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OSCILLATORY AND NONOSCILLATORY BEHAVIOUR OF

SOLUTIONS OF DIFFERENCE EQUATIONS OF

THE THIRD ORDER
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Abstract. In this paper, sufficient conditions are obtained for oscillation of all solutions
of third order difference equations of the form

yn+3 + rnyn+2 + qnyn+1 + pnyn = 0, n > 0.

These results are generalization of the results concerning difference equations with constant
coefficients

yn+3 + ryn+2 + qyn+1 + pyn = 0, n > 0.

Oscillation, nonoscillation and disconjugacy of a certain class of linear third order difference
equations are discussed with help of a class of linear second order difference equations.

Keywords: third order difference equation, oscillation, nonoscillation, disconjugacy, gen-
eralized zero

MSC 2000 : 39A10, 39A12

1. Introduction

In [4], [5] an attempt was made to generalize the results concerning oscilla-

tion/nonoscillation of solutions of third order difference equations with constant

coefficients of the form

(1) yn+3 + ryn+2 + qyn+1 + pyn = 0, n > 0, p 6= 0,

to third order difference equations with variable coefficients of the form

(2) yn+3 + rnyn+2 + qnyn+1 + pnyn = 0, n > 0,
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where {pn}, {qn} and {rn} are sequences of real numbers such that pn 6= 0. In this

paper we obtain some new results in this direction. A comparison is made of the

present results with the results in [4], [6] in order to emphasize the significance of all

the results. Equation (2) may be put in the form

(3) ∆(αn∆2yn) + βn∆yn+1 + γnyn+1 = 0,

where

αn =
(−1)nα0

n−1
∏

i=0

pi

, βn =
(−1)nα0(pn − rn − 2)

n
∏

i=0

pi

, γn =
(−1)n+1α0(pn + qn + rn + 1)

n
∏

i=0

pi

,

with α0 6= 0. However, in the present situation it is convenient to handle (2) rather

than (3). In Section 2 some results concerning Eq. (1) are presented as a motivating

factor. Then these results are generalized to hold for Eq. (2) in Section 3. Further,

known results for second order difference equations are used to predict the behaviour

of solutions of a class of third order difference equations.

By a solution of Eq. (1)/(2) on [0,∞) = {0, 1, 2, . . .} we mean a sequence {yn} of
real numbers which satisfies (1)/(2) for n > 0. If y0, y1, y2 are given, then yn for

n > 3 can be obtained from (1)/(2). A solution {yn} of Eq. (1)/(2) on [0,∞) is said

to be nontrivial if for every integer m > 0 there exists an integer n > m such that

yn 6= 0. In this work, by a solution of (1)/(2) we understand a nontrivial solution.

A solution {yn} of Eq. (1)/(2) is said to be nonoscillatory if there exists an integer
M > 0 such that either yn > 0 or < 0 for all n > M ; otherwise, {yn} is said to
be oscillatory. Equation (1)/(2) is said to be oscillatory if all of its solutions are

oscillatory.

2. Oscillatory behaviour of solutions of eq. (1)

In this section we discuss the oscillatory behaviour of solutions of Eq. (1) under

different sign conditions on the coefficients. If y0, y1 and y2 are known, then Eq. (1)

can be solved explicitly. However, in order to study the oscillatory behaviour of its

solutions, we proceed as follows:

Theorem 2.1. Let p > 0 and r < 0.

(i) If q > 0 and p > − 4
27r3, then Eq. (1) is oscillatory.

(ii) If q 6 0 and Eq. (1) is oscillatory, then p > − 4
27r3.

P r o o f. (i) The characteristic equation of (1) is

(4) λ3 + rλ2 + qλ + p = 0.
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If p > 0, then (4) admits a root α < 0. Further, G2 + 4H3 > 0 implies that (4) has

two complex roots, where

G = p − qr

3
+

2r3

27
and H =

1

3

(

q − r2

3

)

.

We may observe that q > 1
3r2 implies G2 + 4H3 > 0. Moreover, q < 1

3r2 implies

that − 2
3pqr > 8

27r2q2 since p > − 4
27r3. Then

G2 + 4H3 = p
(

p +
4

27
r3

)

+
4

27
q3 − 2

3
pqr − q2r2

27
(5)

> p
(

p +
4

27
r3

)

+
4

27
q3 +

7q2r2

27
> 0.

Hence in any case G2 + 4H3 > 0. Thus (4) has two complex roots. Consequently,

all solutions of (1) are oscillatory. This completes the proof of the first part of the

theorem.

