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Moderate deviation principles

for sums of i.i.d. random compact sets

Yu Miao

Abstract. We prove a moderate deviation principle for Minkowski sums of i.i.d. random
compact sets in a Banach space.
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1. Introduction and main result

We consider a separable Banach space F with norm ‖ · ‖. We denote by K(F )
the collection of all nonempty compact subsets of F . For an element A of K(F ),
we denote by co(A) the closed convex hull of A. Mazur’s theorem [7] implies
that, for A in K(F ), co(A) belongs to co(K(F )), the collection of the nonempty
compact convex subsets of F . The space K(F ) is equipped with the Minkowski
addition and the scalar multiplication: for A1, A2 in K(F ) and λ a real number,

A1 +A2 = {a1 + a2 : a ∈ A1, a2 ∈ A2}, λA1 = {λa1 : a1 ∈ A1}.

The Hausdorff distance

d(A1, A2) = max

{

sup
a1∈A1

inf
a2∈A2

‖a1 − a2‖, sup
a2∈A2

inf
a1∈A1

‖a2 − a1‖
}

makes (K(F ), d) a complete separable metric space (i.e., a Polish space). We
endow K(F ) with the Borel σ-field associated to the Hausdorff topology. If A ∈
K(F ), then we shall write ‖A‖ = d(A, {0}) = supa∈A ‖a‖.
We denote by F ∗ the topological dual of F and by B∗ the unit ball of F ∗.

The Banach-Alaoglu theorem asserts that B∗ endowed with the weak∗ topology
ω∗ is compact [11]. Moreover the space (B∗;ω∗) is separable and metrizable. We
denote by M(B∗) the set of Borel signed measures on B∗ (the σ-field generated
by the weak∗ topology). Let (Ω;F ;P) be a probability space. A random compact
set of F is a measurable function from Ω to K(F ), i.e., a random variable with
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values in K(F ). If A is a random compact convex set (i.e., co(K(F ))-valued),
then EA is defined as

EA = {Ef |f ∈ L1(Ω;F ;P), f(ω) ∈ A a.s.}.

Here f : Ω→ F is a selection of A and Ef denotes the classical expectation (via
the Bochner integral). In general EA may be empty, but if E‖A‖ < ∞, then
EA ∈ co(K(F )). If A is a random compact set, then, by definition

EA = E(co(A))

and so EA ∈ co(K(F )). Here co(A) denotes the closed convex hull of A.
We suppose that F is of type p > 1, i.e., there exists a constant c such that

E‖
n
∑

i=1

fi‖p ≤ c

n
∑

i=1

E‖fi‖p

for any independent random variables f1, . . . , fn with values in F and mean zero.
Every Hilbert space is of type 2; the spaces Lp with 1 < p < ∞ are of type
min(p, 2). However, the space of continuous functions on [0, 1] equipped with the
supremum norm is of type 1 and not of type p for any p > 1.
Denoting by N

∗ the set of positive integers, we state our result as follows.

Theorem 1.1. (1) Let (An)n∈N∗ be a sequence of i.i.d. random compact convex

subsets of F and assume that there exists a positive constant δ > 0 such that

E exp (δ‖A1‖) = E exp

(

δ sup
a∈A1

‖a‖
)

< ∞.

For a measure λ of M(B∗) we set

(1.1) Λ(λ) =
1

2
E

(

∫

B∗

sup
a∈A1

x∗(a)dλ(x∗)

)2

and for a set U ∈ co(K(F )),

(1.2) Λ∗(U) = sup
λ∈M(B∗)

(
∫

B∗

sup
x∈U

x∗(x)dλ(x∗)− Λ(λ)
)

.

For a nonconvex set U in K(F ) we set Λ∗(U) = +∞. Moreover, suppose that
the moderate deviation scale (bn) is a sequence of positive numbers satisfying
1≪ bn ≪ n, i.e., as n → ∞,

bn → ∞; bn√
n
→ 0,
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and

Sn :=

∑n
i=1(Ai − EAi)

bn
√

n

P−→ 0.

(2) Let (An)n∈N∗ be a sequence of i.i.d. random compact sets of F and assume
that there exist positive constant δ > 0 and δ0 > 0 such that

E exp

(

δ sup
a∈A1

‖a‖1+δ0

)

< ∞.

