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Abstract. The parameter estimation problem for a continuous dynamical system is a 
difficult one. In this paper we study a simple mathematical model of the liver. For the pa
rameter identification we use the observed clinical data obtained by the BSP test. Bellman's 
quasilinearization method and its modifications are applied. 
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1. THE PHYSIOLOGICAL PROBLEM AND A SIMPLE MATHEMATICAL MODEL 

This note is devoted to the problem of mathematical modelling of the liver func
tions. The mathematics concerning the models should be done in such a way that 
data given by clinical experiments on humans would give relevant information on 
the status of an individual. Let us shortly describe the basic procedure for obtaining 
data. 

Bromsulphthalein (BSP) is a colouring matter, which is injected into the blood. 
The liver is the only organ which takes BSP and secretes BSP directly into the bile, 
i.e. we can assume that the BSP is not taken up by any other organ in the body. The 
level of BSP in the blood is measured at different times t. This procedure is relatively 
simple from the practical point of view; it gives a finite sequence of values showing 
the more or less rapid decrease of BSP in the blood and is used for investigation of 
the function of the liver. 

Denote by x, t/, z the amount of BSP in the blood, in the liver and in the bile at 
time t, respectively. 

A simple model of the process describing the extraction of BSP in these individual 
compartments (the blood, the liver and the bile) can be given in the form of the 
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system of linear ordinary differential equations 

(i . i ) 
dx 

dГ 
= — ax + Ъy, 

dy 
dt 

= ax -(Ъ + d)y, 

dz 

dt 
= dy. 

The constants a, 6, d are the rates of transfer and they are unknown. In this way 

the mathematical model describing the liver function was presented in [5]. 

Suppose that there is a "single injection", in which some quantity I > 0 of BSP 

is injected into the blood at once. This leads to initial conditions 

(1.2) s(0) = /, 2/(0) = 0 , z(0) = 0, 7 > 0 

for the system (1.1). The constants a, 6, d characterize the system and in some sense 

they should characterize the clinical status of the human. How reliable information 

of this kind is, is not very clear at this moment. 

Let us note that the quantity z(t) can be looked upon as the efflux of BSP from 

the system which is investigated and that from the viewpoint of the dynamics of 

the process it plays a role which is not very essential. The value of z(t) can be 

reconstructed from the knowledge of x(t) and y(t). Indeed, looking at the system we 

can see immediately, by adding the equations in (1.1), that 

d(x + y + z) _ Q 

and 

dť 

x(0) + y(0) + z(0) = I. 

This means that 

(1.3) x(t)+y(t) + z(t) = I 

for all t > 0 and 

z(t) = 1- x(t) - y(t) 

for t ^ 0. 
Therefore it is enough to consider the lower dimensional system of linear ordinary 

differential equations 

dx 
(1.4) -^ = -ax + by, 

dy 
— = ax - (b + d)y 
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subject to the initial conditions 

(1.5) *(0) = / , y(0) = 0, / > 0 . 

Note that the constants a, 6, d occuring in the system (1.1) have to be positive 
since they represent the rates of decay of BSP from the blood and the liver. Therefore 
we assume in the sequel that 

a > 0, b > 0, d > 0. 

The clinical test described above gives information on the numerical values of x(t) 
for some finite number of instants t. 

Assume that the function x is known for all t in an interval [0,T], T > 0 and 
investigate the problem how much information about the system, i.e. about the 
constants a, 6, d, is contained in this knowledge. 

Let us suppose another system is given and that it has the same structure as (1.4) 
but the coefficients are different: 

(1.6) ^=-AX + BY, 

^=AX-(B + D)Y 

Assume that for the first component X(t) of the solution we have 

(1.7) x(t)=X(t) 

ifte [0,T]. Then 
x(t) = X(t) 

for t G [0,T], consequently 

-ax(t) + by(t) = -AX(t) + BY (t) 

and 

AX(t) - ax(t) = (A- a)x(t) = BY(t) - by(t). 

Since Y(0) = y(0) = 0 and x(0) = / > 0 we obtain 

(1.8) A = a 

and 

y(t) = jY(t). 
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Using the equality 

y(t) + (b + d)y(t) = ax(t) = AX(t) = Y(t) + (B + D)Y (t) 

and (1.8) we get 

y(t) - Y(t) = Y(t) (j - l ) = Y(t) (D - ^ ) . 

Since F(0) = 0 and Y(0) = AI > 0 we obtain 

& = £ 

and consequently d= D. 
This shows that in our case the system is uniquely determined. This means that 

the coefficients in (1.4) are determined uniquely. Let us mention that if we know 
the efflux z(t) on the interval [0,T], then by the relation (1.3) the values of y(t) 
are also known on [0,T] and the knowledge of z(t) leads also to the unicity of the 
mathematical model. 

Of course this mathematical fact leads to technical problems. The amounts of BSP 
in the bile can be measured only in the case when the patient is after a cholecystec
tomy and a drain takes out all the bile from the body. The efflux is known in this 
case and there is a theoretical possibility to identify the system, i.e. to determine the 
coefficients a, b and d. 

2. SOME PROPERTIES OF THE SYSTEM 

The process of development of the amounts of BSP in the blood and liver is 
described by the relatively simple linear model of ODE's presented in the previous 
section. 

It is easy to see that the equilibrium points of the system (1.4) are given by the 
solutions of the algebraic system 

—ax + by = 0, 

ax - (b + d)y = 0. 

It can be seen easily that there is only one equilibrium point P = (0,0) under the 
assumption a > 0 , 6 > 0 , d > 0 . 

Let us investigate the stability of the system (1.4) at the point P. The matrix of 
the system (1.4) is 

A = \ a -b-d) 
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and the characteristic values of this matrix, given by the algebraic equation 

det(A -XE) = X2 + X(a + b + d) + ad = 0, 

are 
. -(a + b + d) ± y/(a + b + d)2 - 4ad 
Ai,2 = . 

If a, b and d are positive, then 

\a + b + d\2>(a + b + d)2-4ad>0, 

and so the characteristic values Ai,2 are negative, which means that the solution 

x(t) = 0, y(t) = 0 corresponding to the equilibrium P of (1.4) is globally asymptoti-

caly stable. 

Besides these basic qualitative properties of a solution to the system (1.4) we can 

express explicitly the solution to the initial value problem (1.4), (1.5) in the form 

(2.1) x(t) = (*-b-W==i^t - e A l t ) + i(ex^ +eA*<), 
V } W 2-v/(a + 6 + d ) 2 - 4 o d V ' 2 V " 

(2.2) y(t) = -
о ( - е л ' 4 + еА д <)/ 

y/(a + b + d)2-4ad' 

3. CLINICAL DATA 

The structure of data describing the decay of BSP in the blood is given by a finite 
set of times t\, ti,..., ti, at which the amounts r\, r<i,..., TT, of BSP are measured. 
The first time is t\ = 0 and the corresponding value of r\ is the value corresponding 
to the injection I administered to the patient. 

At the finite set of times s\, $2- • • • > «M the amounts of the efflux e\, e2, . . . , ejy 

of BSP into the bile are measured. 

Note that this last measurement was possible only in the case that a drain was 
inserted into the channel connecting the liver with the gall-bladder. As it was men
tioned above a cholecystectomy makes this possible in some cases. 

Let us present a typical set of clinical data. The measured values of the amount 
of BSP in the blood are given in the following table.1 

ti 0 3 5 10 20 30 43 

Гi 250 221 184 141 98 80 64 

1 All the data presented in this work were obtained by Prof. Evzen Hrncif in 1985. New 
technologies today can maybe give similar data sets without the invasive technology of 
a cholecystectomy. 
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The measured efflux into the bile is presented in the following table. 

Sj 5 10 15 20 25 30 35 40 45 50 
Єj 0.2 2.5 6 10.5 15.8 21.7 28 34.8 41.8 49 

Sj 60 70 80 90 100 110 120 130 140 150 
Єj 63.8 78.5 92.7 105.7 117 127.1 136.3 144.5 152.1 159.2 

The aim is to find the coefficients a, b and d of the system of ordinary differential 

equations (1.4) subject to the initial conditions (1.5) which in some sense correspond 

to the measured data of this type. The concept of correspondence will be described 

bellow. 

Since by (2.1), (2.2) the exact solution to (1.4), (1.5) is known, the deviation of 

the exact solution from the observed data can be expressed in the form 

м 
S = £ ( * ( * . ) -Г.) 2 + £ ( Ф i ) - Є j Y \ 

i = l І = l 

where z(t) is the efflux at the time t given by (1.3). 

So we have in fact 

(3-1) 

L M 

S = £(*(*.) - Гif + £ ( ( / _ X(Sj) - y(Sj)) - Єj)
2 

i = i i = l 

The nonnegative value of the deviation S depends of course on the parameters a, 6 

and d of the system (1.4) and this value has to be minimized with respect to a, b 

and d. 