(ii) On the contrary, let p 6 − 4
27r3. Then G2 +4H3 6 0. Hence all roots of (4) are

real. As p > 0, we conclude that (4) has a root α < 0. Let β and γ be two other real

roots. However, αβγ = −p implies that βγ = −p/α > 0 and hence β > 0 and γ > 0

or β < 0 and γ < 0. On the other hand, α+β + γ = −r implies β + γ = −r−α > 0.

Thus β > 0 and γ > 0. Consequently, (1) admits two positive solutions {βn} and
{γn}, a contradiction to the assumption that all solutions of (1) are oscillatory. This
completes the proof of the second part of the theorem.

Corollary 2.2. If p > 0 and r < 0, then all solutions of yn+3 + ryn+2 + pyn = 0

are oscillatory if and only if p > − 4
27r3.

Theorem 2.3. Let p > 0 and q < 0.

(i) If r > 0 and p > 2
(

− 1
3q

)3/2
, then (1) is oscillatory.

(ii) If r 6 0 and (1) is oscillatory, then p > 2
(

− 1
3q

)3/2
.

P r o o f. (i) It is enough to show that G2 + 4H3 > 0 because in this case (4)

admits two complex roots. Further, p > 0 implies that (4) has a negative root. We

consider two cases, viz., 2p 6 − 1
9qr and 2p > − 1

9qr. Let 2p 6 − 1
9qr. Hence

4pr3

27
>

4pr2

27
× 18p

−q
=

−8p2r2

3q
>

32

81
r2q2,

since p > 2
(

− 1
3q

)3/2
implies that p2 > − 4

27q3. Consequently, from (5) we obtain

G2 + 4H3 > p2 +
32r2q2

81
+

4

27
q3 − 2

3
pqr − q2r2

27
= p2 +

29r2q2

81
+

4

27
q3 − 2

3
pqr

>
29r2q2

81
− 2

3
pqr > 0.

101



Let 2p > − 1
9qr. Then (5) implies

G2 + 4H3 >
4pr3

27
− 2

3
pqr − q2r2

27
>

4pr3

27
> 0.

Thus the first part of the theorem is proved.

(ii) We claim that p > 2
(

− 1
3q

)3/2
. If not, then p 6 2

(

− 1
3q

)3/2
. Hence p2 6 − 4

27q3.

Thus (5) yields

G2 + 4H3 6
4

27
pr3 − 2

3
pqr − 1

27
q2r2 6 0,

which implies that all solutions of (4) are real. Since p > 0, then (4) has a root

α < 0. If β and γ are other two real roots of (4), then αβγ = −p < 0 implies that

βγ > 0. But α + β + γ = −r implies that β + γ > 0 and hence β > 0 and γ > 0.

Thus (1) admits two positive solutions, a contradiction which completes the proof of

the second part of the theorem. �

Corollary 2.4. If p > 0 and q < 0, then all solutions of yn+3 + qyn+1 + pyn = 0

are oscillatory if and only if p > 2
(

− 1
3q

)3/2
.

3. Oscillatory behaviour of solutions of eq. (2)

In this section we obtain results similar to Theorems 2.1 and 2.3 for Eq. (2). We

will show that all solutions of (2) oscillate under different sign conditions on the

coefficient sequences.

Theorem 3.1. Let pn > 0, qn > 0 and rn < 0. If

p > −4r3

27
,

then (2) is oscillatory, where p = lim inf
n→∞

pn and r = lim inf
n→∞

rn > −∞.

P r o o f. Let {yn} be a nonoscillatory solution of (2). Hence yn > 0 or yn < 0

for n > M , where M > 0 is an integer. Without any loss of generality we can take

yn > 0 for n > M because {−yn} is also a solution of (2). Setting xn = yn+1/yn+2,

n > M , and taking lim inf
n→∞

xn = µ, we obtain from (2)

(6) yn+3 + rnyn+2 + pnyn 6 0, n > M,

that is,
yn+3

yn+2
+ pn

yn

yn+2
6 −rn,
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that is,

(7) x−1
n+1 6 −rn − pnxn−1xn.

Hence x−1
n+1 6 −rn. Then lim sup

n→∞

x−1
n+1 6 lim sup

n→∞

(−rn), that is, µ > −1/r > 0. From

(7) we obtain

lim sup
n→∞

x−1
n+1 6 lim sup

n→∞

(−rn − pnxn−1xn),

that is,

(lim inf
n→∞

xn+1)
−1 6 − lim inf

n→∞
(rn + pnxn−1xn) 6 −(lim inf

n→∞
rn + lim inf(

n→∞

pnxn−1xn)),

that is, µ−1 6 −(r + pµ2), that is,

(8) p 6
−rµ − 1

µ3
.

