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1. Introduction

For monounary algebras we apply the standard notation (cf., e.g., [1]).

In this paper we deal with the implication

(1) AB ∼= AC ⇒ B ∼= C,

where A, B and C are monounary algebras.

If K is a class of monounary algebras such that for eachA, B, C ∈ K the implication
(1) is valid, then we say that the cancellation law (1) holds in K.
For a given monounary algebra D we denote by U(D) the class of all monounary

algebras A such that

(i) the number of connected components of A is finite;
(ii) if E is a connected component of A, then E can be expressed as the direct

product of a finite number of subalgebras A1, A2, . . . , An of D such that no
Ai (i = 1, 2, . . . , n) is a cycle.

We denote by � = ( � , f) the monounary algebra such that f(x) = x + 1 for each
x ∈ � .
Supported by grant VEGA 1/7468/20.
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Let n ∈ � . Then Dn denotes a connected monounary algebra such that Dn =
{a0, a1, . . . , an−1} ∪ � , where {a0, a1, . . . , an−1} is an n-element cycle and for 1 6=
k ∈ � we have f(k) = k − 1, f(1) = a0.
We prove the following results:

(α) The class U( � ) does not satisfy the cancellation law (1).
(β) For each n ∈ � , the cancellation law holds in the class U(Dn).

When proving (β), we apply different methods for the case n = 1 and for the case
n > 1.
The validity of a cancellation law for finite unary algebras was investigated in [7].

In [6], a cancellation law for monounary algebras which are sums of cycles was dealt

with.
The cancellation law (1) for finite algebras was studied in [3], [4]; cf. also the

monograph [5], Section 5.7. In [2], the implication (1) for partially ordered sets was
investigated.

2. Preliminaries

In this section we recall some definitions and prove some auxiliary results concern-

ing the class U(D1).
By a monounary algebra we understand a pair (A, f), where A is a non-empty set

and f is a mapping of A into A. If no misunderstanding can occur, then we write A

instead of (A, f).
A monounary algebra (A, f) is said to be connected if for each x, y ∈ A there are

m, n ∈ � ∪ {0} such that fn(x) = fm(y). A maximal connected subalgebra of a
monounary algebra (A, f) is called a connected component of (A, f).
Let A be a monounary algebra. An element a ∈ A is cyclic if fn(a) = a for some

n ∈ � . Let B be a connected subalgebra of A. If each element of B is cyclic, then
B is called a cycle of A.

Let n ∈ � . For i ∈ � we denote in = {j ∈ � : j ≡ i (mod n)}. Next, let � n =
{0n, 1n, . . . , (n − 1)n} be the set of all integers modulo n. We define a monounary

algebra Dn = (Dn, f) putting

Dn = � n∪ � ,

f(a) =





a + 1n if a ∈ � n,

a− 1 if a ∈ � , a 6= 1,

0n if a = 1.

For n = 1 we write 0 instead of the symbol 0n, i.e., D1 = {0} ∪ � .
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Let n ∈ � and let X1, . . . , Xn be subalgebras of D1 having more than one element.

Further, let ξ be an isomorphism of X1X2 . . . Xn onto a monounary algebra A. We
will omit brackets and write just ξ(x1, . . . , xn) instead of ξ((x1, . . . , xn)). We denote

X
(0)
1 = {ξ(x1, 0, . . . , 0) : x1 ∈ X1},

X
(0)
2 = {ξ(0, x2, 0, . . . , 0) : x2 ∈ X2}, . . . ,

X(0)
n = {ξ(0, 0, . . . , xn) : xn ∈ Xn}.

2.1. Lemma. A is a connected monounary algebra with a one-element cycle

{ξ(0, 0, . . . , 0)}. Further,
|f−1(ξ(0, 0, . . . , 0))| = 2n.