Moreover, suppose that the moderate deviation scale (bn) satisfies,

(1.3) bn → ∞; bn√
n
→ 0, logn

b2n
→ 0, b

2+(1− 2

1+δ0
)p

n

n1−p/2
→ ∞.

as n → ∞.
If assumption (1) or (2) holds, then the law of the random set Sn satisfies the

large deviation principle with speed b2n and rate function Λ
∗, i.e., for any subset

U of K(F ),

− inf
U∈Uo

Λ∗(U) ≤ lim inf
n→∞

1

b2n
logP(Sn ∈ U)

≤ lim sup
n→∞

1

b2n
logP(Sn ∈ U) ≤ − inf

U∈U

Λ∗(U),

where Uo and U are the interior and the closure of U with respect to the Hausdorff
topology.

Remarks 1.2. Here the rate function Λ∗ is a “good” rate function, i.e., it is
lower semi-continuous and its level sets {U ∈ K(F ) : Λ∗(U) ≤ λ}, λ ∈ R+, are
compact.

Remarks 1.3. From the following proof, for any sequence of i.i.d. random com-
pact convex subsets of F , the proof of moderate deviation principle is not difficult.
However, if one wants to remove the convexity assumption, it is not easy. In some
sense, assumption (2) is technical.

2. Proof of Theorem 1.1

Without loss of generality, in what follows we assume that Sn = A1+ · · ·+An,
where EA1 = 0. We first collect several results which are the main ingredients in
the proof of Theorem 1.1.
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Embedding theorem (see [4]). With a compact convex subset A of F we asso-
ciate its support function sA : B

∗ → R defined by

∀x∗ ∈ B∗, sA(x
∗) = sup{x∗(x) : x ∈ A}.

We denote by C(B∗, ω∗) the set of all continuous functions on B∗ endowed with
the weak∗ topology. With the uniform norm ‖ · ‖∞, C(B∗, ω∗) is a separable
Banach space (for f in C(B∗, ω∗), ‖f‖∞ = supx∗∈B∗ |f(x∗)|). Whenever A is
compact, its support function sA belongs to C(B∗, ω∗). The map s : co(K(F ))→
C(B∗, ω∗) has the following properties. For any A1, A2 in co(K(F )) and t ∈ R

+,

sA1 = sA2 ⇔ A1 = A2, A1 ⊂ A2 ⇔ sA1 ≤ sA2 ,

sA1+A2 = sA1 + sA2 , stA1 = tsA1

and finally d(A2, A2) = ‖sA1 − sA2‖∞. Hence, co(K(F )) is algebraically and
topologically isomorphic to its image under s, s(co(K(F ))), which is a subset of
the separable Banach space C(B∗, ω∗). This embedding theorem was used in [1]
and [8] to prove limit theorems for random sets.

Moderate deviation principle. We state here a moderate deviation principle
(see Chen [2], [3]).
Let E be a separable Banach space, E1 a closed convex subset of E and let

E∗ denote the topological dual of E. Given an E1 valued random variable X , we
write X ∈ WM2

0 if Eλ(X) = 0 and Eλ2(X) < ∞ for all λ ∈ E∗. Let (Xn)n∈N∗

be a sequence of i.i.d. random variables defined on (Ω,F , P) with values in E1 and
X1 ∈ WM2

0 , and set Sn = (X1 + · · ·+Xn)/(bn
√

n). Suppose that there exists a
constant δ > 0, such that

E exp (δ‖X1‖) < ∞,

and

Sn
P−→ 0 (in probability).

Then, Sn satisfies the moderate deviation principle with some rate function Λ
∗,

namely, for any U ⊂ E,

− inf
x∈Uo

Λ∗E(x) ≤ lim infn→∞

1

b2n
logP(Sn ∈ U)

≤ lim sup
n→∞

1

b2n
logP(Sn ∈ U) ≤ − inf

x∈U
Λ∗E(x),

where the rate function

Λ∗E(x) = sup
λ∈E∗

{λ(x) − ΛE(λ)},

and

ΛE(λ) =
1

2
Eλ2(X1).

Note that Λ∗ is a good rate function.
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Distance to the convex hull (see [4], [9]). Let A belong to K(F ) and denote
its inner radius by

r(A)= sup
a∈co(A)

inf{R : ∃a1, . . . , as ∈A, a ∈ co(a1, . . . , as), ‖a− ai‖ ≤ R, 1 ≤ i ≤ s}.