It is clear that it is a difficult task to find the minimum of S and that numerical 

methods have to be used there. The Mathematica program package can be used for 

concrete computations. Using the FindMinimum command of Mathematica gives for 

the presented set of clinical data the approximate result that the function S attains 

its minimum S = 862.546 at a = 0.0547241, b = 0.0152577, d = 0.00939036. 

Representing this result graphically we obtain the picture which shows that the 

values of x and z for the exact solution to the system (1.4), (1.5) are close to the 

measured clinical values indicated by dots in the picture. 
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4 . QUASILINEARIZATION METHOD 

The main method in system identification is the quasilinearization technique which 
will be described in this part. This method was first used by R. Bellman [1]. The 
method consists in the construction of a sequence of functions xn(t) which converges 
to the solution of the differential equation in such a way that the deviation S goes to 
its (local) minimum. The general formulation of this method for system identification 
is described in detail in [4]. We must emphasize that good convergence results can 
be achieved when we have a good initial approximation xx(£). 

We shall work in the finite-dimensional space Rm. The norm ||x|| of a vector 
x = ( x i , . . . , x m ) T is2 

11*11 := max \XÍ\. 
t=l, . . . ,m 

If A = (dij), z,j = 1 , . . . ,ra is an ra x ra-matrix, then ||A|| denotes the (operator) 
norm corresponding to the given norm of ra-vectors. For the norm of an ra-vector 
presented above the norm of a matrix is given by 

||A||:= max V | o y | 
t=l,...,m-j—-* J = l 

4.1. The general formulation 
Consider a nonlinear autonomous system of ordinary differential equations 

(4.1) x(t) = f(x(ť), a), 

where x(t) = (x±(t),..., xn(t))T is an n-dimensional vector, a = ( a i , . . . , a^)T is an 
JV-dimensional vector of parameters and / : Rn x RN —• Un is a continuous function 

1 By the symbol T we denote the transposition of a matrix, e.g. (a?i,... ,xm)T is the 
column vector with components xi, . . . , x m . 

233 



of (x, a) having continuous bounded partial derivatives with respect to x and a for 
all (x, a) in the region of interest. 

For the system (4.1) consider the initial value problem 

(4.2) x i(0) = c i , j = l,...,n, 

with known values of Cj, j = 1 , . . . , n. The IV parameters a are arbitrary. 
Consider the constant vector a to be a function of time that satisfies the differential 

equation 
d = 0. 

Define x(£) as an (n -F IV)-dimensional vector and a vector c (corresponding to the 
initial conditions) as follows 

x(£) = (xi(t),.. .,xn(t),ax(t),.. .,aN(t))T, 

c = (ci,...,cn,v1,...,i>N)T. 

Assume that g(x(*)) = (f(x(t),a),0,...,0)T. 

N 

If x(t) is a solution of the system (4.1) with (4.2) and with e*j = Vj, j = 1 , . . . , IV, 
then the vector x(t) = (x(t),a(t))T is a solution of the initial value problem 

(4.3) x = g(x), x ( 0 ) = c , 

and, conversely, if x(t) is a solution of (4.3) then the first n components of this 
solution represent a solution of (4.1) with (4.2) and with aj = Vj, j = 1 , . . . ,IV. 

Given a fixed solution x(t) of the differential equation (4.3), the system (4.3) can 
be linearized around this solution. 

The linearized system has the form 

(4.4) y = g ( x ) + J ( x ) ( y - x ) , 

where J(x) is the Jacobian matrix of g with elements 

in the ith row and j th column, i, j = 1 , . . . , n + IV, and we use it for x = x(£) in the 
equation (4.4). 

The equation (4.4) represents a linear system of n F IV differential equations for y 
and its solution y(£) for which yj(0) = Cj, j = 1 , . . . ,n, can be represented in the 
form 

N 

(4.5) y(t) = PW + E f t h ( i ) W 
J'=I 
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where p(t) is the (particular) solution of 

(4.6) p = g ( x ) + J ( x ) ( p - x ) 

with the initial condition 

Pi(0) = c i , j = l,...,n, p / + n ( 0 ) = 0 , / = 1,...,N, 

and h^(t), j = 1,..., N, are solutions of the homogeneous system 

(4.7) h ^ = J(x)hW 

with hp}(0) = 0 for i ?- j + n, i = 1,... ,n + N, and h g n ( 0 ) = 1. 
Further we prove the following lemma. 

Lemma 4.1. Assume that x(t) is a solution of the initial value problem (4.3) 
and that y(t) is a solution of the equation (4.4) in the form (4.5) with the initial 
conditions 

{ Cj, for j = l , . . . , n 

Pj-n, for j =n + l,...,n + N. 

If, moreover, Vi = /3i, i = 1,..., N, then 

y(t) = x(t) 

for t ^ 0, i.e. the solution of the linearized equation (4.4) coincides with the solu
tion x(t) of (4.3) in this case. 

P r o o f . For the difference y(t) — x(t) we have the following differential equation 

^ ( y - x) = g(x) + J(x)(y - x) - g(x) = J(x)(y - x). 

Integrating this equation from 0 to t we have 

y(t) - x(t) = y(0) - x(0) + / J(*(s))(y(s) - x(s)) ds 
Jo 

and 

||y(t) - x(t)| | < ||y(0) - x(0)|| + / * ||J(x(S))|| | |y(S) - x(S)| | ds 
Jo 

= lly(0) - o|| + f ||J(x(S))||||y(S) - x(*)|| ds. 
JO 

By the Gronwall lemma we obtain 

||y(«) - x(.) | | < ||y(0) - c|| • exp( j f ' ||J(x(a))|| ds). 

Since y(0) = c, we have y(t) = x(t) for t ^ 0. D 
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Prom (4.5) we can see immediately that the dependence of y(t) on the parameters 
/?j, j = 1 , . . . , IV, is linear. 

The parameters /?j, j = 1,..., TV, are free and they can be used for minimizing a 
certain expression S which measures the deviation of the solution y (t) to (4.4) from 
some observed state. 

The function S be of the following form 

S(y) = S(p1,...,f3N) 
n Li M , , n v v 2 

= EEMt5)-r!)2 + E ( h + E7 ty^i))-eJ) 
1=1 1=1 j=l ^ ^ 1 = 1 ' ' 

where 7, 7/, I = 1 , . . . ,n, are some constants, t\ and Sj are some instants of time at 
which the experimental data r\ and e j are known for the components of the solutions 
or some of their linear combinations. 

In view of (4.5), we observe that S(y) is a quadratic form in the variables 
/?I- . . . , /?JV. If this quadratic form is well behaved, the necessary conditions for 
finding its local minimum are given by 

(4.9) gUo, i = l -V, 

which is a linear system of IV algebraic equations for N unknown variables /?i , . . . , fiN. 
Denote /?*,..., /3N the solution of this system.3 

In any case putting c* = (c\,..., cn , /?*, . . . , fiN)T we have new initial conditions 
and the procedure can be repeated by finding a solution x*(£) of the differential 
equation x = g(x) with the new initial conditions x(0) = c*, linearizing the equation 
around x*(£) and computing new initial values as above. 

In this way in fact an iterative procedure is given which consists in finding 
a sequence of parameters / ? } , . . . , / ? jy , k = 1,2,.. . , for which the sequence 
S(/?{ , . . . ,0N) decreases to some local minimum of S. 

Prom the practical point of view the iterative procedure has to be repeated until 

(4.10) /3jfc+1> =/?]*>, j = l,...,N 

or 

(4.11) \$k+1)-0f\<e, j = l,...,N 

with some sufficiently small e > 0. 

3 Using contemporary computational tools, e.g. the FindMinimum command in the Mathe-
matica package, another way of finding the values /3*, . . . , f3N which minimize 5(y) = 
S(/3i,..., f3N) can be found. 
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R e m a r k 4.2. For the sake of clarity, we summarize the quasilinearization 
method in a flow diagram. 

end 

« i 
* U = g(x) 

г « 

ûi+i 

winearizatioiJ 

,<«> 

ð5 
дßj = 0 

4.2. Application of the quasilinearization method 
We apply the general quasilinearization method described above to the sys

tem (1.4). The problem (1.4) subject to the initial conditions (1.5) in fact corre
sponds to (4.1) with a = (a,6,d)T , f((x,y),a) = (—ax + by,ax — (b + d)y)T, and 
the initial condition (4.2) with c = (1,0); we have n = 2, IV = 3 in this case. 

We set 
x = (x,y,a ,6 ,d)T . 

The initial value problem (4.3) takes the form 

(4.12) 

(4.13) 

* = g(x), 

x(0) = c = ( L 0 , a f 

where 

(4.14) g(x) = (-ax + by,ax-(b + d)y, 0,0,0)T . 