������� �
. Let x = ξ(x1, . . . , xn) ∈ A, k = max{x1, . . . , xn}+ 1. Then

fk(x) = ξ(fk(x1), . . . , fk(xn)) = ξ(0, . . . , 0) = f(ξ(0, . . . , 0)),

which implies that the element ξ(0, . . . , 0) forms a one-element cycle of A and that
A is connected. Next,

f−1(ξ(0, . . . , 0)) = {ξ(y1, . . . , yn) : yi ∈ {0, 1} for each i ∈ {1, . . . , n}},
|f−1(ξ(0, . . . , 0))| = 2n.

�

2.2. Lemma. Let x ∈ A be such that f−1(x) 6= ∅. Then x ∈
n⋃

i=1

X
(0)
i if and

only if |f−1(x)| ∈ {2n, 2n−1}.
������� �

. Suppose that x ∈
n⋃

i=1

X
(0)
i . There are i ∈ I and xi ∈ Xi with x =

ξ(0, 0, . . . , xi, . . . , 0). We have supposed that f−1(x) 6= ∅, thus f−1(xi) 6= ∅; if
xi = 0, then f−1(xi) = {0, 1} and if xi 6= 0, then f−1(xi) = xi + 1. Let y ∈ f−1(x).
If j 6= i, then the j-th projection of ξ−1(y) belongs to the set {0, 1}. Hence
(a) if xi = 0, then |f−1(x)| = 2n by 2.1,
(b) if xi 6= 0, then

f−1(x) = {ξ(y1, y2, . . . , xi + 1, . . . , yn) : yj ∈ {0, 1} for j 6= i},
|f−1(x)| = 2n−1.

Therefore

|f−1(x)| ∈ {2n, 2n−1}.
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Conversely, assume that x ∈ A −
n⋃

i=1

X
(0)
i . Then the number of projections of

ξ−1(x) which are equal to 0 is less than n − 1; without loss of generality, x =
ξ(x1, . . . , xk, 0, . . . , 0), {x1, . . . , xk} ∩ {0} = ∅, k > 1. We obtain

f−1(x) = {ξ(x1 + 1, . . . , xk + 1, yk+1, . . . , yn) : yk+1, . . . , yn ∈ {0, 1}},

which implies that |f−1(x)| 6 2n−2. �

Now let n, m ∈ � and let X1, . . . , Xn, Y1, . . . , Ym be subalgebras of D1 having

more than one element. Further, let A be a monounary algebra such that ξ is an
isomorphism of X1X2 . . . Xn onto A and let η be an isomorphism of Y1Y2 . . . Ym onto

A. We suppose that X
(0)
1 , . . . , X

(0)
n , Y

(0)
1 , . . . , Y

(0)
m have an analogous meaning as

above.

2.3. Lemma.

(1) n = m;

(2)
{
x ∈

n⋃
i=1

X
(0)
i : f−1(x) 6= ∅

}
=

{
y ∈

n⋃
i=1

Y
(0)
i : f−1(y) 6= ∅

}
;

(3) there is a permutation ϕ of the set {1, 2, . . . , n} such that Xk
∼= X

(0)
k

∼=
Y

(0)
ϕ(k)

∼= Yϕ(k) for each k ∈ {1, . . . , n}.
������� �

. In wiew of 2.1 we obtain that {ξ(0, . . . , 0)} = {η(0, . . . , 0)} is a cycle of
A and

2n = |f−1(ξ(0, . . . , 0))| = |f−1(η(0, . . . , 0))| = 2m,

therefore n = m.

The assertion (2) follows from 2.2.

The set
n⋃

i=1

X
(0)
i is a subalgebra of A. Further, for i ∈ {1, . . . , n}, X

(0)
i

∼=

Xi is a subalgebra of D1 and X
(0)
i ∩ X

(0)
j is a one-element cycle of A whenever

i, j ∈ {1, . . . , n}, i 6= j. (Analogously for Y1, . . . , Yn.) Notice that if x ∈ X
(0)
j ,

j ∈ {1, . . . , n} and f−1(x) = ∅, then the element f(x) = z has the property that

f−1(z) 6= ∅, z ∈
( n⋃

i=1

X
(0)
i

)
∩

( n⋃
i=1

Y
(0)
i

)
.