From (6) we obtain

−rn > pn
yn

yn+2
= pnxn−1xn.

Hence

lim sup
n→∞

(−rn) > lim sup
n→∞

(pnxn−1xn) > lim inf
n→∞

(pnxn−1xn),

that is,

− lim inf
n→∞

rn > lim inf
n→∞

pn lim inf
n→∞

xn−1 lim inf
n→∞

xn,

that is, −r > pµ2, that is, µ < ∞. If

f(µ) =
−rµ − 1

µ3
,

then f attains its maximum at µ = −3/2r and

Max {f(µ)} = f
(

− 3

2r

)

= −4r3

27
.

Hence (8) implies

p 6 −4r3

27
,

a contradiction to the hypothesis. Thus the theorem is proved.

In [6], the following theorem is proved.
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Theorem 3.2. If pn > 0, qn > 0, rn < 0 and

pn+1

rn+1rn−1
>

qn+1

rn+1
+

qn

rn−1
− rn

for large n, then (2) is oscillatory.

E x am p l e 1. Consider

(9) yn+3 − 6yn+2 + 4yn+1 + 33yn = 0, n > 0.

Hence rn = r = −6 < 0, qn = q = 4 > 0, pn = p = 33 > 0. Since − 4
27r3 = 32 <

p, all solutions of (9) are oscillatory by Theorem 3.1. The characteristic equation

λ3 − 6λ2 + 4λ+ 33 = 0 of (9) has a negative root, that is, λ = a < 0 because 33 > 0.

Hence {an} is an oscillatory solution of (9). We may observe that Theorem 3.2 fails
to hold for (9) because

pn+1

rn+1rn−1
=

33

36
< 1 and

qn+1

rn+1
+

qn

rn−1
− rn = −8

6
+ 6 =

28

6
> 1.

On the other hand, all solutions of

(10) yn+3 − 6yn+2 + 20yn+1 + 31yn = 0, n > 0,

are oscillatory by Theorem 3.2 but Theorem 3.1 fails to hold for (10) because p =

31 < 32 = − 4
27r3. Clearly, p > − 4

27r3 is not a necessary condition for Eq. (10) to

be oscillatory. However, there are equations with pn > 0, qn > 0 and rn < 0 which

admit nonoscillatory solutions for which p 6 − 4
27r3 is satisfied. Consider (2) with

rn = − 3
2 − 1/n, pn = 1

3 + 1/2n, n > 1 and qn = −rn − pn − 1 = 1
6 + 1/2n. Then

lim inf
n→∞

rn = − 3
2 and lim inf

n→∞
pn = 1

3 . Clearly, p 6 − 4
27r3 holds and

yn+3 + rnyn+2 + (−rn − pn − 1)yn+1 + pnyn = 0

admits a nonoscillatory solution yn = c 6= 0, a constant.

In the next theorems the sign of pn remains the same as in Theorems 3.1 and 3.2

but qn and rn interchange their signs.
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Theorem 3.3. Suppose that pn > 0, qn < 0 and rn > 0. If

p > 2

(−q

3

)3/2

,

then Eq. (2) is oscillatory, where p = lim inf
n→∞

pn > 0 and q = lim inf
n→∞

qn > −∞.

P r o o f. On the contrary, let {yn} be a nonoscillatory solution of (2). Hence,
without any loss of generality, we can assume that yn > 0 for n > M > 0. From (2)

we obtain

yn+3 + qnyn+1 + pnyn 6 0, n > M.

Setting xn = yn/yn+1 and assuming lim inf
n→∞

xn = µ, we get

(11)
yn+3

yn+1
+ pn

yn

yn+1
6 −qn

that is,

x−1
n+2x

−1
n+1 6 −qn − pnxn.

Hence

lim sup
n→∞

(xn+1xn+2)
−1 6 lim sup

n→∞

(−qn − pnxn) 6 − lim inf
n→∞

(qn + pnxn),

that is,

(lim inf
n→∞

(xn+1xn+2))
−1 6 − lim inf

n→∞
qn − lim inf

n→∞
(pnxn),

that is,
1

µ2
6 −q − pµ.

We may observe that µ → 0 implies q → −∞, a contradiction. Hence µ > 0. Thus

(12) p 6
−qµ2 − 1

µ3
.

From (11) we obtain pnxn 6 −qn. Hence

lim inf
n→∞

(pnxn) 6 lim inf(−
n→∞

qn) 6 lim sup(−
n→∞

qn) = − lim inf
n→∞

qn,

that is, µ 6 −q/p < ∞. If we set f(µ) = −(qµ2 + 1)/µ3, then it attains its maximum

at µ = (−3/q)1/2 and hence the maximum value of f is given by f((−3/q)1/2) =
2

3
√

3
(−q)3/2. From (12) we get

p 6
2

3
√

3
(−q)

3/2
,

a contradiction. Hence the theorem is proved.

