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A NOTE ON THE INDEX OF B-FREDHOLM OPERATORS
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Abstract. From Corollary 3.5 in [Berkani, M; Sarih, M.; Studia Math. 148 (2001), 251–
257] we know that if S, T are commuting B-Fredholm operators acting on a Banach space
X, then ST is a B-Fredholm operator. In this note we show that in general we do not
have ind(ST ) = ind(S) + ind(T ), contrarily to what has been announced in Theorem 3.2
in [Berkani, M; Proc. Amer.Math. Soc. 130 (2002), 1717–1723]. However, if there exist
U, V ∈ L(X) such that S, T , U , V are commuting and US + V T = I, then ind(ST ) =
ind(S) + ind(T ), where ind stands for the index of a B-Fredholm operator.
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1. Index of B-Fredholm operators

B-Fredholm operators were introduced in [1] as a natural generalization of Fred-
holm operators, and have been extensively studied in [1], [2], [3], [4], [5].
For a bounded linear operator T and a nonnegative integer n define T[n] to be the

restriction of T to R(T n) viewed as a map from R(T n) into R(T n) (in particular,
T[0] = T ). If for an integer n the range space R(T n) is closed and T[n] is a Fredholm
operator, then T is called a B-Fredholm operator. The index ind(T ) of a B-Fredholm
operator T is defined as the index of the Fredholm operator T[n]. Thus ind(T ) =
α(T[n])− β(T[n]), where α(T[n]) is the dimension of the kernel Ker(T[n]) of T[n], and
β(T[n]) is the codimension of the range R(T[n]) = R(T n+1) of T[n] into R(T n). By
[1, Proposition 2.1] the definition of the index is independent of the integer n.
In [5] the following problem was formulated: If S, T are commuting B-Fredholm

operators, then from [5, Corollary 3.5] we know that ST is a B-Fredholm operator.
Is it true that ind(ST ) = ind(S)+ ind(T )? This question was answered affirmatively
in [3, Theorem 3.2]. However, the proof of [5, Theorem 3.2] is incorrect, as the
following example shows:
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1. Let X = l2, and let S, T be operators defined on X by:

S(x1, x2, . . . , xn, . . .) = (x1, 0, 0, 0, . . . , 0, . . .), ∀x = (xi)i ∈ l2,

T (x1, x2, . . . , xn, . . .) = (x1, x3, x4, x5, x6, . . .), ∀x = (xi)i ∈ l2.

Then S is a B-Fredholm operator with index 0, T is a B-Fredholm operator with
index 1, but ST = TS = S is a B-Fredholm operator with index 0.
The mistake in the proof of [3, Theorem 3.2] originated in [1, Remark, i)] and

was repeated in [3, Remark A, i)] where it is affirmed that if S, T are B-Fredholm
operators, ST = TS and ‖T − S‖ is small, then ind(T ) = ind(S). But this is not
true as shown by the following example:
� �����������

2. Let X = l2, c > 0, let S be the operator defined in Example 1 and
let T be an operator defined on X by

T (x1, x2, . . . , xn, . . .) = (x1, c · x3, c · x4, c · x5, c · x6, . . .), ∀x = (xi)i ∈ X.

Then S is a B-Fredholm operator with index 0, T is a B-Fredholm operator with
index 1, TS = ST = S, ‖T − S‖ = c. We can choose c arbitrarily small, but the
index of S is different from the index of T .
However, by [6, Theorem 4.7], if S, T are B-Fredholm operators, ST = TS and

‖T − S‖ is small and S − T invertible, then ind(T ) = ind(S).
Now we give the correct version of [3, Theorem 3.2]

Theorem 1.1. If S, T , U , V are commuting operators such that US + V T =
I and if S, T are B-Fredholm operators, then ST is a B-Fredholm operator and
ind(ST ) = ind(S) + ind(T ).
� �"!#!%$

. Since S and T are commuting B-Fredholm operators, then by [5,
Corollary 3.5], ST is also a B-Fredholm operator. Therefore there exists an integer
n such that R(Sn), R(T n) and R((ST )n) are closed and the operators S[n], T[n] and
(ST )[n] are Fredholm operators. From [8, Lemma 2.6] we know that R((ST )n) =
R(Sn) ∩ R(T n). Let T̃ (S̃) be the restriction of S (T , respectively) to R((ST )n).
Since (ST )[n] = S̃T̃ is a Fredholm operator, hence S̃ and T̃ are Fredholm operators
and ind(ST ) = ind((ST )[n]) = ind(S̃T̃ ) = ind(S̃)+ ind(T̃ ), where the last equality is
a consequence of the properties of Fredholm operators. Let us show that ind(S) =
ind(S̃). First we have Ker(S̃) = Ker(S) ∩ R((ST )n) = Ker(S) ∩ R(T n) ∩ R(Sn).
Since US + V T = I , we have from [8, Lemma 2.6] that Ker(S) ⊂ R(T n). Hence
Ker(S̃) = Ker(S) ∩R(Sn). So α(S̃) = α(S[n]).
Similarly we have R(S̃) = R(Sn+1T n). Moreover, as can be seen easily, T n define

a natural isomorphism from R(Sn)/R(Sn+1) onto R(SnT n)/R(Sn+1T n). Therefore
we have β(S̃) = β(S[n]). Consequently, we have ind(S̃) = ind(S). By the same
argument we have ind(T̃ ) = ind(T ). Since ind(ST ) = ind(S̃)+ind(T̃ ), it follows that
ind(ST ) = ind(S) + ind(T ). �
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Proposition 1.2. If T is a B-Fredholm operator and if n is a strictly positive
integer, then T n is a B-Fredholm operator and ind(T n) = n · ind(T ).
� �"!#!%$