Let k ∈ {1, . . . , n}.
(a) Suppose that Xk

∼= D1. Then X
(0)
k

∼= D1 and for each x ∈ X
(0)
k we have

f−1(x) 6= ∅. According to (2),

(4) X
(0)
k ⊆

{
y ∈

n⋃

i=1

Y
(0)
i : f−1(y) 6= ∅

}
.
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Take t ∈ X
(0)
k such that t does not belong to a cycle but f(t) does; t is uniquely

determined. Further, (4) implies that there is j ∈ {1, . . . , n} with t ∈ Yj . By the

above consideration, the set Y
(0)
i ∩ Y

(0)
j is a one-element cycle of A for each i 6= j,

therefore we obtain in view of (4) that Y
(0)
j = X

(0)
k ; let us denote j = ϕ(k).

(b) Now let Xk 6= D1. There is exactly one x ∈ X
(0)
k such that f−1(x) = ∅.

Let z = f(x). According to (2) the subalgebra {f l(z) : l ∈ � ∪ {0}} of X
(0)
k is a

subalgebra of
{
y ∈

n⋃
i=1

Y
(0)
i : f−1(y) 6= ∅

}
and analogously as above, there is exactly

one j ∈ {1, . . . , n} such that

(5) {f l(z) : l ∈ � ∪ {0}} = {y ∈ Y
(0)
j : f−1(y) 6= ∅}.

We have X
(0)
k = {x} ∪ {f l(z) : l ∈ � ∪ {0}}. Similarly, Y (0)

j consists of the elements
of the right set in (5) and of one element q with the property f−1(q) = ∅. Hence
X

(0)
k

∼= Y
(0)
j . We denote j = ϕ(k).

The mapping ϕ is a permutation and X
(0)
k

∼= Y
(0)
ϕ(k) for each k ∈ {1, . . . , n}, i.e.,

(3) is valid. �

2.4. Proposition. If A is isomorphic to a direct product of subalgebras of D1

such that these subalgebras are not cycles, then the decomposition of A into such a

direct product is unique up to isomorphism.
������� �

. This is a corollary of 2.3. �

3. Cancellation law in U(D1)

For investigating the properties of U(D1), in this section we deal with the system
� [y1, . . . , yn] of polynomials with unknowns y1, . . . , yn over the integrity domain of
integers � ; it is known that � [y1, . . . , yn] is an integrity domain as well.
A similar consideration has been used in [2] for investigating the cancellation law

for partially ordered sets, where generalized polynomials over � have been taken into
account.

Let A, B, C be monounary algebras belonging to the class U(D1). Next, let
{Y1, . . . , Yn} be a system of monounary algebras such that
(a) if i, j ∈ {1, . . . , n}, i 6= j, then Yi ! Yj ,

(b) if E ∈ {A, B, C}, F is a connected component of E and F = X1X2 . . .Xk,
where X1, . . . , Xk are subalgebras of D1 which are not cycles, then for each

j ∈ {1, . . . , k} there is l ∈ {1, . . . , n} such that Xi
∼= Yl,

(c) if l ∈ {1, . . . , n}, then |Yl| > 1.
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Let us remark that it follows from the definition of U(D1) that a system
{Y1, . . . , Yn} with the required properties exists.

3.1. " � #%$&#(')�+* . If X is a monounary algebra, k ∈ � , then we denote by X0 a

one-element monounary algebra and

Xk = XX . . . X (k-times).

If k ∈ � and X1, . . . , Xk are mutually disjoint monounary algebras, then
k∑

i=1

Xi

is a disjoint union of the given algebras. Further, if X1
∼= X2

∼= . . . ∼= Xk, then we

write also kX1 instead of
k∑

i=1

Xi; thus kX2 is an algebra consisting of k copies of X1.