The Jacobian matrix J(x) corresponding to this g(x) is given by 

J(x) = 

(-a b -x y 0 \ 

a —b — d x —y—y 

0 0 0 0 0 

0 0 0 0 0 
V 0 0 0 0 0 / 

Let us note that the function g: R5 —• R5 given by (4.14) is continuously dif-
ferentiable. Therefore the solutions of (4.12) are uniquely determined by the initial 
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conditions. The last three components of any solution to (4.12) are constant and 
equal to the triple a = (a, b, d). 

Hence the differential equation (4.12) has nice properties; in particular, the solu
tions depend continuosly on the initial conditions. Taking into account Section 2 and 
the fact that the only equlibrium P = (0,0) of the system (1.4) is globally asymp
totically stable, we can see easily that for all solutions x(£), t ^ 0 of (4.12) with 
x(0) = (7,0, a, b, d) we have 

x(t) e [0,7] x [0,7] x [0,A] x [0,J3] x [0,L>] C R5 

provided 0 < a ^ A, 0 < b ^ B, 0 < d ^ D, i.e. these solutions are bounded in the 
future. 

Using this fact we also obtain the boundedness of ||J(x(t))|| for alH ^ 0, where 
x(t) is a solution of (4.12), if0<a^A,0<b^B,0<d^D. 

Given a solution x(t) of (4.12), (4.13) for some choice a = (a, 6, d)T, or in other 
words a solution (x,y)T of (1.4) with these values of the parameters, the linearized 
system (4.4) around the solution x(t) assumes the form 

(4.15) y = g ( x ) + J ( x ) ( y - x ) , 

where y(t) = (yi(t),... ,y$(t))T. The initial conditions for the first two components 
are fixed as 2/1 (0) = 7, 2/2(0) = 0, while the initial conditions for 2/3(0), 2/4(0), j/5(0) 
are free. 

Writing this system componentwise we obtain after a simplification the system 

2/1 = -ayi+by2- £(2/3 - 5) + 2/(2/4 - b), 

yi = 52/i - (b + d)y2 + x(2/3 -a)- y(y4 -b)- y(y5 - d), 

y*3 = 0, y4 = 0, 2/5 = 0. 

The general solution of this problem can be expressed in the form (4.5), i.e. 

3 

(4.16) y « = p(*) + £ & h ( i ) W 
J = I 

where the components pi(t),... ,Ps(t) of p(£) satisfy 

(4.17) pi = -api+bp2- x(p3 -a)+ y(p4 - 6), 

P2 = api - (b + d)p2 + x(j>3 - a) - y(p4 - b) - y(pb -d), 

P3=0, p4=0 p 5 = 0 
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with 

(4.18) p(0) = (7,0,0,0,0), 

and for h^(t), j = 1,2,3 we have for their components h[3'(t),..., h^\t) the equa-

tions 

(4.19) h[j) = - ah[j) + bh^ - xh(
3
j) + yh(

4
j), 

hij) = ah[j) - (b + d)h(
2

j) + xh(
3

j) - yh^ - yh^, 

hij)=0, h{j)=0, hij)=0 

and the initial conditions 

(4.20) /i(1)(0) = (0 ,0 , l ,0 ,0) T , 

/.<2)(0) = (0,0,0,1,0)T , 

/.(3)(0) = (0,0,0,0,1)T . 

Using the deviation given by (3.1) in the part concerning the clinical data we write 

L 

(4.21) S(y) = 5(A, A,/%) = J>i( t<) - rt)
2 

M 

+ 5Z((7" yi(s^ ~ y^so)) - ei)2-
i= i 

In view of (4.16), this expression is clearly a quadratic form in /?i, A , 03-
Now we can describe the iterative procedure coming from the quasilinearization 

method. 
Let an initial choice a\ = (a\,b\,d\) of the parameters be given and let x^(t) be 

the solution of (4.12) defined for t ^ 0 with the initial condition 

xW(0) = ( J , 0 , a i , 6 i , * ) T . 

Linearizing (4.12) around x^1) we get the equation 

(4.22) y = g (x ( 1 ) )+J (x< 1 ) ) (y -x( 1 ) ) , 

and its solution can be expressed in the form (4.16) where p(t) and h^(t) are given 
by the systems (4.17) and (4.19) with initial conditions given by (4.18) and (4.20), 
respectively, with a = a\, b = b\, d = d\. Using this form of a solution of the lin
earized equation (4.22) we consider the function S(y) = S(f}\, A , A ) given by (4.21) 
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and we find its (local) minimum (using some computational or mathematical tool), 
i.e. a point (02,62^2) at which S(a2,b2,d2) ^ S(ai,61,di). 

Note that by the considerations in the part describing the general form of quasi-
linearization (see Lemma 4.1) we have y(t) = x^^(^) if /?i = ai, #2 = 61, 03 = di 
and 5(ai ,6i ,di) = S(x^) is the deviation of x^(t). 

Now the iterations are produced as follows. 
Given a* = (ak, bk, dk)T let x^(t) be the unique solution of (4.12) given for t ^ 0 

by the initial condition 

xW(0) = ( / , 0 ,a*A,d*) T 

and consider the linearization 

y = g ( x ( f c ) ) - f j ( x ( f e ) ) ( y - x ^ ) . 

We express its solution in the form (4.16) where p(t) and h^(t) are again given 
by the systems (4.17) and (4.19) with initial conditions given by (4.18) and (4.20), 
respectively, with a = ak, b = bk, d = dk, and we look for the (local) minimum of 
5(y) = S(/?i,/32,/?3) togetafe+i = (ajfc+iA+i,djk+i) for which S(ak+i,bk+i,dk+i) -̂  
S(ak,bk,dk). We assume that x(H_1)(£) is the solution of (4.12) for t ^ 0 with the 
initial condition x^+1^(0) = (I,0,aA.+i,bjfc+i,dfc+i)T. 

This iterative procedure leads to a sequence x^(t) = (x^(t),y^(t),ak), where 
ak = (ak,bk,dk) is the sequence of parameters. 

For a given function x(t) = (x(t),y(t),a(t),b(t),d(t)), t G [0,T] denote 

L M 

(4.23) 5(x) = 5>(t«) - nf + £ ( ( / ~ *M - »(*;)) - erf 
t=i j=\ 

its deviation from the measured values rj and ej. 
Let us denote u := (x,y,a,b,d)T and v := (£,C,x,i>,u)T• Then 

R : = g ( u ) - g ( v ) - J ( u ) ( u - v ) 

= ((x-0(a-x) + (y-0W-b), 

(x - 0(X ~a) + (y- 0 (6 - V>) + (tf - 0(«* - " ) , 0 , 0 , 0 ) T 

and using the above mentioned norm of a vector we have 

(4.24) ||R|| = roaxflOc - 0(a - X) + (y - 0(*l> ~ b)\, 

\(x - 0(X - « ) + ( » - 0(b -*) + (v- 0(d - w)|) 

<3| |u-v | | 2 . 
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Lemma 4.3. Assume that T > 0 is given. Let (x( ' ) ( t ) )^ be a sequence 
of solutions of the equation (4.12) with initial conditions x^)(0) = (i",0,a/,b/,d/)T 

which uniformly converges on the interval [0, T]. 
Then for every e > 0 there is a ko £N such that for every k\, fc2 ^ fco we have 

||x<*'>(t)_x<*-)(t)||<e. te[o,T], 

and putting 

W(i) =g(x<fcl>(t)) -g(x(*2)(*)) -J(x(<kl)(t))(x^)(t)-x(<k2)(t)) 

we also have 

(4.25) / \\W(t)\\dt<$e2T. 
Jo 

P r o o f . The first statement is the Bolzano-Cauchy condition for uniform con
vergence. Using this and (4.24) with R = W(t) we have for fci,fc2 ^ fco 

(4.26) f | |g(x^)(*)) - g ( x ^ ) ( t ) ) -J(^kl)(t))(x^)(t)-x^)(t))\\dt 
Jo 

^ fS\\x^)(t)-x^)(t)fdt<3e2s 
Jo 

and (4.25) clearly holds. • 

Lemma 4.4. Assume that T > 0 is given. Let (a/, bt, d/)T, I 6 N, be a sequence 
of parameters which converges to (a, b,d)T for I —> oo. Then we have the following. 
(1) The sequence (x^)(^))^1 of solutions of the equation (4.12) corresponding to 

the initial conditions x^)(0) = (I ,0,a/,6/,d/)T converges uniformly on [0,T] to 
the solution x(t) of (4.12) with the initial condition x(0) = (J ,0 ,a ,6 ,d)T . 