Obviously, r(A) is zero if and only if A is convex. For any A, r(A) ≤ 2‖A‖ =
2 supa∈A ‖a‖. For any A1, . . . , An in K(F ),

(2.1) d(A1 + · · ·+An, co(A1) + · · ·+ co(An)) ≤ c1/p(r(A1)
p + · · ·+ r(An)

p)1/p.

Of course, the exponent p is related to the fact that F is a Banach space of type
p and the constant c is the one appearing in the functional inequality (see the
definition just before Theorem 1.1).

Proof of Theorem 1.1: We will divide our proof into three steps as follows.

Step 1. We suppose first that the sets (An)n∈N∗ are convex. We apply the
moderate deviation principle with E = C(B∗, ω∗), E1 = s(co(K(F ))) and the
sequence of random functions (sAn

)n∈N∗ . By the Riesz representation theorem
[10], the topological dual of E is the set M(B∗) of the signed Borel measures
on (B∗, ω∗). By the hypothesis of Theorem 1.1, there exists a positive constant
δ > 0, such that

E exp
(

δ‖sA1‖∞
)

= E exp

(

δ sup
a∈A1

‖a‖
)

< ∞

so that the law of (sA1 + · · · + sAn
)/(bn

√
n) satisfies the moderate deviation

principle with rate function Λ∗E (defined on E). We push back this moderate
deviation principle to the space co(K(F )) with the help of the homeomorphism s.
Since for any U in co(K(F )), Λ∗(U) = Λ∗E(sU ) (where Λ

∗ is the rate function on
K(F ) defined in Theorem 1.1), we obtain that for any U ⊆ co(K(F )),

− inf
U∈Uo

co

Λ∗(U) ≤ lim inf
n→∞

1

b2n
logP(Sn ∈ U)

≤ lim sup
n→∞

1

b2n
logP(Sn ∈ U) ≤ − inf

U∈Uco

Λ∗(U),

where Uo
co and Uco are the interior and the closure of U for the topology induced

by the Hausdorff metric on co(K(F )).

Step 2. In the general case, where the sets (An)n∈N∗ are not necessarily convex,
we set Sn = (A1 + · · ·+An)/(bn

√
n) and Sco = (co(A1) + · · ·+ co(An))/(bn

√
n).

We need show the following claim.
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For any r > 0,

(2.2) lim
n→∞

1

b2n
logP(d(Sn, Scon ) ≥ r) = −∞.

We first apply the inequality (2.1),

P(d(Sn, Scon ≥ r)) ≤ P(c1/p(r(A1)
p + · · ·+ r(An)

p)1/p ≥ rbn
√

n).

Notice that this inequality requires the assumption that the space F is of type p.
By (1.3), there exist a positive increasing sequence of an and a positive constant β,
such that

p − β = 1 + δ0, b
2p

1+δ0
−2

n ≪ an ≪ b2nnp/2−1.

That is,

(2.3) b
2β/(p−β)
n ≪ an ≪ b2nnp/2−1.

Thus we have

P(c1/p(r(A1)
p + · · ·+ r(An)

p)1/p ≥ rbn
√

n)

= P
(

r(A1)
p + · · ·+ r(An)

p ≥ (rbn
√

n)p/c
)

≤ P

(

max
1≤i≤n

r(Ai)
β[r(A1)

p−β + · · ·+ r(An)
p−β] ≥ (rbn

√
n)pan/(can)

)

≤ P

(

max
1≤i≤n

r(Ai)
β ≥ anα

)

+ P

(

r(A1)
p−β + · · ·+ r(An)

p−β ≥ (rbn
√

n)p

(αcan)

)

≤ nP

(

r(A1)
p−β ≥ (anα)(p−β)/β

)

+ P

(

r(A1)
p−β + · · ·+ r(An)

p−β ≥ (rbn
√

n)p

(αcan)

)

.

Since r(A1) ≤ 2‖A1‖ = 2 supa∈A1 ‖a‖, by Markov inequality, we have

1

b2n
logP

(

r(A1)
p−β ≥ (anα)(p−β)/β

)

≤ 1

b2n
log

(

exp
(

− λ(anα)(p−β)/β
)

E exp
(

2λ sup
a∈A1

‖a‖
)

)

≤ −λ(anα)(p−β)/β

b2n
+
1

b2n
logE exp

(

2λ sup
a∈A1

‖a‖
)
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where λ > 0 and 2λ ≤ δ. Thus from (2.3), we have

lim
n→∞

1

b2n
lognP

(

r(A1)
p−β ≥ (anα)(p−β)/β

)

= −∞.