We denote 0X = ∅ for each monounary algebra X .

3.2. Lemma. Let t1, . . . , tn, s1, . . . , sn ∈ � ∪ {0}. Then Y t1
1 Y t2

2 . . . Y tn
n

∼=
Y s1

1 Y s2
2 . . . Y sn

n if and only if t1 = s1, . . . , tn = sn.

������� �
. Since the condition (a) is satisfied, we obtain the assertion by virtue of

2.4. �

3.3. Corollary. Let E ∈ {A, B, C}, let F be a connected component of E.

Then F can be expressed in the form F ∼= Y t1
1 . . . Y kn

n , where t1, . . . , tn ∈ � ∪ {0};
further, t1, . . . , tn are uniquely determined.

3.4. " �,#%$-#�')�+* . Let f(y1, . . . , yn) ∈ � [y1, . . . , yn] be a polynomial with non-
negative coefficients. Then we can write it in the form

f(y1, . . . , yn) =
m∑

i=1

piy
ti1
1 yti2

2 . . . ytin
n

such that

(i) pi > 0 for each i ∈ {1, . . . , m},
(ii) if j, k are distinct elements of the set {1, . . . , m}, then y

tj1
1 y

tj2
2 . . . y

tjn
n 6=

ytl1
1 ytl2

2 . . . ytln
n ; we will say that f(y1, . . . , yn) is written in a normal form. By

f(Y1, . . . , Yn) we denote the monounary algebra

m∑

i=1

piY
ti1
1 Y ti2

2 . . . Y tin
n .
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3.5. Lemma. Let f(y1, . . . , yn), g(y1, . . . , yn) ∈ � [y1, . . . , yn] be polyno-
mials with non-negative coefficients which are written in a normal form. Then

f(Y1, . . . , Yn) = g(Y1, . . . , Yn) if and only if f(y1, . . . , yn) = g(y1, . . . , yn).
������� �

. If f(y1, . . . , yn) = g(y1, . . . , yn), then 3.4 implies that f(Y1, . . . , Yn) =
g(Y1, . . . , Yn). The converse implication follows from 3.2 in view of the fact that the
polynomials are written in a normal form. �

3.6. Corollary. There are uniquely determined polynomials fA(y1, . . . , yn),
fB(y1, . . . , yn), fC(y1, . . . , yn) with non-negative coefficients such that

A ∼= fA(Y1, . . . , Yn),

B ∼= fB(Y1, . . . , Yn),

C ∼= fC(Y1, . . . , Yn).

������� �
. This is a consequence of the definition of the system {Y1, . . . , Yn} and

of 3.5. �

3.7. Corollary. Let (fA ·fB)(y1, . . . , yn) = fA(y1, . . . , yn) ·fB(y1, . . . , yn). Then

AB ∼= (fA · fB)(Y1, . . . , Yn).

������� �
. By 3.6, AB ∼= fA(Y1, . . . , Yn)fB(Y1, . . . , Yn), thus we get the assertion

in view of 3.4. �

3.8. Theorem. Let A, B, C ∈ U(D1), AB ∼= AC. Then B ∼= C.
������� �

. According to 3.7 we obtain AB ∼= (fA · fB)(Y1, . . . , Yn), and similarly,
AC ∼= (fA · fC)(Y1, . . . , Yn). Thus

(fA · fB)(Y1, . . . , Yn) ∼= (fA · fC)(Y1, . . . , Yn).

According to 3.5,

(fA · fB)(y1, . . . , yn) = (fA · fC)(y1, . . . , yn),

fA(y1, . . . , yn) · fB(y1, . . . , yn) = fA(y1, . . . , yn) · fC(y1, . . . , yn).