(2) Ify(k)(t) is the solution of the equation 

y = g ^ * " 1 ) ) + J(x( f c"1))(y - x^" 1 ) ) 

on [0,T] with the initial condition y^)(0) = (J,0,afc,6fc,dfc)T then for every 
rj > 0 there is a fco E N such that for every fc € N, fc ^ fco we have 

||y(fe)(j)-x<fc>(*)||<»? 

for every t € [0, T], i.e. 

lim||y<fc)(*)-x<fe>(<)||=0 
fe->oo 

uniformly on [0, T]. 
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R e m a r k 4.5. In fact y^k\t) is a solution of (4.15) with x(t) = x^_ 1)(t) satisfy
ing y(fe)(0) = (7,0,dk,bk,dk)T and it can be expressed in the form 

yW(t)=p(
k)+akhP+bkh™+dkh™ 

where p(/c)(*) is the particular solution of (4.15) with x(t) = x^"1)^) and h^1}(i), 
h^ '(t), hk \t) are the solutions of the corresponding homogenous system, see (4.5), 
(4.6), (4.7) or (4.16), (4.17), (4.19) in our special case. 

P r o o f of Lemma 4.4. The first part is an easy consequence of the continuous 
dependence of solutions of (4.12) on the initial values-

Concerning the second part we have for t G [0, T] by definition 

d ( y ( f c ) w _ x ( f c ) w ) = g ( x ( f c - 1 ) ( 0 ) 

+ J(x(fc-1)(.))(y<fc)(0 -x( f c-x)(*)) -g(x<fc>(<)). 

Integrating this relation from 0 to s € [0,T] and using the fact that y(*)(0) — 

x(fc)(0) = Owe get 

y ( * ' ( 5 ) -x ( * ' ( a ) 

= f gfx**-1^)) + J ( x ( M , ( t ) ) ( y w W - x ( M ) ( t ) ) -g(x<*>(t))dt 
Jo 

= f g^"1)^)) -g(x<*>(*)) + J(x(*-1)(t))(xW(t) -x^Htydt 
Jo 

Jo 

Hence 

| |y( f c>(S)-x( f c)(S)| | 

< r||g(x(fc-1>(t))-g(x<fc)(0)+J(x<fc-1>(0)(x(fc)(.-)-X<fc-1)(.:))||dt 
Jo 

+ /'||J(x(fc-1)(.))(yW(*)-xW(0)||d« 
Jo 

^ fT\\g(^k-lHt)) -g(x(fc>W) +J(x(fc-1)(.))(x(fc)(t)-x(fc-1)(i))||dt 
Jo 

+ r||j(x(*-1)(t))||||(y(*)(0-x<fc)(t))||d.. 
Jo 

By Lemma 4.3 for every e > 0 there is a fco € N such that for every A: ^ fco we have 

/T | |g(x ( fc-1>(t)) - g(x<fc>(*)) - J(x<fc-1>(t)) (x**-1^) - x<fc>(*))|| d* < 3c2T. 
JO /o 
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Using the previous estimate we obtain 

||y(fc)(5) -x(fc>(S)|| < 3£
2T+ f H J ^ - 1 ^ ) ) ! |(y(fc)W -x(fc)(t))||dt 

JO 

for every 5 £ [0,T], and by the Gronwall lemma we get the estimate 

||y(fc)(S) -x( f c)( 5) | | ^ 3£
2Tejo IIJ(^-"(t))||dt ^ ^Te^, 

for any s € [0,T], where 

Q = / T | | j ( x ( f c - 1 ) ( t ) ) | | d t < o o , 
JO 

because the sequence ( x ^ ^ t ) ) ^ 1S bounded on the interval [0,T] (this is the con
sequence of the first assertion). If we take e = y/r}/{3>TeQ) > 0 then we obtain 
immediately the assertion of the lemma. D 

Corollary 4.6. If the assumptions of Lemma 4.4 are satisfied then 

lim||y< fc>(<)-x(<)||=0 
k—•00" " 

uniformly on [0, T]. 

Theorem 4.7. Assume that T > 0 is given. Let ( x ^ W ) ^ i ^ e a seQuence °f 
solutions of the initial value problem (4.12), (4.13), corresponding to a = (a/,6/,d/) 
which uniformly converges on the interval [0,T], and let y^{t) be the solution of 
the equation 

y = g(x(fc-1)) + J(x(fc-X>) (y - x(fc-j)) 

on the interval [0,T] with the initial condition y(fc)(0) = (J,0,a/t,6fc,dfc)T. 
Then 

fcUm||S(y(fc))-S(x(fc))||=0 

where S{x) is described in (4.23). 

Proo f . Our assertion follows from Lemma 4.4 and from the fact that the terms 
{x — r»)2, i = 1 , . . . , L, and ((/ — x - y) — e^)2, j = 1 , . . . , M, occuring in (4.23) are 
continuous as functions of a vector x = (x, y, a, 6, d)T . D 

R e m a r k 4.8. All the previous statements depend on the fact that we have at 
our disposal a uniformly convergent sequence x ^ (t) of solutions of the initial value 
problem (4.12), (4.13). 
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5. NUMERICAL RESULTS 

For numerical computations we have seven data sets M\,... M- of measured values 
of BSP in the blood (at times U) and in the bile (at times ej) which are indicated 
in the following graphs by dots. Characterization of the measurement was given in 
the part describing the clinical data. 

The first four cases M\,..., M4 give measurements for the same person. The BSP-
test was done on the 6th, 25th, 26th and 27th day after cholecystectomy in this case. 
The initial amount of BSP was different, e.g. 125, 250 and 500 mg, respectively. 
Since the modelling system (1.1) is linear (its solutions form a linear space) the 
measured data can be modified to data which correspond to the uniform initial dose 
of BSP—250 mg for all cases. 

For obtaining numerical results the Mathematica software package was used. 
Three methods have been examined. 
(1) FM—this method uses the analytical solution (2.1), (2.2) and the Mathematica 

command FindMinimum is applied to the function (3.1). 
(2) QM—this is the Quasilinearization method described in the previous section. 
(3) QFM—this method is a modification of QM. We do not solve the algebraic 

equations (4.9), the command FindMinimum for the function (4.21) is applied 
instead. 

The numerical results, presenting the unknown parameters a, 6, d, for the given 
cases are shown in the following tables. The corresponding graphs represent the 
solutions to (4.12), (4.13) for the values of the parameters a, 6, d obtained by the 
Quasilinearization method. 

a ò d steps 

FM 0.054736 0.0152704 0.0093906 4 

QFM 0.054736 0.0152704 0.0093906 11 

Q 0.054736 0.0152704 0.0093906 13 

Table 1. Numerical results for case M\. 

a 6 d steps 

FM 0.1028669 0.0012472 0.0109183 3 

QFM 0.1028669 0.0012472 0.0109183 8 

Q 0.1028669 0.0012471 0.0109183 19 

Table 2. Numerical results for case M2. 
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a ò d steps 

FM 0.1155239 0.0020142 0.009009 4 

QFM 0.1155235 0.0020141 0.009009 11 

Q 0.1155235 0.0020141 0.009009 17 

Table 3. Numerical results for case M3. 

a ò d steps 

FM 0.1146878 0.0154462 0.0118261 3 

QFM 0.1146877 0.0154462 0.0118261 8 

Q 0.1146877 0.0154462 0.0118261 11 

Table 4. Numerical results for case M4. 

a b d steps 

FM 0.1098251 0.0079839 0.0034339 6 

QFM 0.1098253 0.0079840 0.0034339 10 

Q 0.1098253 0.0079840 0.0034339 10 

Table 5. Numerical results for case M5. 

a b d steps 

FM 0.0579301 0.0093114 0.0037127 5 

QFM 0.0579301 0.0093114 0.0037127 9 

Q 0.0579301 0.0093114 0.0037127 10 

Table 6. Numerical results for case MQ. 

a 6 d steps 

FM 0.2070551 0.0085127 0.0025377 8 

QFM 0.2070551 0.0085127 0.0025377 8 

Q 0.2070550 0.0085127 0.0025377 9 

Table 7. Numerical results for case M7. 
120 140 
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In the last column in Tables 1-7 we mention how many iterations were needed in 
the computation. We used the criterion (4.11) for e = 10~7. In the case when the 
analytical solution (FM method) is used, the least number of computing steps was 
needed. We must note that the number of steps for all methods depends on the initial 
choice a i . For all cases in our tables the same starting value a\ = (0.107,0.004,0.01) 
of the parameters was used. 

According to the medical point of view [3], the satisfactory clinical status of the 
patient corresponds to the interval [0.102,0.116] of the parameter a. The meaning 
of values of parameters 6, d for the characterization of liver function is not known at 
present and it should be interpreted on a larger sample of data. 
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Abstract. The parameter estimation problem for a continuous dynamical system is a
difficult one. In this paper we study a simple mathematical model of the liver. For the pa-
rameter identification we use the observed clinical data obtained by the BSP test. Bellman’s
quasilinearization method and its modifications are applied.
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1. The physiological problem and a simple mathematical model

This note is devoted to the problem of mathematical modelling of the liver func-
tions. The mathematics concerning the models should be done in such a way that
data given by clinical experiments on humans would give relevant information on
the status of an individual. Let us shortly describe the basic procedure for obtaining
data.