Now we state some results from [4].
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Theorem 3.4 (Theorem 2.7, [4]). If pn > 0, qn < 0, rn > 0 and

p − qr

3
+

2r3

27
− 2

3
√

3

(r2

3
− q

)3/2

> 0,

then (2) is oscillatory, where lim inf
n→∞

pn = p > 0, lim inf
n→∞

qn = q < 0 and lim inf
n→∞

rn =

r > 0.

Theorem 3.5 (Theorem 2.11, [4]). If pn > 0, qn < 0, rn > 0 and

qn >
rnpn+1

qn+1
+

pnrn−1

qn−1

for large n, then (2) is oscillatory.

E x am p l e 2. Consider

(13) yn+3 + (1 + (−1)n) yn+2 −
(

3 +
1

n

)

yn+1 +

(

3 +
1

n

)

yn = 0, n > 1.

Here

rn =

{

2, n even,

0, n odd,

qn = − (3 + 1/n) < 0 and pn = (3 + 1/n) > 0. Then lim inf
n→∞

pn = 3, lim inf
n→∞

qn = −3

and lim inf
n→∞

rn = 0. Since all conditions of Theorem 3.3 are satisfied, (13) is oscillatory.

Choosing y1 = 0, y2 = 1 and y3 = 2, we obtain y4 = 4 > 0, y5 = − 9
2 < 0, y6 = 20

3 > 0,

y7 = − 983
24 < 0 and so yn are alternately of positive and negative values. Thus it

is an oscillatory solution of (13). But Theorem 3.4 cannot be applied to (13) since

lim inf
n→∞

rn = r = 0.

E x am p l e 3. Consider

(14) yn+3 + 3yn+2 − 12yn+1 + 18yn = 0, n > 0.

Hence p = 18 > 16 = 2
(

− 1
3q

)3/2
. From Theorem 2.3 or 3.3 it follows that (14) is

oscillatory. However, Theorem 3.5 is not applicable to (14) because

rnpn+1

qn+1
+

pnrn−1

qn−1
= −9 > −12 = qn.

On the other hand, Theorem 3.5 can be applied to

yn+3 + 6yn+2 − 12yn+1 + 14yn = 0

106



to conclude that all solutions of the equation are oscillatory. But Theorem 3.3 cannot

be applied to this equation because

2
(−q

3

)3/2

= 16 > 14 = p.

4. Study of third order equations via second order equations

We begin with the following observation.

Proposition 4.1. A real sequence {yn} is a solution of

(15) yn+3 + rnyn+2 − (rn + pn + 1)yn+1 + pnyn = 0

if and only if {xn}, where xn = (−1)n yn, is a solution of

(16) xn+3 − rnxn+2 − (rn + pn + 1)xn+1 − pnxn = 0

where {pn} and {rn} are real sequences such that pn 6= 0. Moreover, {{y(1)
n }, {y(2)

n },
{y(3)

n }} is a basis of the solution space of (15) if and only if {{x(1)
n }, {x(2)

n }, {x(3)
n }}

is a basis of the solution space of (16).

The proof is straightforward and hence it is omitted.

Corollary 4.2. If all solutions of (15) are nonoscillatory, then all solutions of

(16) are oscillatory. Further, if (16) has a nonoscillatory solution, then (15) has an

oscillatory solution.

The corollary follows from Proposition 4.1. However, the converse of neither of

the above two statements is true.

E x am p l e 4. The equation

yn+3 + yn+2 − 2yn = 0

admits a positive solution {1} and two oscillatory solutions {cosnθ} and {sinnθ},
where θ = 3

4π. However, all solutions of

xn+3 − xn+2 + 2xn = 0

are oscillatory because {{(−1)n}, {cosnθ}, {sin nθ}}, where θ = 1
4π, is a basis of the

solution space of this equation.
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Corollary 4.3. Each of Eqs. (15) and (16) possesses both oscillatory and nonoscil-

latory solutions simultaneously if each of these equations admits a nonoscillatory

solution.

Theorem 4.4. If rn + pn = 0, then each of (15) and (16) admits both oscillatory

and nonoscillatory solutions.

P r o o f. Clearly, yn ≡ 1 is a positive solution of (15). Further, rn + pn = 0

implies that xn = c 6= 0, where c is a constant, is a nonoscillatory solution of (16).