The polynomial fA(y1, . . . , yn) is a non-zero polynomial, thus we can apply the can-
cellation law in the integrity domain � [y1, . . . , yn], which implies

fB(y1, . . . , yn) = fC(y1, . . . , yn).

Again by 3.5, fB(Y1, . . . , Yn) = fC(Y1, . . . , Yn), thus B ∼= C. �
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Now we will give two examples showing that if some of the conditions (i), (ii) in

the definition of the class U(D) fails to hold, then the cancellation law need not be
valid in general.

3.9. . / $-02143)5
. Let E be an arbitrary subalgebra of D1, |E| > 1. Put A = ℵ0E,

B = E, C = 2E. Then

AB = (ℵ0E)E = ℵ0(EE),

AC = (ℵ0E)(2E) ∼= ℵ0(EE).

Hence AB ∼= AC, but B ! C. Notice that here each connected component F of A,
B, C is a subalgebra of D1 and |F | > 1, i.e., A, B and C fulfil the condition (ii).

3.10. . / $,06173)5 . Let E be as in 3.9. Take A = Eℵ0 , B = E, C = E2. Then

AB ∼= Eℵ0 ∼= AC, B ! C.

Here A, B, C have finitely many connected components, each connected component

is a direct product of subalgebras of D1, but there are infinitely many factors in the
product in A.

4. The class U( � )

Let � = ( � , f) be a monounary algebra such that f(x) = x + 1 for each x ∈ � .
We will show that the cancellation law (1) in U( � ) is not valid in general.

4.1. Lemma. �8� ∼= ℵ0 � .

������� �
. Let E be a connected component of �8� , u = (u1, u2) ∈ E. Without

loss of generality, suppose that u1 6 u2. Let a = (1, u2 − u1 + 1). Then

fu1−1(a) = (1 + (u1 − 1), u2 − u1 + 1 + (u1 − 1)) = (u1, u2) = u,

thus a ∈ E. Further, f−1(a) = ∅. If i, j ∈ � ∪ {0}, f i(a) = f j(a), then

(1 + i, u2 − u2 − u1 + 1 + i) = (1 + j, u2 − u1 + 1 + j),

which implies that i = j. We will show that

E = {f i(a) : i ∈ � ∪ {0}}.
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Let (w1, w2) = w ∈ E. Then there are m, n ∈ � ∪ {0} such that fm(a) = fn(w).
Denote a2 = u2 − u1 + 1. We obtain

(1 + m, a2 + m) = (w1 + n, w2 + n),

1 + m = w1 + n, a2 + m = w2 + n,

w1 = 1 + m− n, w2 = a2 + m− n.

Since w1 > 1, we have m − n > 0 and fm−n(a) = w. Therefore E ⊆ {f i(a) : i ∈
� ∪{0}}. The converse inclusion is obvious. Hence each connected component of �9�
is isomorphic to � .
Further, if i, j ∈ � , i 6= j, then (1, i) and (1, j) do not belong to the same connected

component. We have | �8� | = ℵ0, thus �8� consists of ℵ0 connected components which
are all isomorphic to � . �

4.2. Lemma. A monounary algebra E belongs to U( � ) if and only if E ∼= k � ,
k ∈ � .
������� �

. Let E ∈ U( � ). If F is a connected component of E, then F is a direct

product of finitely many subalgebras of � . Since each subalgebra of � is isomorphic
to � and a product of at least two algebras isomorphic to � is non-connected by
4.1, we obtain that each connected component F of E is isomorphic to � . Next, E
consists of finitely many connected components, which implies that E ∼= k � , k ∈ � .

The relation {k � : k ∈ � } ⊆ U( � ) is obvious. �

4.3. Lemma. Let A, B ∈ U( � ). Then AB ∼= ℵ0 � .
������� �

. By 4.2 there are k, m ∈ � with A ∼= k � , B ∼= m � . According to 4.1 we
obtain

AB ∼= (k � )(m � ) = (km)( �8� ) ∼= ℵ0 � .