Bromsulphthalein (BSP) is a colouring matter, which is injected into the blood.
The liver is the only organ which takes BSP and secretes BSP directly into the bile,
i.e. we can assume that the BSP is not taken up by any other organ in the body. The
level of BSP in the blood is measured at different times t. This procedure is relatively
simple from the practical point of view; it gives a finite sequence of values showing
the more or less rapid decrease of BSP in the blood and is used for investigation of
the function of the liver.

Denote by x, y, z the amount of BSP in the blood, in the liver and in the bile at
time t, respectively.

A simple model of the process describing the extraction of BSP in these individual
compartments (the blood, the liver and the bile) can be given in the form of the
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system of linear ordinary differential equations

dx
dt

= − ax+ by,(1.1)

dy
dt

= ax− (b+ d)y,

dz
dt

= dy.

The constants a, b, d are the rates of transfer and they are unknown. In this way
the mathematical model describing the liver function was presented in [5].
Suppose that there is a “single injection”, in which some quantity I > 0 of BSP

is injected into the blood at once. This leads to initial conditions

(1.2) x(0) = I, y(0) = 0, z(0) = 0, I > 0

for the system (1.1). The constants a, b, d characterize the system and in some sense
they should characterize the clinical status of the human. How reliable information
of this kind is, is not very clear at this moment.
Let us note that the quantity z(t) can be looked upon as the efflux of BSP from

the system which is investigated and that from the viewpoint of the dynamics of
the process it plays a role which is not very essential. The value of z(t) can be
reconstructed from the knowledge of x(t) and y(t). Indeed, looking at the system we
can see immediately, by adding the equations in (1.1), that

d(x + y + z)
dt

= 0

and

x(0) + y(0) + z(0) = I.

This means that

x(t) + y(t) + z(t) = I(1.3)

for all t > 0 and

z(t) = I − x(t) − y(t)

for t > 0.
Therefore it is enough to consider the lower dimensional system of linear ordinary

differential equations

dx
dt

= − ax+ by,(1.4)

dy
dt

= ax− (b+ d)y
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subject to the initial conditions

(1.5) x(0) = I, y(0) = 0, I > 0.

Note that the constants a, b, d occuring in the system (1.1) have to be positive
since they represent the rates of decay of BSP from the blood and the liver. Therefore
we assume in the sequel that

a > 0, b > 0, d > 0.

The clinical test described above gives information on the numerical values of x(t)
for some finite number of instants t.
Assume that the function x is known for all t in an interval [0, T ], T > 0 and

investigate the problem how much information about the system, i.e. about the
constants a, b, d, is contained in this knowledge.
Let us suppose another system is given and that it has the same structure as (1.4)

but the coefficients are different:

dX
dt

= −AX +BY,(1.6)

dY
dt

= AX − (B +D)Y.

Assume that for the first component X(t) of the solution we have

(1.7) x(t) = X(t)

if t ∈ [0, T ]. Then
ẋ(t) = Ẋ(t)

for t ∈ [0, T ], consequently

−ax(t) + by(t) = −AX(t) +BY (t)

and

AX(t)− ax(t) = (A− a)x(t) = BY (t)− by(t).

Since Y (0) = y(0) = 0 and x(0) = I > 0 we obtain

A = a(1.8)

and

y(t) =
B

b
Y (t).
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Using the equality

ẏ(t) + (b+ d)y(t) = ax(t) = AX(t) = Ẏ (t) + (B +D)Y (t)

and (1.8) we get

ẏ(t)− Ẏ (t) = Ẏ (t)
(B
b
− 1

)
= Y (t)

(
D − dB

b

)
.

Since Y (0) = 0 and Ẏ (0) = AI > 0 we obtain

b = B

and consequently d = D.
This shows that in our case the system is uniquely determined. This means that

the coefficients in (1.4) are determined uniquely. Let us mention that if we know
the efflux z(t) on the interval [0, T ], then by the relation (1.3) the values of y(t)
are also known on [0, T ] and the knowledge of z(t) leads also to the unicity of the
mathematical model.
Of course this mathematical fact leads to technical problems. The amounts of BSP

in the bile can be measured only in the case when the patient is after a cholecystec-
tomy and a drain takes out all the bile from the body. The efflux is known in this
case and there is a theoretical possibility to identify the system, i.e. to determine the
coefficients a, b and d.

2. Some properties of the system

The process of development of the amounts of BSP in the blood and liver is
described by the relatively simple linear model of ODE’s presented in the previous
section.
It is easy to see that the equilibrium points of the system (1.4) are given by the

solutions of the algebraic system

−ax+ by = 0,

ax− (b+ d)y = 0.

It can be seen easily that there is only one equilibrium point P = (0, 0) under the
assumption a > 0, b > 0, d > 0.
Let us investigate the stability of the system (1.4) at the point P . The matrix of

the system (1.4) is

A =
(−a b

a −b− d

)
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and the characteristic values of this matrix, given by the algebraic equation

det(A− λE) = λ2 + λ(a+ b+ d) + ad = 0,

are

λ1,2 =
−(a+ b+ d)±

√
(a+ b+ d)2 − 4ad
2

.

If a, b and d are positive, then

|a+ b+ d|2 > (a+ b+ d)2 − 4ad > 0,

and so the characteristic values λ1,2 are negative, which means that the solution
x(t) = 0, y(t) = 0 corresponding to the equilibrium P of (1.4) is globally asymptoti-
caly stable.
Besides these basic qualitative properties of a solution to the system (1.4) we can

express explicitly the solution to the initial value problem (1.4), (1.5) in the form

x(t) =
(a− b− d)I

2
√

(a+ b+ d)2 − 4ad

(
eλ2t − eλ1t

)
+
I

2
(
eλ1t + eλ2t

)
,(2.1)

y(t) = − a
(
−eλ1t + eλ2t

)
I√

(a+ b+ d)2 − 4ad
.(2.2)

3. Clinical data

The structure of data describing the decay of BSP in the blood is given by a finite
set of times t1, t2, . . . , tL at which the amounts r1, r2, . . . , rL of BSP are measured.
The first time is t1 = 0 and the corresponding value of r1 is the value corresponding
to the injection I administered to the patient.
At the finite set of times s1, s2, . . . , sM the amounts of the efflux e1, e2, . . . , eM

of BSP into the bile are measured.
Note that this last measurement was possible only in the case that a drain was

inserted into the channel connecting the liver with the gall-bladder. As it was men-
tioned above a cholecystectomy makes this possible in some cases.
Let us present a typical set of clinical data. The measured values of the amount

of BSP in the blood are given in the following table.1

ti 0 3 5 10 20 30 43
ri 250 221 184 141 98 80 64

1All the data presented in this work were obtained by Prof. Evžen Hrnčíř in 1985. New
technologies today can maybe give similar data sets without the invasive technology of
a cholecystectomy.
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The measured efflux into the bile is presented in the following table.

sj 5 10 15 20 25 30 35 40 45 50
ej 0.2 2.5 6 10.5 15.8 21.7 28 34.8 41.8 49

sj 60 70 80 90 100 110 120 130 140 150
ej 63.8 78.5 92.7 105.7 117 127.1 136.3 144.5 152.1 159.2

The aim is to find the coefficients a, b and d of the system of ordinary differential
equations (1.4) subject to the initial conditions (1.5) which in some sense correspond
to the measured data of this type. The concept of correspondence will be described
bellow.

Since by (2.1), (2.2) the exact solution to (1.4), (1.5) is known, the deviation of
the exact solution from the observed data can be expressed in the form

S =
L∑

i=1

(x(ti)− ri)2 +
M∑

j=1

(z(sj)− ej)2,

where z(t) is the efflux at the time t given by (1.3).
So we have in fact

(3.1) S =
L∑

i=1

(x(ti)− ri)2 +
M∑

j=1

((I − x(sj)− y(sj))− ej)2.

The nonnegative value of the deviation S depends of course on the parameters a, b
and d of the system (1.4) and this value has to be minimized with respect to a, b
and d.

It is clear that it is a difficult task to find the minimum of S and that numerical
methods have to be used there. The Mathematica program package can be used for
concrete computations. Using the FindMinimum command of Mathematica gives for
the presented set of clinical data the approximate result that the function S attains
its minimum S = 862.546 at a = 0.0547241, b = 0.0152577, d = 0.00939036.
Representing this result graphically we obtain the picture which shows that the

values of x and z for the exact solution to the system (1.4), (1.5) are close to the
measured clinical values indicated by dots in the picture.
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4. Quasilinearization method

The main method in system identification is the quasilinearization technique which
will be described in this part. This method was first used by R. Bellman [1]. The
method consists in the construction of a sequence of functions xn(t) which converges
to the solution of the differential equation in such a way that the deviation S goes to
its (local) minimum. The general formulation of this method for system identification
is described in detail in [4]. We must emphasize that good convergence results can
be achieved when we have a good initial approximation x1(t).
We shall work in the finite-dimensional space � m . The norm ‖x‖ of a vector

x = (x1, . . . , xm)> is2

‖x‖ := max
i=1,...,m

|xi|.