. From [5, Corollary 3.5] it follows that T n is a B-Fredholm opera-
tor. Let m be a positive integer such that R(T m) is closed and T[m] is a Fred-
holm operator. Then by [1, Proposition 2.1], R(T nm) is closed, T[nm] is a Fredholm
operator, and ind(T ) = ind(T[m]) = ind(T[nm]). We have R((T n)m) = R(T nm)
and (T n)[m] = (T[nm])n. As (T n)[m] and T[nm] are Fredholm operators, it fol-
lows ind(T n) = ind((T n)[m]) = ind((T[nm])n) = n · ind((T[nm])) = n · ind(T ). So
ind(T n) = n · ind(T ). �

Corollary 1.3. Let P (X) = (X − λ1I)m1 . . . (X − λnI)mn be a polynomial with
complex coefficients. Assume that for each i, 1 6 i 6 n, T − λiI is a B-Fredholm
operator. Then P (T ) = (T − λ1I)m1 . . . (T − λnI)mn is a B-Fredholm operator and

ind(P (T )) =
n∑

i=1

mi · ind(T − λiI).

� �"!#!%$
. From [5, Corollary 3.5] we know that P (T ) is a B-Fredholm operator.

Let P1(X) = (X−λ1I)m1 and P2(X) = (X−λ2I)m2 . . . (X−λnI)mn . It is clear that
P1(X) and P2(X) are prime to each other. Therefore there exist two polynomials
U(X), V (X) such that U(X)P1(X) + V (X)P2(X) = 1. Then we have P (T ) =
P1(T )P2(T ) and U(T )P1(T ) + V (T )P2(T ) = I . Theorem 1.1 and Proposition 1.2
show that ind(P (T )) = m1 · ind(T − λ1I) + ind(P2(T )). By induction it follows that

ind(P (T )) =
n∑

i=1

mi · ind(T − λiI). �

Theorem 1.4. Let X be a Hilbert space, T a bounded linear B-Fredholm oper-
ator on X . Then the following assertions are equivalent:

1. T is Fredholm.
2. ind(TS) = ind(S) + ind(T ) for each Fredholm operator S on X .
� �"!#!%$

. 1 ⇒ 2 by [7, Theorem 23.1].
Now we will prove 2 ⇒ 1. Suppose that T is not Fredholm. According to [1,

Theorem 2.1] the space X is a direct sum of T -invariant closed subspaces Y , Z

such that T/Y is Fredholm and T/Z is nilpotent. Evidently ind(T ) = ind(T/Y ).
(Fix a positive integer n such that T n = 0 on Z. Then T n(X) = T n(Y ) is a
subset of Y . Since T/Y is Fredholm, the operator T n/Y is Fredholm too by [7,
Satz 23.2]. Therefore the codimension of T n(X) = T n(Y ) in Y is finite. Since T/Y

is Fredholm and the codimension of T n(X) in Y is finite, the operator T/T n(X) is
Fredholm and ind(T/T n(X)) = ind(T/Y ) by [9, Proposition 3.7.1]. Hence ind(T ) =
ind(T/T n(X)) = ind(T/Y ).) Since T is not Fredholm the dimension of Z must
be infinite. (In the oposite case the operator T should be Fredholm, because T/Y

is Fredholm and the codimension of Y is finite (see [9, Proposition 3.7.1])). Since
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T n = 0 on Z and the dimension of Z is infinite, the dimension of Z ∩ KerT is
infinite, too. On the Banach space Z ∩ KerT there is a Fredholm operator A with
index 1. (Since the dimension of Z∩KerT is infinite there is an orthonormal sequence
{xk} in Z ∩ KerT . Denote by C the closure of the linear span of {xk} and by D

the orthogonal complement of C in Z ∩ KerT . If x is an element of Z ∩ KerT

then there is y ∈ D and a sequence {ck} ∈ l2 such that x = y +
∑
k

ckxk. Define

Ax = y +
∑
k

ck+1xk. Then A is a Fredholm operator on Z ∩ KerT with index 1.)

Denote by W the orthogonal complement of Z ∩ KerT in Z. Since X is the direct
sum of Y and Z, the space X is the direct sum of Y +W and Z∩KerT . Denote by P

the projection of X to Z ∩KerT along Y +W . Denote Sx = APx+(I−P )x. Then
S(Z∩KerT ) ⊂ A(Z∩KerT ) ⊂ Z∩KerT , S = A on Z∩KerT and S = I on Y +W .
Hence S is a Fredholm operator of index 1. If x ∈ Y + W then TSx = TIx = Tx.
If x ∈ Z ∩KerT then TSx = TAx = 0 = Tx, because Ax ∈ Z ∩KerT . We thus get
TS = T and ind(TS) = ind(T ) but ind(T ) + ind(S) = ind(T ) + 1. �
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