�

From 4.3 we infer that the cancellation law (1) does not hold in U( � ) in general.
Further, as a corollary we obtain

4.4. Theorem.

(a) For each A ∈ U( � ) there are B, C ∈ U( � ) with B ! C, AB ∼= AC.

(b) For each B, C ∈ U( � ) there is A ∈ U( � ) such that AB ∼= AC.

4.5. Corollary. The cancellation law (1) in U( � ) does not hold in general.
������� �

. This is a consequence of the fact that the class U( � ) is a subclass of
U( � ) and that the cancellation law (1) does not hold in U( � ) in general. �
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5. Cancellation law in U(Dn)

Let n ∈ � , n > 1. According to the notation of Section 2 we have Dn = � n ∪ � ,
where in ∈ � n is the set of all integers k with k ≡ i (mod n).

5.1. Lemma. If X, Y are subalgebras of Dn, then XY is non-connected.
������� �

. Let a = (0n, 1n), b ∈ (1n, 0n) ∈ XY . By way of contradiction, suppose
that XY is connected. Then there are k, m ∈ � ∪ {0} such that f k(a) = fm(b). We
obtain

((0 + k)n, (1 + k)n) = ((1 + m)n, (0 + m)n),

i.e., k ≡ m + 1, 1 + k ≡ m (mod n). This implies that n/2 and since n > 1, we have
n = 2. Take c = (02, 02). There exist p, q ∈ � ∪ {0} such that f p(a) = f q(c), thus

(p2, (1 + p)2) = (q2, q2),

i.e., p ≡ q, 1 + p ≡ q (mod 2), which is a contradiction. �

5.2. Lemma. A monounary algebraE belongs to U(Dn) if and only if E consists
of finitely many connected components and each connected component F of E is a

subalgebra of Dn, |F | > n.
������� �

. Let E ∈ U(Dn). Then it has finitely many connected components. By
the definition of U(Dn), no connected component F of E is a cycle, thus |F | > n.
The remaining part of the proof is analogous to 4.2 provided we apply 5.1. �

In 5.3.1–5.5.3 let X , Y be subalgebras of Dn such that |X | > n, |Y | > n. There

are k, m ∈ � ∪ {ℵ0} with

X = � n ∪ {i ∈ � : i 6 k},
Y = � n∪ {i ∈ � : i 6 m}.

Let E = XY . The following two lemmas are easy to verify by a routine calculation.

5.3.1. Lemma.

(a) Let v = (v1, v2) ∈ E. Then v belongs to a cycle of E if and only if v1, v2 ∈ � n.

(b) Each connected component of E contains a cycle with n elements.

5.3.2. Lemma.

(a) f−1((0n, 0n)) = {((n− 1)n, (n− 1)n), (1, (n− 1)n), ((n− 1)n, 1),

((n− 1)n, 1), (1, 1)}
;
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(b) if 0n 6= jn ∈ � n, then f−1((jn, 0n)) = {((j − 1)n, (n − 1)n), ((j − 1)n, 1)},
f−1((0n, jn)) = {((n− 1)n, (j − 1)n), (1, (j − 1)n)};

(c) if 0n 6= jn ∈ � n, 0n 6= ln ∈ � n, then f−1((jn, ln)) = {((j − 1)n, (l − 1)n)}.

5.3.3. Corollary. Let v be a cyclic element of E. Then v = (0n, 0n) if and only
if |f−1(v)| = 4.

5.4. Lemma. Let F be the connected component of E containing the element

(0n, 0n).

(a) |{v ∈ F : v is cyclic, |f−1(v)| > 1}| = 1;
(b) if F1 is a connected component of E such that F1 6= F , then |{v ∈ F1 : v is

cyclic, |f−1(v)| > 1}| > 1.