If A = (aij), i, j = 1, . . . ,m is an m ×m-matrix, then ‖A‖ denotes the (operator)
norm corresponding to the given norm of m-vectors. For the norm of an m-vector
presented above the norm of a matrix is given by

‖A‖ := max
i=1,...,m

m∑

j=1

|aij |.

4.1. The general formulation
Consider a nonlinear autonomous system of ordinary differential equations

(4.1) ẋ(t) = f(x(t),α),

where x(t) = (x1(t), . . . , xn(t))> is an n-dimensional vector, α = (α1, . . . , αN )> is an
N -dimensional vector of parameters and f : � n × � N → � n is a continuous function

2 By the symbol > we denote the transposition of a matrix, e.g. (x1, . . . , xm)> is the
column vector with components x1, . . . , xm.
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of (x, α) having continuous bounded partial derivatives with respect to x and α for
all (x, α) in the region of interest.
For the system (4.1) consider the initial value problem

(4.2) xj(0) = cj , j = 1, . . . , n,

with known values of cj , j = 1, . . . , n. The N parameters α are arbitrary.
Consider the constant vector α to be a function of time that satisfies the differential

equation
α̇ = 0.

Define x(t) as an (n +N)-dimensional vector and a vector c (corresponding to the
initial conditions) as follows

x(t) = (x1(t), . . . , xn(t), α1(t), . . . , αN (t))>,

c = (c1, . . . , cn, ν1, . . . , νN )>.

Assume that g(x(t)) = (f(x(t), α), 0, . . . , 0︸ ︷︷ ︸
N

)>.

If x(t) is a solution of the system (4.1) with (4.2) and with αj = νj , j = 1, . . . , N ,
then the vector x(t) = (x(t), α(t))> is a solution of the initial value problem

(4.3) ẋ = g(x), x(0) = c,

and, conversely, if x(t) is a solution of (4.3) then the first n components of this
solution represent a solution of (4.1) with (4.2) and with αj = νj , j = 1, . . . , N .
Given a fixed solution x̃(t) of the differential equation (4.3), the system (4.3) can

be linearized around this solution.
The linearized system has the form

(4.4) ẏ = g(x̃) + J(x̃)(y − x̃),

where J(x) is the Jacobian matrix of g with elements

Jij =
∂gi

∂xj

in the ith row and jth column, i, j = 1, . . . , n+N, and we use it for x = x̃(t) in the
equation (4.4).
The equation (4.4) represents a linear system of n+N differential equations for y

and its solution y(t) for which yj(0) = cj , j = 1, . . . , n, can be represented in the
form

(4.5) y(t) = p(t) +
N∑

j=1

βjh(j)(t)
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where p(t) is the (particular) solution of

(4.6) ṗ = g(x̃) + J(x̃)(p− x̃)

with the initial condition

pj(0) = cj , j = 1, . . . , n, pl+n(0) = 0, l = 1, . . . , N,

and h(j)(t), j = 1, . . . , N , are solutions of the homogeneous system

(4.7) ḣ(j) = J(x̃)h(j)

with h(j)
i (0) = 0 for i 6= j + n, i = 1, . . . , n+N , and h(j)

j+n(0) = 1.
Further we prove the following lemma.

Lemma 4.1. Assume that x̃(t) is a solution of the initial value problem (4.3)
and that y(t) is a solution of the equation (4.4) in the form (4.5) with the initial
conditions

(4.8) yj(0) =

{
cj , for j = 1, . . . , n

βj−n, for j = n+ 1, . . . , n+N.

If, moreover, νi = βi, i = 1, . . . , N , then

y(t) = x̃(t)

for t > 0, i.e. the solution of the linearized equation (4.4) coincides with the solu-
tion x̃(t) of (4.3) in this case.
���������

. For the difference y(t)− x̃(t) we have the following differential equation

d
dt

(y − x̃) = g(x̃) + J(x̃)(y − x̃)− g(x̃) = J(x̃)(y − x̃).

Integrating this equation from 0 to t we have

y(t) − x̃(t) = y(0)− x̃(0) +
∫ t

0

J(x̃(s))(y(s) − x̃(s)) ds

and

‖y(t)− x̃(t)‖ 6 ‖y(0)− x̃(0)‖+
∫ t

0

‖J(x̃(s))‖‖y(s) − x̃(s)‖ ds

= ‖y(0)− c‖+
∫ t

0

‖J(x̃(s))‖‖y(s) − x̃(s)‖ ds.

By the Gronwall lemma we obtain

‖y(t)− x̃(t)‖ 6 ‖y(0)− c‖ · exp
(∫ t

0

‖J(x̃(s))‖ ds
)
.

Since y(0) = c, we have y(t) = x̃(t) for t > 0. �
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From (4.5) we can see immediately that the dependence of y(t) on the parameters
βj , j = 1, . . . , N , is linear.
The parameters βj , j = 1, . . . , N , are free and they can be used for minimizing a

certain expression S which measures the deviation of the solution y(t) to (4.4) from
some observed state.
The function S be of the following form

S(y) = S(β1, . . . , βN )

=
n∑

l=1

Ll∑

i=1

(
yl(tli)− rl

i

)2 +
M∑

j=1

((
γ +

n∑

l=1

γlyl(sj)
)
− ej

)2

where γ, γl, l = 1, . . . , n, are some constants, tli and sj are some instants of time at
which the experimental data rl

i and ej are known for the components of the solutions
or some of their linear combinations.
In view of (4.5), we observe that S(y) is a quadratic form in the variables

β1, . . . , βN . If this quadratic form is well behaved, the necessary conditions for
finding its local minimum are given by

(4.9)
∂S

∂βj
= 0, j = 1, . . . , N,

which is a linear system ofN algebraic equations forN unknown variables β1, . . . , βN .
Denote β∗1 , . . . , β

∗
N the solution of this system.

3

In any case putting c∗ = (c1, . . . , cn, β∗1 , . . . , β
∗
N)> we have new initial conditions

and the procedure can be repeated by finding a solution x∗(t) of the differential
equation ẋ = g(x) with the new initial conditions x(0) = c∗, linearizing the equation
around x∗(t) and computing new initial values as above.
In this way in fact an iterative procedure is given which consists in finding

a sequence of parameters β(k)
1 , . . . , β

(k)
N , k = 1, 2, . . ., for which the sequence

S
(
β

(k)
1 , . . . , β

(k)
N

)
decreases to some local minimum of S.

From the practical point of view the iterative procedure has to be repeated until

β
(k+1)
j = β

(k)
j , j = 1, . . . , N(4.10)

or

∣∣β(k+1)
j − β

(k)
j

∣∣ < ε, j = 1, . . . , N(4.11)

with some sufficiently small ε > 0.

3Using contemporary computational tools, e.g. the FindMinimum command in the Mathe-
matica package, another way of finding the values β∗1 , . . . , β

∗
N which minimize S(y) =

S(β1, . . . , βN ) can be found.
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4.2. For the sake of clarity, we summarize the quasilinearization

method in a flow diagram.

4.2. Application of the quasilinearization method
We apply the general quasilinearization method described above to the sys-

tem (1.4). The problem (1.4) subject to the initial conditions (1.5) in fact corre-
sponds to (4.1) with α = (a, b, d)>, f((x, y), α) = (−ax + by, ax − (b + d)y)>, and
the initial condition (4.2) with c = (I, 0); we have n = 2, N = 3 in this case.
We set

x = (x, y, a, b, d)>.

The initial value problem (4.3) takes the form

ẋ = g(x),(4.12)

x(0) = c = (I, 0, α)>(4.13)

where

g(x) = (−ax+ by, ax− (b+ d)y, 0, 0, 0)>.(4.14)

The Jacobian matrix J(x) corresponding to this g(x) is given by

J(x) =




−a b −x y 0
a −b− d x −y −y
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



.