By the independence of Ai, i = 1, . . . , n and Markov inequality, we have

(2.4)

1

b2n
logP

(

r(A1)
p−β + · · ·+ r(An)

p−β ≥ (rbn
√

n)p/(αcan)
)

≤ n

b2n
logE exp

(

2λ sup
a∈A1

‖a‖p−β
)

− λ(rbn
√

n)p

b2nancα
.

From (2.3) we have

(2.5) lim
n→∞

1

b2n
logP

(

r(A1)
p−β + · · ·+ r(An)

p−β ≥ (rbn
√

n)p/(αcan)
)

= −∞.

By (2.4) and (2.5), we obtain the claim (2.2).

(Note that, taking α small enough and an =
bp

n1−p/2
, (2.5) still holds .)

Step 3. (Lower bound) Let U be a subset of K(F ). Let U belong to Uo (if
Uo ∩ co(K(F )) is empty, the proof is trivial). Then there exists γ > 0 such that

{V ∈ K(F ) : d(U, V ) < γ} ⊂ U .

Then we have

P(Sn ∈ U) ≥ P(d(Sn, U) < γ) ≥ P(d(Scon , U) < γ/2, d(Sn, Scon ) < γ/2)

≥ P(d(Scon , U) < γ/2)− P(d(Sn, Scon ) ≥ γ/2).

Applying the claim (2.2) and the moderate deviation principle for (Scon )n∈N∗ , we
get

lim inf
n→∞

1

b2n
logP(Sn ∈ U) ≥ −Λ∗(U).

Taking the supremum over all sets U in interior(U) yields the desired lower bound.
(Upper bound) Let U be a subset of K(F ). For any γ > 0 we set Uγ = {A ∈

K(F ) : d(A,U) ≤ γ}. We then write

P(Sn ∈ U) ≤ P(Scon ∈ Uγ) + P(d(Sn, Scon ) > γ).
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Applying the claim (2.2) and the moderate deviation principle for (Scon )n∈N∗ ,
we get

lim inf
n→∞

1

b2n
logP(Sn ∈ U) ≤ − inf{Λ∗(U) : U ∈ Uγ

co}.

However Uγ
co = Uγ ⋂ co(K(F )) and in addition, ⋂γ>0 Uγ

co = U ⋂ co(K(F )).
Since Λ∗ is a good rate function we have that

lim
γ→0
inf{Λ∗(U) : U ∈ Uγ

co} = inf{Λ∗(U) : U ∈ U ∩ co(K(F ))}.

The right-hand side is clearly larger than the left-hand side; let (Un)n∈N∗ be

a sequence such that Un ∈ U1/n
co for all n and Λ∗(Un) converges to the left-

hand side. The level sets of Λ∗ being compact, we can extract from (Un)n∈N∗ a
subsequence converging to a set U which necessarily belongs to U ∩ co(K(F )). By
the lower semi-continuity of Λ∗, Λ∗(U) is smaller than the left-hand side. Thus,
letting γ go to zero in the previous inequality gives the desired upper bound. �
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[8] Giné E., Hahn M.G., Zinn J., Limit theorems for random sets: an application of probability
in Banach space results, Probability in Banach Spaces IV (Oberwolfach, 1982), Springer,
Berlin, 1983, pp. 112–135.

[9] Puri M.L., Ralescu D.A., Limit theorems for random compact sets in Banach space, Math.
Proc. Cambridge Philos. Soc. 97 (1985), 151–158.

[10] Rudin W., Real and Complex Analysis, McGraw-Hill, New York, 1966.



Moderate deviation principles for sums of i.i.d. random compact sets 111

[11] Rudin W., Functional Analysis, McGraw-Hill, New York, 1973.
[12] Wu L.M., An introduction to large deviations, in Several Topics in Stochastic Analysis

(J.A. Yan, S. Peng, S. Fang and L. Wu, Eds.), pp. 225–336, Academic Press of China,
Beijing, 1997 (in Chinese).

College of Mathematics and Information Science, Henan Normal University,

453007 Henan, China

E-mail : yumiao728@yahoo.com.cn

(Received June 15, 2008)


		webmaster@dml.cz
	2013-09-22T09:56:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




