)dib =

n∑

i=1

(bib+ ki)ci ∈ Bb ∩ K = 0.

Now b ∈ T , ki ∈ T and since T is an ideal of B, then b ∈ Tb and hence Bb = (Bb)2

which proves that B is a fully left idempotent ring and hence A is a strongly
Π-regular ring which is therefore Π-regular [20, Proposition 23.4]. Then every
non-zero-divisor of B is invertible in B and B coincides with its classical left
(and right) quotient ring, whence B is a simple Artinian ring by a theorem of
E.C. Posner [17, Theorem]. �

As usual, A is called a right Kasch ring if every maximal right ideal of A is
a right annihilator. We propose some characterizations of semi-simple Artinian
rings.

Theorem 1.6. The following conditions are equivalent:

(1) A is semi-simple Artinian;
(2) A is a right Kasch ring which is right non-singular;
(3) A is a right Kasch ring whose simple right modules are either YJ-injective
or projective;
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(4) A is a right Kasch ring whose simple left modules are YJ-injective;
(5) for every maximal right ideal M of A, l(M) * J ∩ Y ;
(6) A is a left p-injective ring whose maximal left ideals are principal projec-
tive.

Proof: (1) implies (2) through (6) evidently.
If A is right Kasch, then for any maximal right ideal M of A, l(M) 6= 0. Then
(2) implies (5) evidently.
Assume (3). Since every simple right A-module is either YJ-injective or pro-

jective, then Y ∩ J = 0 [37, Propositon 8(1)]. Therefore (3) implies (5).
Assume (4). Since every simple left A-module is YJ-injective, then J = 0 [39,

Lemma 1]. Therefore (4) implies (5).
Assume (5). Let M be a maximal right ideal of A. Since l(M) * J ∩ Y , then

either l(M) * J or l(M) * Y . First suppose that l(M) * J . Then l(M) contains
a non-nilpotent element v. Now M = r(v) and vA ≈ A/r(v) is a minimal right
ideal of A. Since v is non-nilpotent, vA is a direct summand of AA. Therefore vA
is a projective right A-module which implies that M = r(v) is a direct summand
of AA. Now suppose that l(M) * Y . Then there exists u ∈ l(M), u /∈ Y .
Therefore r(u) is not an essential right ideal of A and M = r(u) is a direct
summand of AA. In any case, every maximal right ideal of A is a direct summand
of AA and hence (5) implies (1).
Assume (6). Let M be a maximal left ideal of A. Then M = Ab, b ∈ A and

l(b) is a direct summand of AA. Now l(b) = Ae, e = e2 ∈ A, Ae = l(u), where
u = 1 − e. But M ≈ A/l(b) = A/l(u) ≈ Au and since A is left p-injective, any
left ideal of A which is isomorphic to a direct summand of AA is itself a direct
summand of AA. It follows that AM is a direct summand of AA. Thus (6)
implies (1). �

We now give conditions for Π-regularity.

Proposition 1.7. Let A be a ring satisfying the following conditions: (a) every
simple right A-module is flat; (b) for every a ∈ A, there exists a positive integer n
such that Aan is a projective left A-module (anmay be zero). Then A is Π-regular.

Proof: Let F =
∑n

i=1 yiA, yi ∈ A, be a finitely generated proper right ideal
of A,M a maximal right ideal of A containing F . Since 0→ M → A → A/M → 0
is an exact sequence of right A-modules with A free and A/MA is flat, there exists
a right A-homomorphism g : A → M such that g(yi) = yi for all i, 1 ≤ i ≤ n [4,
Proposition 2.2]. If g(1) = u ∈ M , then for every b ∈ F , b =

∑n
i=1 yibi, bi ∈ A,

g(b) = g(1)b = ub and g(b) =
∑n

i=1 g(yi)bi =
∑n

i=1 yibi = b. Therefore (1−u)b =
0 which yields (1 − u)F = 0, whence F has a non-zero left annihilator (because
M 6= A). By [3, Theorem 5.4], any finitely generated projective submodule of a
projective left A-module is a direct summand. By hypothesis, for every a ∈ A,
there exists a positive integer m such that Aam is a projective left A-module.
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Therefore Aam is a direct summand of AA. In that case, every left A-module is
WGP-injective by definition. By [43, Theorem 3], A is Π-regular. �

The proof of Proposition 1.7 together with [43, Theorem 9] ensures the validity
of the following result.

Proposition 1.8. A is VNR if and only if every simple right A-module is flat
and for each a ∈ A, a 6= 0, there exists a positive integer n such that Aan is a

non-zero projective left A-module.

The next result connects injectivity and projectivity.

Theorem 1.9. The following conditions are equivalent:

(1) A is a left self-injective VNR ring;
(2) every simple right A-module is flat and for each finitely generated left

A-module M , M/Z(M) is a projective left A-module.

Proof: Assume (1). Since Z = 0, we have Z(M/Z(M)) = 0 for each finitely
generated left A-module M by [25, Theorem 4]. Therefore M/Z(M) is a finitely
generated non-singular left A-module and by [41, Corollary 6], AM/Z(M) is pro-
jective. Therefore (1) implies (2).