Let us note that the function g : � 5 −→ � 5 given by (4.14) is continuously dif-
ferentiable. Therefore the solutions of (4.12) are uniquely determined by the initial

237



conditions. The last three components of any solution to (4.12) are constant and
equal to the triple α = (a, b, d).
Hence the differential equation (4.12) has nice properties; in particular, the solu-

tions depend continuosly on the initial conditions. Taking into account Section 2 and
the fact that the only equlibrium P = (0, 0) of the system (1.4) is globally asymp-
totically stable, we can see easily that for all solutions x(t), t > 0 of (4.12) with
x(0) = (I, 0, a, b, d) we have

x(t) ∈ [0, I ]× [0, I ]× [0, A]× [0, B]× [0, D] ⊂ � 5

provided 0 < a 6 A, 0 < b 6 B, 0 < d 6 D, i.e. these solutions are bounded in the
future.
Using this fact we also obtain the boundedness of ‖J(x(t))‖ for all t > 0, where

x(t) is a solution of (4.12), if 0 < a 6 A, 0 < b 6 B, 0 < d 6 D.
Given a solution x̃(t) of (4.12), (4.13) for some choice α = (ã, b̃, d̃)>, or in other

words a solution (x̃, ỹ)> of (1.4) with these values of the parameters, the linearized
system (4.4) around the solution x̃(t) assumes the form

(4.15) ẏ = g(x̃) + J(x̃)(y − x̃),

where y(t) = (y1(t), . . . , y5(t))>. The initial conditions for the first two components
are fixed as y1(0) = I , y2(0) = 0, while the initial conditions for y3(0), y4(0), y5(0)
are free.
Writing this system componentwise we obtain after a simplification the system

ẏ1 = − ãy1 + b̃y2 − x̃(y3 − ã) + ỹ(y4 − b̃),

ẏ2 = ãy1 − (̃b+ d̃)y2 + x̃(y3 − ã)− ỹ(y4 − b̃)− ỹ(y5 − d̃),

ẏ3 = 0, ẏ4 = 0, ẏ5 = 0.

The general solution of this problem can be expressed in the form (4.5), i.e.

(4.16) y(t) = p(t) +
3∑

j=1

βjh(j)(t)

where the components p1(t), . . . , p5(t) of p(t) satisfy

ṗ1 = − ãp1 + b̃p2 − x̃(p3 − ã) + ỹ(p4 − b̃),(4.17)

ṗ2 = ãp1 − (̃b+ d̃)p2 + x̃(p3 − ã)− ỹ(p4 − b̃)− ỹ(p5 − d̃),

ṗ3 = 0, ṗ4 = 0 ṗ5 = 0
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with

(4.18) p(0) = (I, 0, 0, 0, 0),

and for h(j)(t), j = 1, 2, 3 we have for their components h(j)
1 (t), . . . , h(j)

5 (t) the equa-
tions

˙
h

(j)
1 = − ãh

(j)
1 + b̃h

(j)
2 − x̃h

(j)
3 + ỹh

(j)
4 ,(4.19)

˙
h

(j)
2 = ãh

(j)
1 − (̃b+ d̃)h(j)

2 + x̃h
(j)
3 − ỹh

(j)
4 − ỹh

(j)
5 ,

˙
h

(j)
3 = 0,

˙
h

(j)
4 = 0,

˙
h

(j)
5 = 0

and the initial conditions

h(1)(0) = (0, 0, 1, 0, 0)>,(4.20)

h(2)(0) = (0, 0, 0, 1, 0)>,

h(3)(0) = (0, 0, 0, 0, 1)>.

Using the deviation given by (3.1) in the part concerning the clinical data we write

S(y) = S(β1, β2, β3) =
L∑

i=1

(y1(ti)− ri)2(4.21)

+
M∑

j=1

(
(I − y1(sj)− y2(sj))− ej

)2
.

In view of (4.16), this expression is clearly a quadratic form in β1, β2, β3.
Now we can describe the iterative procedure coming from the quasilinearization

method.
Let an initial choice α1 = (a1, b1, d1) of the parameters be given and let x(1)(t) be

the solution of (4.12) defined for t > 0 with the initial condition

x(1)(0) = (I, 0, a1, b1, d1)>.

Linearizing (4.12) around x(1) we get the equation

(4.22) ẏ = g
(
x(1)

)
+ J

(
x(1)

)(
y − x(1)

)
,

and its solution can be expressed in the form (4.16) where p(t) and h(j)(t) are given
by the systems (4.17) and (4.19) with initial conditions given by (4.18) and (4.20),
respectively, with ã = a1, b̃ = b1, d̃ = d1. Using this form of a solution of the lin-
earized equation (4.22) we consider the function S(y) = S(β1, β2, β3) given by (4.21)
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and we find its (local) minimum (using some computational or mathematical tool),
i.e. a point (a2, b2, d2) at which S(a2, b2, d2) 6 S(a1, b1, d1).
Note that by the considerations in the part describing the general form of quasi-

linearization (see Lemma 4.1) we have y(t) = x(1)(t) if β1 = a1, β2 = b1, β3 = d1

and S(a1, b1, d1) = S(x(1)) is the deviation of x(1)(t).
Now the iterations are produced as follows.
Given αk = (ak, bk, dk)> let x(k)(t) be the unique solution of (4.12) given for t > 0

by the initial condition
x(k)(0) = (I, 0, ak, bk, dk)>

and consider the linearization

ẏ = g
(
x(k)

)
+ J

(
x(k)

)(
y − x(k)

)
.

We express its solution in the form (4.16) where p(t) and h(j)(t) are again given
by the systems (4.17) and (4.19) with initial conditions given by (4.18) and (4.20),
respectively, with ã = ak, b̃ = bk, d̃ = dk, and we look for the (local) minimum of
S(y) = S(β1, β2, β3) to get αk+1 = (ak+1, bk+1, dk+1) for which S(ak+1, bk+1, dk+1) 6
S(ak, bk, dk). We assume that x(k+1)(t) is the solution of (4.12) for t > 0 with the
initial condition x(k+1)(0) = (I, 0, ak+1, bk+1, dk+1)>.
This iterative procedure leads to a sequence x(k)(t) =

(
x(k)(t), y(k)(t), αk

)
, where

αk = (ak, bk, dk) is the sequence of parameters.
For a given function x(t) = (x(t), y(t), a(t), b(t), d(t)), t ∈ [0, T ] denote

(4.23) S(x) =
L∑

i=1

(x(ti)− ri)2 +
M∑

j=1

(
(I − x(sj)− y(sj))− ej

)2

its deviation from the measured values ri and ej .
Let us denote u := (x, y, a, b, d)> and v := (ξ, ζ, χ, ψ, ω)>. Then

R := g(u)− g(v)− J(u)(u − v)

=
(
(x − ξ)(a− χ) + (y − ζ)(ψ − b),

(x − ξ)(χ− a) + (y − ζ)(b− ψ) + (y − ζ)(d − ω), 0, 0, 0
)>

and using the above mentioned norm of a vector we have

‖R‖ = max
(
|(x − ξ)(a− χ) + (y − ζ)(ψ − b)|,(4.24)

|(x− ξ)(χ− a) + (y − ζ)(b− ψ) + (y − ζ)(d− ω)|
)

6 3‖u− v‖2.
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Lemma 4.3. Assume that T > 0 is given. Let
(
x(l)(t)

)∞
l=1
be a sequence

of solutions of the equation (4.12) with initial conditions x(l)(0) = (I, 0, al, bl, dl)>

which uniformly converges on the interval [0, T ].
Then for every ε > 0 there is a k0 ∈ # such that for every k1, k2 > k0 we have

∥∥x(k1)(t)− x(k2)(t)
∥∥ < ε, t ∈ [0, T ],

and putting

W(t) = g
(
x(k1)(t)

)
− g

(
x(k2)(t)

)
− J

(
x(k1)(t)

)(
x(k1)(t)− x(k2)(t)

)

we also have

(4.25)
∫ T

0

‖W(t)‖ dt < 3ε2T.

���������
. The first statement is the Bolzano-Cauchy condition for uniform con-

vergence. Using this and (4.24) with R = W(t) we have for k1, k2 > k0

∫ s

0

∥∥g
(
x(k1)(t)

)
− g

(
x(k2)(t)

)
− J

(
x(k1)(t)

)(
x(k1)(t)− x(k2)(t)

)∥∥ dt(4.26)

6
∫ s

0

∥∥x(k1)(t)− x(k2)(t)
∥∥2 dt < 3ε2s

and (4.25) clearly holds. �

Lemma 4.4. Assume that T > 0 is given. Let (al, bl, dl)>, l ∈ # , be a sequence
of parameters which converges to (a, b, d)> for l →∞. Then we have the following.
(1) The sequence

(
x(l)(t)

)∞
l=1
of solutions of the equation (4.12) corresponding to

the initial conditions x(l)(0) = (I, 0, al, bl, dl)> converges uniformly on [0, T ] to
the solution x(t) of (4.12) with the initial condition x(0) = (I, 0, a, b, d)>.

