
Commentationes Mathematicae Universitatis Carolinae

István Juhász; Zoltán Szentmiklóssy
Interpolation of κ-compactness and PCF

Commentationes Mathematicae Universitatis Carolinae, Vol. 50 (2009), No. 2, 315--320

Persistent URL: http://dml.cz/dmlcz/133436

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/133436
http://project.dml.cz


Comment.Math.Univ.Carolin. 50,2 (2009) 315–320 315

Interpolation of κ-compactness and PCF

István Juhász, Zoltán Szentmiklóssy

Abstract. We call a topological space κ-compact if every subset of size κ has a
complete accumulation point in it. Let Φ(µ, κ, λ) denote the following statement:
µ < κ < λ = cf(λ) and there is {Sξ : ξ < λ} ⊂ [κ]µ such that |{ξ : |Sξ ∩ A| =
µ}| < λ whenever A ∈ [κ]<κ. We show that if Φ(µ, κ, λ) holds and the space
X is both µ-compact and λ-compact then X is κ-compact as well. Moreover,
from PCF theory we deduce Φ(cf(κ), κ, κ+) for every singular cardinal κ. As a
corollary we get that a linearly Lindelöf and ℵω-compact space is uncountably
compact, that is κ-compact for all uncountable cardinals κ.

Keywords: complete accumulation point, κ-compact space, linearly Lindelöf spa-
ce, PCF theory

Classification: 03E04, 54A25, 54D30

We start by recalling that a point x in a topological space X is said to be a
complete accumulation point of a set A ⊂ X iff for every neighbourhood U of x

we have |U ∩ A| = |A|. We denote the set of all complete accumulation points of
A by A◦.

It is well-known that a space is compact iff every infinite subset has a complete
accumulation point. This justifies to call a space κ-compact if its every subset
of cardinality κ has a complete accumulation point. Now, let κ be a singular
cardinal and κ =

∑
{κα : α < cf(κ)} with κα < κ for each α < cf(κ). Clearly,

if a space X is both κα-compact for all α < cf(κ) and cf(κ)-compact then X is
κ-compact as well. This trivial “extrapolation” property of κ-compactness (for
singular κ) implies that in the above characterization of compactness one may
restrict to subsets of regular cardinality.

The aim of this note is to present a new “interpolation” result on κ-compact-
ness, i.e. one in which µ < κ < λ and we deduce κ-compactness of a space from its
µ- and λ-compactness. Again, this works for singular cardinals κ and the proof
uses non-trivial results from Shelah’s PCF theory.

Definition 1. Let κ, λ, µ be cardinals, then Φ(µ, κ, λ) denotes the following
statement: µ < κ < λ = cf(λ) and there is {Sξ : ξ < λ} ⊂ [κ]µ such that
|{ξ : |Sξ ∩ A| = µ}| < λ whenever A ∈ [κ]<κ.
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As we can see from our next theorem, this property Φ yields the promised
interpolation result for κ-compactness.

Theorem 2. Assume that Φ(µ, κ, λ) holds and the space X is both µ-compact

and λ-compact. Then X is κ-compact as well.

Proof: Let Y be any subset of X with |Y | = κ and, using Φ(µ, κ, λ), fix a family
{Sξ : ξ < λ} ⊂ [Y ]µ such that |{ξ : |Sξ ∩ A| = µ}| < λ whenever A ∈ [Y ]<κ.
Since X is µ-compact we may then pick a complete accumulation point pξ ∈ Sξ

◦

for each ξ < λ.
Now we distinguish two cases. If |{pξ : ξ < λ}| < λ then the regularity of λ

implies that there is p ∈ X with |{ξ < λ : pξ = p}| = λ. If, on the other hand,
|{pξ : ξ < λ}| = λ then we can use the λ-compactness of X to pick a complete
accumulation point p of this set. In both cases the point p ∈ X has the property
that for every neighbourhood U of p we have |{ξ : |Sξ ∩ U | = µ}| = λ.

Since Sξ ∩ U ⊂ Y ∩ U , this implies using Φ(µ, κ, λ) that |Y ∩ U | = κ, hence p

is a complete accumulation point of Y , hence X is indeed κ-compact. �

Our following result implies that if Φ(µ, κ, λ) holds then κ must be singular.

Theorem 3. If Φ(µ, κ, λ) holds then we have cf(µ) = cf(κ).

Proof: Assume that {Sξ : ξ < λ} ⊂ [κ]µ witnesses Φ(µ, κ, λ) and fix a strictly
increasing sequence of ordinals ηα < κ for α < cf(κ) that is cofinal in κ. By the
regularity of λ > κ there is an ordinal ξ < λ such that |Sξ ∩ ηα| < µ holds for
each α < cf(κ). But this Sξ must be cofinal in κ, hence from |Sξ| = µ we get
cf(µ) ≤ cf(κ) ≤ µ.