Assume (2). Then every finitely generated proper right ideal of A has a non-
zero left annihilator as in Proposition 1.8. Since AA/Z is projective, AZ is a
direct summand of AA, whence Z = 0 (in as much as Z cannot contain a non-
zero idempotent). Let E denote the injective hull of AA. Then E is the maximal
left quotient ring of A and E is a left self-injective regular ring. If y ∈ E, then
C = A+Ay is a finitely generated non-singular left A-module which is projective
by hypothesis. By [3, Theorem 5.4], AA is a direct summand of AC. Since AA
is essential in AC, then A = C which proves that A = E is a left self-injective
regular ring and hence (2) implies (1). �

2. CM-rings, ELT and MELT rings

Recall that (1) A is a left CM-ring if, for any maximal essential left ideal M
of A (if it exists), every complement left subideal of M is an ideal of M ; (2) A is
ELT (resp. MELT) if every essential left ideal (resp. maximal essential left ideal,
if it exists) of A is an ideal of A. ERT and MERT rings are similarly defined on
the right side. If A is a VNR ring, then the above four conditions are equivalent
(cf. [2]). Also a MELT fully left idempotent ring is VNR [2, Theorem 3.1]. Note
that A is ELT left self-injective if and only if every left ideal of A is quasi-injective
[11, Theorem 2.3].

Left CM-rings generalize left uniform rings, Cozzen’s domains, left PCI rings
[7, p. 65] and semi-simple Artinian rings.

The rings considered in the next two propositions need not be VNR.
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Proposition 2.1. Let A be a left CM-ring whose simple singular left modules
are YJ-injective. Then Y = J = 0.

Proof: Suppose that A is not semi-prime. Then there exists 0 6= t ∈ A such
that (AtA)2 = 0. Let C be a complement left ideal of A such that L = AtA ⊕ C
is an essential left ideal of A. If L = A, AtA = (AtA)2 = 0 which contradicts
t 6= 0. Therefore L 6= A. Let M be a maximal left ideal of A containing L. Then
CM ⊆ C (since A is left CM) which implies that Ct ⊆ C ∩ AtA = 0 and hence
C ⊆ l(t) which yields L ⊆ l(t). Therefore t ∈ Z. Now Ata ⊆ J (AtA being a
nil ideal of A) which implies that AtA ⊆ J ∩ Z. Since every simple singular left
A-module is YJ-injective, by [37, Proposition 8], Z ∩ J = 0. Therefore t = 0,
again a contradiction! This proves that A must be semi-prime. Now a semi-prime
ring whose singular simple left modules are YJ-injective must be semi-primitive
and right non-singular (cf. [40, Proposition 2]). �

Proposition 2.2. Let A be a left CM-ring whose simple singular one-sided mod-
ules are YJ-injective. Then A is a biregular ring.

Proof: By Proposition 2.1, A is a semi-prime ring. Since every simple singular
right A-module is YJ-injective, then Z = 0 [40, Proposition 2]. Since A is left
non-singular, left CM, by [32, Lemma 1.1], A is either semi-simple Artinian or
reduced. In case A is reduced, by [40, Proposition 3], A is biregular. Therefore A
must be a biregular ring. �

Proposition 2.3. The following conditions are equivalent:

(1) A is either strongly regular or semi-simple Artinian;
(2) A is a MELT, left CM-ring whose simple singular left and right modules
are YJ-injective;

(3) A is a semi-prime ELT left YJ-injective left CM-ring;
(4) A is a semi-prime ELT right YJ-injective left CM-ring.

Proof: Since ELT or MELT left CM-rings generalize semi-simple Artinian rings
and left duo rings, (1) implies (2) through (4).
Assume (2). Since A is a left CM-ring whose simple singular left modules are YJ-
injective, A is a semi-prime ring by Proposition 2.1. Since every simple singular
right A-module is YJ-injective and A is semi-prime, we have Z = 0 by [40,
Proposition 2]. Now A is left non-singular left CM which implies that A is either
semi-simple Artinian or reduced [32, Lemma 1.1]. We consider the case when A is
a reduced ring. Since every simple left A-module is YJ-injective, A is biregular by
[40, Proposition 3]. Therefore A is a MELT fully left (and right) idempotent ring
which is therefore VNR by [2, Theorem 3.1]. Since A is reduced, A is strongly
regular. We have proved that (2) implies (1).
Assume (3). If Z 6= 0, there exists 0 6= z ∈ Z such that z2 = 0 [29, Lemma 2.1].

Since l(z) is an ideal of A, Az ⊆ l(z) implies that AzA ⊆ l(z), whence (Az)2 = 0.
Since A is semi-prime, we have z = 0. This contradiction proves that Z = 0.
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Then A is a left non-singular, left CM-ring which is either semi-simple Artinian
or reduced [32, Lemma 1.1]. If A is reduced then, since A is left YJ-injective, A
is strongly regular [34, Proposition1(2)]. Thus (3) implies (1).
Similarly, (4) implies (1). �

A well-known generalization of a right hereditary ring is a right p.p. ring (also
called a right Rickartian ring). Reduced right p.p. rings are characterized in [20,
Proposition 7.3].

Remark. [20, Proposition 7.3] coincides with [36, Theorem 2].

If every cyclic semi-simple left A-module is p-injective, then A is VNR [27,
Theorem 9].

Question 1. Does the above result hold if “p-injective” is replaced by “flat”?

We know that if every simple left A-module is p-injective, then A is fully left
idempotent (cf. [13, Reference [58], p. 367] or [22, p. 340]).

Question 2. Is A fully left idempotent if every simple right A-module is flat?

We add a weaker conjecture:

Question 3. Is A semi-primitive if every simple right A-module is flat? (The
answer is positive if “simple” is replaced by “cyclic semi-simple”.)

Acknowledgment. The author would like to thank the referee for helpful com-
ments and suggestions leading to this improved version of the paper.
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