(2) If y(k)(t) is the solution of the equation

ẏ = g
(
x(k−1)

)
+ J

(
x(k−1)

)(
y − x(k−1)

)

on [0, T ] with the initial condition y(k)(0) = (I, 0, ak, bk, dk)> then for every
η > 0 there is a k0 ∈ # such that for every k ∈ # , k > k0 we have

∥∥y(k)(t)− x(k)(t)
∥∥ < η

for every t ∈ [0, T ], i.e.

lim
k→∞

∥∥y(k)(t)− x(k)(t)
∥∥ = 0

uniformly on [0, T ].
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4.5. In fact y(k)(t) is a solution of (4.15) with x̃(t) = x(k−1)(t) satisfy-

ing y(k)(0) = (I, 0, ak, bk, dk)> and it can be expressed in the form

y(k)(t) = p(k) + akh
(1)
k + bkh

(2)
k + dkh

(3)
k

where p(k)(t) is the particular solution of (4.15) with x̃(t) = x(k−1)(t) and h(1)
k (t),

h(2)
k (t), h(3)

k (t) are the solutions of the corresponding homogenous system, see (4.5),
(4.6), (4.7) or (4.16), (4.17), (4.19) in our special case.
���������

of Lemma 4.4. The first part is an easy consequence of the continuous
dependence of solutions of (4.12) on the initial values.
Concerning the second part we have for t ∈ [0, T ] by definition

d
dt

(
y(k)(t)− x(k)(t)

)
= g

(
x(k−1)(t)

)

+ J
(
x(k−1)(t)

)(
y(k)(t)− x(k−1)(t)

)
− g

(
x(k)(t)

)
.

Integrating this relation from 0 to s ∈ [0, T ] and using the fact that y(k)(0) −
x(k)(0) = 0 we get

y(k)(s)− x(k)(s)

=
∫ s

0

g
(
x(k−1)(t)

)
+ J

(
x(k−1)(t)

)(
y(k)(t)− x(k−1)(t)

)
− g

(
x(k)(t)

)
dt

=
∫ s

0

g
(
x(k−1)(t)

)
− g

(
x(k)(t)

)
+ J

(
x(k−1)(t)

)(
x(k)(t)− x(k−1)(t)

)
dt

+
∫ s

0

J
(
x(k−1)(t)

)(
y(k)(t)− x(k)(t)

)
dt.

Hence

∥∥y(k)(s)− x(k)(s)
∥∥

6
∫ s

0

∥∥g
(
x(k−1)(t)

)
− g

(
x(k)(t)

)
+ J

(
x(k−1)(t)

)(
x(k)(t)− x(k−1)(t)

)∥∥ dt

+
∫ s

0

∥∥J
(
x(k−1)(t)

)(
y(k)(t)− x(k)(t)

)
‖ dt

6
∫ T

0

∥∥g
(
x(k−1)(t)

)
− g

(
x(k)(t)

)
+ J

(
x(k−1)(t)

)(
x(k)(t)− x(k−1)(t)

)∥∥ dt

+
∫ s

0

∥∥J
(
x(k−1)(t)

)∥∥ ∥∥(
y(k)(t) − x(k)(t)

)∥∥ dt.

By Lemma 4.3 for every ε > 0 there is a k0 ∈ # such that for every k > k0 we have

∫ T

0

∥∥g
(
x(k−1)(t)

)
− g

(
x(k)(t)

)
− J

(
x(k−1)(t)

)(
x(k−1)(t)− x(k)(t)

)∥∥ dt < 3ε2T.
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Using the previous estimate we obtain

∥∥y(k)(s)− x(k)(s)
∥∥ 6 3ε2T +

∫ s

0

∥∥J(x(k−1)(t)
)∥∥ ∥∥(

y(k)(t)− x(k)(t)
)∥∥ dt

for every s ∈ [0, T ], and by the Gronwall lemma we get the estimate

∥∥y(k)(s)− x(k)(s)
∥∥ 6 3ε2T e

$ s
0 ‖J(x(k−1)(t))‖dt 6 3ε2T eQ,

for any s ∈ [0, T ], where

Q =
∫ T

0

∥∥J
(
x(k−1)(t)

)∥∥ dt <∞,

because the sequence
(
x(k)(t)

)∞
k=1
is bounded on the interval [0, T ] (this is the con-

sequence of the first assertion). If we take ε =
√
η/(3T eQ) > 0 then we obtain

immediately the assertion of the lemma. �

Corollary 4.6. If the assumptions of Lemma 4.4 are satisfied then

lim
k→∞

∥∥y(k)(t)− x(t)
∥∥ = 0

uniformly on [0, T ].

Theorem 4.7. Assume that T > 0 is given. Let
(
x(l)(t)

)∞
l=1
be a sequence of

solutions of the initial value problem (4.12), (4.13), corresponding to α = (al, bl, dl)
which uniformly converges on the interval [0, T ], and let y(k)(t) be the solution of
the equation

ẏ = g
(
x(k−1)

)
+ J

(
x(k−1)

)(
y − x(k−1)

)

on the interval [0, T ] with the initial condition y(k)(0) = (I, 0, ak, bk, dk)>.
Then

lim
k→∞

∥∥S
(
y(k)

)
− S

(
x(k)

)∥∥ = 0

where S(x) is described in (4.23).
���������

. Our assertion follows from Lemma 4.4 and from the fact that the terms
(x − ri)2, i = 1, . . . , L, and ((I − x− y)− ej)2, j = 1, . . . ,M , occuring in (4.23) are
continuous as functions of a vector x = (x, y, a, b, d)>. �
����� �!��"

4.8. All the previous statements depend on the fact that we have at
our disposal a uniformly convergent sequence x(k)(t) of solutions of the initial value
problem (4.12), (4.13).
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5. Numerical results

For numerical computations we have seven data setsM1, . . .M7 of measured values
of BSP in the blood (at times ti) and in the bile (at times ej) which are indicated
in the following graphs by dots. Characterization of the measurement was given in
the part describing the clinical data.
The first four casesM1, . . . ,M4 give measurements for the same person. The BSP-

test was done on the 6th, 25th, 26th and 27th day after cholecystectomy in this case.
The initial amount of BSP was different, e.g. 125, 250 and 500mg, respectively.
Since the modelling system (1.1) is linear (its solutions form a linear space) the
measured data can be modified to data which correspond to the uniform initial dose
of BSP—250mg for all cases.
For obtaining numerical results the Mathematica software package was used.

Three methods have been examined.
(1) FM—this method uses the analytical solution (2.1), (2.2) and the Mathematica
command FindMinimum is applied to the function (3.1).

(2) QM—this is the Quasilinearization method described in the previous section.
(3) QFM—this method is a modification of QM. We do not solve the algebraic
equations (4.9), the command FindMinimum for the function (4.21) is applied
instead.

The numerical results, presenting the unknown parameters a, b, d, for the given
cases are shown in the following tables. The corresponding graphs represent the
solutions to (4.12), (4.13) for the values of the parameters a, b, d obtained by the
Quasilinearization method.

a b d steps

FM 0.054736 0.0152704 0.0093906 4

QFM 0.054736 0.0152704 0.0093906 11

Q 0.054736 0.0152704 0.0093906 13

Table 1. Numerical results for case M1.
20 40 60 80 100 120 140

50

100

150

200

250

a b d steps

FM 0.1028669 0.0012472 0.0109183 3

QFM 0.1028669 0.0012472 0.0109183 8

Q 0.1028669 0.0012471 0.0109183 19

Table 2. Numerical results for case M2.
20 40 60 80 100 120 140

50

100

150

200

250
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a b d steps

FM 0.1155239 0.0020142 0.009009 4

QFM 0.1155235 0.0020141 0.009009 11

Q 0.1155235 0.0020141 0.009009 17

Table 3. Numerical results for case M3.
20 40 60 80 100 120 140

50

100

150

200

250

a b d steps

FM 0.1146878 0.0154462 0.0118261 3

QFM 0.1146877 0.0154462 0.0118261 8

Q 0.1146877 0.0154462 0.0118261 11

Table 4. Numerical results for case M4.
20 40 60 80 100 120 140

50

100

150

200

250

a b d steps

FM 0.1098251 0.0079839 0.0034339 6

QFM 0.1098253 0.0079840 0.0034339 10

Q 0.1098253 0.0079840 0.0034339 10

Table 5. Numerical results for case M5.
20 40 60 80 100 120 140

50

100

150

200

250

a b d steps

FM 0.0579301 0.0093114 0.0037127 5

QFM 0.0579301 0.0093114 0.0037127 9

Q 0.0579301 0.0093114 0.0037127 10

Table 6. Numerical results for case M6.
20 40 60 80 100 120 140

50

100

150

200

250

a b d steps

FM 0.2070551 0.0085127 0.0025377 8

QFM 0.2070551 0.0085127 0.0025377 8

Q 0.2070550 0.0085127 0.0025377 9

Table 7. Numerical results for case M7.
20 40 60 80 100 120 140

50

100

150

200

250
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In the last column in Tables 1–7 we mention how many iterations were needed in
the computation. We used the criterion (4.11) for ε = 10−7. In the case when the
analytical solution (FM method) is used, the least number of computing steps was
needed. We must note that the number of steps for all methods depends on the initial
choice α1. For all cases in our tables the same starting value α1 = (0.107, 0.004, 0.01)
of the parameters was used.
According to the medical point of view [3], the satisfactory clinical status of the

patient corresponds to the interval [0.102, 0.116] of the parameter a. The meaning
of values of parameters b, d for the characterization of liver function is not known at
present and it should be interpreted on a larger sample of data.
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