������� �
. Let v be a cyclic element of F . Then v = (in, in), in ∈ � n. If

in = 0n, then 5.3.3 implies that |f−1(v)| = 4. If in 6= 0n, then 5.3.2(c) yields that
|(f−1(v)| = 1. Hence (a) is valid.
Now let F1 be a connected component of E such that F1 6= F . Then there is

j ∈ {1, 2, . . . , n − 1} such that (0n, jn) ∈ F1. Denote v = (0n, jn), w = fn−j(v).
Thus w is a cyclic element of F1,

w = ((n− j)n, (j + n− j)n) = ((−j)n, 0n).

According to 5.3.2(b), |f−1(v)| = 2 = |f−1(w)|, which implies that (b) holds. �

Denote u = (0n, 0n), u(1) = (1, 1), u(2) = (1, (n− 1)n), u(3) = ((n− 1)n, 1).

5.5.1. Lemma.

(a) If k = m = ℵ0, then f−1(u(α)) 6= ∅ for each α ∈ {1, 2, 3}, i ∈ � .
(b) If k < m = ℵ0, then f−1(u(3)) 6= ∅ for each i ∈ � and f−k(u(1)) = ∅ =

f−(k−1)(u(1)), f−k(u(2)) = ∅ 6= f−(k−1)(u(2)).
(c) If k 6 m < ℵ0, then f−m(u(3)) = ∅ 6= f−(m−1)(u(3)), f−k(u(1)) = ∅ 6=

f−(k−1)(u(1)), f−k(u(2)) = ∅ 6= f−(k−1)(u(2)).

������� �
.

(a) Let k = m = ℵ0, i ∈ � . Then

f i((i + 1, i + 1)) = (i + 1− i, i + 1− i) = (1, 1) = u(1),

f i((i + 1, (n− 1− i)n) = (i + 1− i, (n− 1− i + i)n) = (1, (n− 1)n) = u(2),

f i(((n− 1− i)n, i + 1)) = ((n− 1− i + i)n, i + 1− i) = u(3).
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(b) Let k < m = ℵ0, i ∈ � . Similarly as above, f i((n − 1 − i)n, i + 1) = u(3).

Further,

fk−1((k, (−k)n)) = (k − (k − 1), (−k + k − 1)n) = (1, (n− 1)n) = u(2),

fk−1((k, k)) = (k − (k − 1), k − (k − 1)) = (1, 1) = u(1).

Suppose that f−k(u(1)) 6= ∅ (the case for u(2) is analogous). Then there is

(t1, t2) ∈ E with

u(1) = (1, 1) = fk((t1, t2)) = (fk(t1), fk(t2)).

This implies that in X the set f−k(1) is non-empty, which is a contradiction.
Therefore (b) is valid.

(c) The proof of this assertion is similar to that of (b).

�

In view of 5.3.2(a), the set f−1(u) = f−1((0n, 0n)) consists of a cyclic element
((n − 1)n, (n − 1)n) and of three non-cyclic elements; let w(1), w(2), w(3) be these
elements.

5.5.2. Lemma.

(a) If k = m = ℵ0, then f−i(w(α)) 6= ∅ for each α ∈ {1, 2, 3}, i ∈ � .
(b) If k < m = ℵ0, then there is α ∈ {1, 2, 3} such that f−i(w(α)) 6= ∅ for each

i ∈ � and if α 6= β ∈ {1, 2, 3}, then f−k(w(β)) = ∅ 6= f−(k−1)(w(β)).
(c) If k 6 m < ℵ0, then there is α ∈ {1, 2, 3} such that f−m(w(α)) = ∅ 6=

f−(m−1)(w(α)) and if α 6= β ∈ {1, 2, 3}, then f−k(w(β)) = ∅ 6= f−(k−1)(w(β)).

5.5.3. Corollary.

(a) Let f−i(w(α)) 6= ∅ for each α ∈ {1, 2, 3}, i ∈ � . Then k = m = ℵ0.