Now assume that we had cf(µ) < cf(κ) and set |Sξ∩ηα| = µα for each α < cf(κ).
Our assumptions then imply µ∗ = sup{µα : α < cf(κ)} < µ as well as cf(κ) < µ,
contradicting that Sξ =

⋃
{Sξ ∩ ηα : α < cf(κ)} and |Sξ| = µ. This completes our

proof. �

According to theorem 3 the smallest cardinal µ for which Φ(µ, κ, λ) may hold
for a given singular cardinal κ is cf(κ). Our main result says that this actually
does happen with the natural choice λ = κ+.

Theorem 4. For every singular cardinal κ we have Φ(cf(κ), κ, κ+).

Proof: We shall make use of the following fundamental result of Shelah from
his PCF theory: There is a strictly increasing sequence of length cf(κ) of regular
cardinals κα < κ cofinal in κ and such that in the product

P =
∏

{κα : α < cf(κ)}

there is a scale {fξ : ξ < κ+} of length κ+. (This is Main Claim 1.3 on p. 46
of [2].)
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Spelling it out, this means that the κ+-sequence {fξ : ξ < κ+} ⊂ P is increasing
and cofinal with respect to the partial ordering <∗ of eventual dominance on P.
Here for f, g ∈ P we have f <∗ g iff there is α < cf(κ) such that f(β) < g(β)
whenever α ≤ β < cf(κ).

Now, to show that this implies Φ(cf(κ), κ, κ+), we take the set H =
⋃
{{α} ×

κα : α < cf(κ)} as our underlying set. Note that then |H | = κ and every function
f ∈ P, construed as a set of ordered pairs (or in other words: identified with its
graph) is a subset of H of cardinality cf(κ).

We claim that the scale sequence {fξ : ξ < κ+} ⊂ [H ]cf(κ) witnesses
Φ(cf(κ), κ, κ+). Indeed, let A be any subset of H with |A| < κ. We may then
choose α < cf(κ) in such a way that |A| < κα. Clearly, then there is a function
g ∈ P such that we have A ∩ ({β} × κβ) ⊂ {β} × g(β) whenever α ≤ β < cf(κ).
Since {fξ : ξ < κ+} is cofinal in P w.r.t. <∗, there is a ξ < κ+ with g <∗ fξ and
obviously we have |A ∩ fη| < cf(κ) whenever ξ ≤ η < κ+. �

Note that the above proof actually establishes the following more general result:
If for some increasing sequence of regular cardinals {κα : α < cf(κ)} that is cofinal
in κ there is a scale of length λ = cf(λ) in the product

∏
{κα : α < cf(κ)} then

Φ(cf(κ), κ, λ) holds.
Before giving some further interesting application of the property Φ(µ, κ, λ),

we present a result that enables us to “lift” the first parameter cf(κ) in Theorem 4
to higher cardinals.

Theorem 5. If Φ(cf(κ), κ, λ) holds for some singular cardinal κ then we also

have Φ(µ, κ, λ) whenever cf(κ) < µ < κ with cf(µ) = cf(κ).

Proof: Let us put cf(κ) = ̺ and fix a strictly increasing and cofinal sequence
{κα : α < ̺} of cardinals below κ. We also fix a partition of κ into disjoint sets
{Hα : α < ̺} with |Hα| = κα for each α < ̺.

Let us now choose a family {Sξ : ξ < λ} ⊂ [κ]̺ that witnesses Φ(cf(κ), κ, λ).
Since λ is regular, we may assume without any loss of generality that |Hα∩Sξ| < ̺

holds for every α < ̺ and ξ < λ. Note that this implies |{α : Hα ∩ Sξ 6= ∅}| = ̺

for each ξ < λ.
Now take a cardinal µ with cf(µ) = ̺ < µ < κ and fix a strictly increasing and

cofinal sequence {µα : α < ̺} of cardinals below µ. To show that Φ(µ, κ, λ) is
valid, we may use as our underlying set S =

⋃
{Hα × µα : α < ̺}, since clearly

|S| = κ.
For each ξ < λ let us now define the set Tξ ⊂ S as follows:

Tξ =
⋃

{(Sξ ∩ Hα) × µα : α < ̺}.

Then we have |Tξ| = µ because |{α : Hα ∩ Sξ 6= ∅}| = ̺. We claim that
{Tξ : ξ < λ} witnesses Φ(µ, κ, λ).
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Indeed, let A ⊂ S with |A| < κ. For each α < ρ let Bα denote the set of all first
co-ordinates of the pairs that occur in A∩ (Hα ×µα) and set B =

⋃
{Bα : β < ̺}.

