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Abstract. In this note we show that a subtraction algebra is equivalent to an implicative
BCK-algebra, and a subtraction semigroup is a special case of a BCI-semigroup.
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B.M. Schein ([9]) considered systems of the form (Φ; ◦, \), where Φ is a set of
functions closed under the composition “◦” of functions (and hence (Φ; ◦) is a function
semigroup) and the set theoretic subtraction “\” (and hence (Φ; \) is a subtraction
algebra in the sense of [2]). He proved that every subtraction semigroup is isomorphic

to a difference semigroup of invertible functions. B. Zelinka ([11]) discussed a problem
proposed by B.M. Schein concerning the structure of multiplication in a subtraction

semigroup. He solved the problem for subtraction algebras of a special type, called
the atomic subtraction algebras. In this note we show that a subtraction algebra is

equivalent to an implicative BCK-algebra, and a subtraction semigroup is a special
case of a BCI-semigroup which is a generalization of a ring.

By a BCI-algebra ([7]) we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the
following axioms for all x, y, z ∈ X :

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(ii) (x ∗ (x ∗ y)) ∗ y = 0,
(iii) x ∗ x = 0,

(iv) x ∗ y = 0 and y ∗ x = 0 imply x = y.

A BCK-algebra is a BCI-algebra satisfying the axiom:

(v) 0 ∗ x = 0 for all x ∈ X .
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We can define a partial ordering 6 on X by x 6 y if and only if x ∗ y = 0. In any
BCI-algebra X , we have
(1) x ∗ 0 = x,
(2) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(3) x 6 y imply x ∗ z 6 y ∗ z and z ∗ y 6 z ∗ x,
(4) (x ∗ z) ∗ (y ∗ z) 6 x ∗ y

for any x, y, z ∈ X .
A subtraction algebra is a groupoid (X ;−) where “−” is a binary operation, called

a subtraction; this subtraction satisfies the following axioms: for any x, y, z ∈ X ,
(I) x − (y − x) = x;

(II) x − (x − y) = y − (y − x);
(III) (x − y) − z = (x − z) − y.

Note that a subtraction algebra is the dual of the implication algebra defined by
J. C.Abbott ([1]), by simply exchanging x − y by yx. If to a subtraction algebra

(X ;−) a semigroup multiplication is added safisfying the distributive laws

x · (y − z) = x · y − x · z,

(y − z) · x = y · x − z · x

then the resulting algebra (X ; ·,−) is called a subtraction semigroup. In [9] it is
mentioned that in every subtraction algebra (X ;−) there exists an element 0 such
that x − x = 0 for any x ∈ X . The proof is given by J. C.Abbott ([1], Theorem 1).

Note that x − 0 = x for any x in a subtraction algebra (X ;−, 0). H.Yutani ([10])
obtained equivalent simple axioms for an algebra (X ;−, 0) to be a commutative
BCK-algebra.

Theorem 1 ([10]). An algebra (X ;−, 0) is a commutative BCK-algebra if and

only if it satisfies

(II) x − (x − y) = y − (y − x);
(III) (x − y) − z = (x − z) − y;

(IV) x − x = 0;
(V) x − 0 = x

for any x, y, z ∈ X .

A BCK-algebra (X ;−, 0) is said to be implicative if (I) x−(y−x) = x for any x, y ∈
X . Using this concept and comparing the axiom system of the subtraction algebra
with the characterizing equalities of the implicative BCK-algebra (by H.Yutani),

we summarize to obtain the main result of this paper.

Theorem 2. A subtraction algebra is equivalent to an implicative BCK-algebra.
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The notion of a BCI-semigroup was introduced by Y.B. Jun et al. ([5]), and stud-

ied by many researchers ([3], [4], [6], [8]). A BCI-semigroup (or shortly, IS-algebra)
is a non-empty set X with two binary operations “−” and “·” and a constant 0
satisfying the axioms (i) (X ;−, 0) is a BCI-algebra; (ii) (X ; ·) is a semigroup; (iii)
x · (y − z) = x · y − x · z, (x − y) · z = x · z − y · z for all x, y, z ∈ X .

� �����������
3 ([3]). If we define two binary operations “∗” and “·” on a set

X := {0, 1, 2, 3} by

∗ 0 1 2 3
0 0 0 2 2
1 1 0 3 2
2 2 2 0 0
3 3 2 1 0

· 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

then (X ; ∗, ·, 0) is a BCI-semigroup.

Every p-semisimple BCI-algebra turns into an abelian group by defining x + y :=
x ∗ (0 ∗ y), and hence a p-semisimple BCI-semigroup leads to the ring structure.
On the other hand, every ring turns into a BCI-algebra by defining x ∗ y := x − y

and hence we can construct a BCI-semigroup. This means that the category of p-

semisimple BCI-semigroups is equivalent to the category of rings. In Example 3, we

can see that 2 + 3 = 0 6= 1 = 3 + 2 and 3 + 2 = 1 = 3 + 3, hence (X ; +) is not a
group. This means that there exist BCI-semigroups which cannot be derived from
rings. Hence the BCI-semigroup is a generalization of the ring.

Since an implicative BCK-algebra is a special case of a BCI-algebra, we conclude
that a subtraction semigroup is a special case of a BCI-semigroup.
�! #"%$�&(' ���()+*,�-��� $%.
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