(b) Let the assumption of (a) be not valid and suppose that there is α ∈ {1, 2, 3}
such that f−i(w(α)) 6= ∅ for each i ∈ � . Then there is j ∈ � such that if
α 6= β ∈ {1, 2, 3}, then f−j(w(β)) = ∅ 6= f−(j−1)(w(β)). Further, this yields
that {k, m} = {j,ℵ0}.

(c) Let neither the assumption of (a) nor the assumption of (b) be valid. There
are j, l ∈ � and α ∈ {1, 2, 3} such that f−j(w(α)) = ∅ 6= f−(j−1)(w(α)) and if
α 6= β ∈ {1, 2, 3}, then f−l(w(β)) = ∅ 6= f−(l−1)(w(β)). Then {k, m} = {j, l}.

5.6. Lemma. Suppose that X , Y , X ′, Y ′ are subalgebras of Dn which are not

cycles. If XY ∼= X ′Y ′, then either X ∼= X ′, Y ∼= Y ′ or X ∼= Y ′, Y ∼= X ′.
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������� �
. Let k, m, E, u, F be as above and assume that k′, m′, E′, u′, F ′ have an

analogous meaning in the product X ′Y ′. There is an isomorphism ξ : XY → X ′Y ′.
By 5.3.1, ξ maps cyclic elements into cyclic elements and by 5.3.3, ξ(u) = u′. Next,
5.4 implies that ξ(F ) = F ′. It follows from 5.5.3 that

{k, m} = {k′, m′}.

If k = k′, m = m′, then X ∼= X ′, Y ∼= Y ′. If k = m′, m = k′, then X ∼= Y ′,

Y ∼= X ′. �

5.7. Theorem. Let A, B, C ∈ U(Dn), n ∈ � , n > 1. Then AB ∼= AC implies

B ∼= C.
������� �

. It follows from 5.2 that A, B, C are sums of finitely many subalgebras
of Dn. Let {Y1, . . . , Yn} be a system of monounary algebras such that
(1) Yi ! Yj for i, j ∈ {1, . . . , n}, i 6= j,
(2) if F is a connected component of A, B or C, then F ∼= Yi for some i ∈

{1, . . . , n}.
Then there are non-negative integers αi, βi, γi (i ∈ {1, . . . , n}) such that

A ∼=
n∑

i=1

αiYi, B ∼=
n∑

i=1

βiYi, C ∼=
n∑

i=1

γiYi.

Suppose that AB ∼= AC, i.e.,

∑

i,j

(αiβj)(YiYj) ∼=
∑

i,j

(αiγj)(YiYj).

Since (1) is valid, we obtain by virtue of 5.6 that βj = γj for each j ∈ {1, . . . , n}.
Therefore B ∼= C. �

References

[1] B. Jónsson: Topics in Universal Algebra. Springer, Berlin, 1972.
[2] J. Jakubík, L. Lihová: On the cancellation law for disconnected partially ordered sets.
Math. Bohem. Submitted.

[3] L.Lovász: Operations with structures. Acta Math. Acad. Sci. Hungar. 18 (1967),
321–328.

[4] L.Lovász: On the cancellation law among finite relational structures. Period. Math.
Hungar. 1 (1971), 145–156.

[5] R.McKenzie, G.McNulty, W.Taylor: Algebras, Lattices, Varieties. Vol. I, Wadsworth,
Belmont, 1987.

[6] J.Novotný: On the characterization of a certain class of monounary algebras. Math.
Slovaca 40 (1990), 123–126.

89



[7] M.Ploščica, M.Zelina: Cancellation among finite unary algebras. Discrete Mathematics
159 (1996), 191–198.

Author’s address: D. Jakubíková-Studenovská, Department of Geometry and Algebra,
P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovak Republic, e-mail: studenovska
@duro.science.upjs.sk.

90


		webmaster@dml.cz
	2020-07-01T15:17:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