Clearly, we have B ⊂ κ and |B| ≤ |A| < κ, hence |{ξ : |Sξ ∩ B| = ̺}| < λ.
Now, consider any ordinal ξ < λ with |Sξ ∩B| < ̺. If 〈γ, δ〉 ∈ (Tξ ∩A)∩ (Hα ×

µα) for some α < ̺ then we have γ ∈ Sξ ∩ Bα, consequently Hα ∩ Sξ ∩ B 6= ∅.
This implies that

W = {α : (Tξ ∩ A) ∩ (Hα × µα) 6= ∅}

has cardinality ≤ |Sξ ∩ B| < ̺. But for each α ∈ W we have

|Tξ ∩ (Hα × µα)| ≤ ̺ · µα < µ,

hence

Tξ ∩ A =
⋃

{(Tξ ∩ A) ∩ (Hα × µα) : α ∈ W}

implies |Tξ ∩ A| < µ as well. But this shows that {Tξ : ξ < λ} indeed witnesses
Φ(µ, κ, λ). �

Arhangel’skii has recently introduced and studied in [1] the class of spaces that
are κ-compact for all uncountable cardinals κ and, quite appropriately, called
them uncountably compact . In particular, he showed that these spaces are Lin-
delöf.

We recall that the spaces that are κ-compact for all uncountable regular cardi-
nals κ have been around for a long time and are called linearly Lindelöf. Moreover,
the question under what conditions is a linearly Lindelöf space Lindelöf is impor-
tant and well-studied. Note, however, that a linearly Lindelöf space is obviously
compact iff it is countably compact, i.e. ω-compact. This should be compared
with our next result that, we think, is far from being obvious.

Theorem 6. Every linearly Lindelöf and ℵω-compact space is uncountably com-

pact hence, in particular, Lindelöf.

Proof: Let X be a linearly Lindelöf and ℵω-compact space. According to the
(trivial) extrapolation property of κ-compactness that we mentioned in the in-
troduction, X is κ-compact for all cardinals κ of uncountable cofinality. Conse-
quently, it only remains to show that X is κ-compact whenever κ is a singular
cardinal of countable cofinality with ℵω < κ.

But, according to theorems 4 and 5, we have Φ(ℵω, κ, κ+) and X is both
ℵω-compact and κ+-compact, hence theorem 2 implies that X is κ-compact as
well. �

Arhangel’skii gave in [1] the following surprising result which shows that the
class of uncountably compact T3-spaces is rather restricted: Every uncountably
compact T3-space X has a (possibly empty) compact subset C such that for every
open set U ⊃ C we have |X \ U | < ℵω. Below we show that in this result the
T3 separation axiom can be replaced by T1 plus van Douwen’s property wD, see
e.g. 3.12 in [3]. Since uncountably compact T3-spaces are normal, being also
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Lindelöf, and the wD property is a very weak form of normality, this indeed is
an improvement. For the convenience of the reader we recall that a space X has
property wD iff every infinite closed discrete set A in X has an infinite subset B

that expands to a discrete (in X) collection of open sets {Ux : x ∈ B}.

Definition 7. A topological space X is said to be κ-concentrated on its subset
Y if for every open set U ⊃ Y we have |X \ U | < κ.

So what we claim can be formulated as follows.

Theorem 8. Every uncountably compact T1 space X with the wD property is

ℵω-concentrated on some (possibly empty) compact subset C.

Proof: Let C be the set of those points x ∈ X for which every neighbourhood
has cardinality at least ℵω. First we show that C, as a subspace, is compact.
Indeed, C is clearly closed in X , hence Lindelöf, so it suffices to show for this that
C is countably compact.

Assume, on the contrary, that C is not countably compact. Then, as X is T1,
there is an infinite closed discrete A ∈ [C]ω. But then by the wD property there
is an infinite B ⊂ A that expands to a discrete (in X) collection of open sets
{Ux : x ∈ B}. By the definition of C we have |Ux| ≥ ℵω for each x ∈ B.

Let B = {xn : n < ω} be any one-to-one enumeration of B. Then for each n <

ω we may pick a subset An ⊂ Uxn
with |An| = ℵn and set A =

⋃
{An : n < ω}.

But then |A| = ℵω and A has no complete accumulation point, a contradiction.
Next we show that X is ℵω concentrated on C. Indeed, let U ⊃ C be open. If

we had |X \U | ≥ ℵω then any complete accumulation point of X \U is not in U

but is in C, again a contradiction. �

The following easy result, that we add for the sake of completeness, yields a
partial converse to theorem 8.

Theorem 9. If a space X is κ-concentrated on a compact subset C then X is

λ-compact for all cardinals λ ≥ κ.

Proof: Let A ⊂ X be any subset with |A| = λ ≥ κ. We claim that we even
have A◦ ∩ C 6= ∅. Assume, on the contrary, that every point x ∈ C has an
open neighbourhood Ux with |A ∩ Ux| < λ. Then the compactness of C implies
C ⊂ U =

⋃
{Ux : x ∈ F} for some finite subset F of C. But then we have

|A ∩ U | < λ, hence |A \ U | = λ ≥ κ, contradicting that X is κ-concentrated
on C. �

Putting all these theorems together we immediately obtain the following result.

Corollary 10. Let X be a T1 space with property wD that is ℵn-compact for each

0 < n < ω. Then X is uncountably compact if and only if it is ℵω-concentrated

on some compact subset.
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