Hence the theorem follows from Corollary 4.3. �

Theorem 4.5. If pn > 0 and rn > 0, then each of (15) and (16) admits both

oscillatory and nonoscillatory solutions.

P r o o f. We may notice that Eq. (16) with initial conditions x0 > 0, x1 > 0 and

x2 > 0 admits a positive solution {xn} because pn > 0 and rn > 0. Further, yn ≡ 1

is a positive solution of (15). Hence the theorem is proved. �

E x am p l e 5. (i) Each of the equations

yn+3 − yn+2 − yn+1 + yn = 0 and xn+3 + xn+2 − xn+1 − xn = 0

admits an oscillatory solution {(−1)
n} and a positive solution {1}.

(ii) The equation yn+3 + yn+2 − 3yn+1 + yn = 0 admits a positive solution {1}
and an oscillatory solution {

(

−1 −
√

2
)n}. On the other hand, the equation xn+3 −

xn+2 − 3xn+1 − xn = 0 admits a positive solution {
(

1 +
√

2)n
}

and an oscillatory

solution {(−1)
n}.

Proposition 4.6. A real sequence {yn} is a solution of (15) if and only if {∆yn}
is a solution of the second order difference equation

(17) un+2 + (rn + 1)un+1 − pnun = 0,

where ∆yn is the forward difference operator defined by ∆yn = yn+1 − yn. This

follows from the fact that Eq. (15) can be written in the form

yn+3 − yn+2 + (rn + 1)(yn+2 − yn+1) − pn(yn+1 − yn) = 0,

that is,

∆yn+2 + (rn + 1)∆yn+1 − pn∆yn = 0.
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Lemma 4.7. Let {yn} be a sequence of real numbers. If {∆yn} is eventually of
one sign, then {yn} is eventually of one sign.
The proof follows easily and hence is omitted.

Theorem 4.8. If all solutions of (17) are nonoscillatory, then all solutions of (15)

are nonoscillatory.

P r o o f. Let {yn} be a solution of (15). So {∆yn} is a solution of (17) by
Proposition 4.6. Since all solutions of (17) are nonoscillatory, then ∆yn is eventually

of one sign. Then, by Lemma 4.7, {yn} is eventually of one sign, that is, {yn} is
nonoscillatory. This completes the proof of the theorem. �

R em a r k. We may notice that such a result is not possible for Eq. (16) because

it always admits an oscillatory solution {(−1)n}.
In literature there are several sufficient conditions for nonoscillation of all solutions

of linear second order difference equations. The following result may be obtained

from [2].

Theorem 4.9. Let βn < 0 and γn > 0 for large n.

(i) If βnβn+1 > 4γn+1 for large n, then all solutions of

(18) xn+2 + βnxn+1 + γnxn = 0

are nonoscillatory.

(ii) If −βn > max {γn, 4} for large n, then all solutions of (18) are nonoscillatory.

Theorem 4.10. Let pn < 0 and rn < −1 for large n.

(i) If (rn + 1)(rn+1 + 1) + 4pn+1 > 0 for large n,

then all solutions of (15) are nonoscillatory and hence (16) is oscillatory.

(ii) If −(rn + 1) > max {−pn, 4} for large n,

then all solutions of (15) are nonoscillatory and hence (16) is oscillatory.

The theorem follows from Theorems 4.8 and 4.9 and Corollary 4.2.

Definition. A sequence of real numbers {yn : n > 0} is said to have a generalized
zero at k if one of the following conditions holds: (i) yk = 0 if k = 0 and (ii) if k > 1,

then either yk = 0 or yk−1yk < 0.

Definition. Equation (17) is said to be disconjugate on [0,∞) if no nontrivial

solution of (17) has two or more generalized zeros in [0,∞). Similarly, Eq. (15) is

said to be disconjugate on [0,∞) if no nontrivial solution of (15) has three or more

generalized zeros in [0,∞).
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Theorem 4.11. If Eq. (17) is disconjugate on [0,∞) = {0, 1, 2, . . .}, then Eq. (15)

is disconjugate on [0,∞).

P r o o f. On the contrary, let {yn} , n > 0, be a solution of (15) which has three

generalized zeros at m1, m2 and m3 (0 6 m1 < m2 < m3).

If m1 > 1, then ym1
6= 0 or ym1

= 0. From Proposition 4.6 it follows that {∆yn}
is a solution of (17). We consider the following four possible cases:

(i) Let ym1−1 < 0, ym1
> 0, ym2−1 > 0, ym2

6 0, ym3−1 < 0 and ym3
> 0.

Then ∆ym1−1 = ym1
− ym1−1 > 0, ∆ym2−1 = ym2

− ym2−1 < 0 and ∆ym3−1 =

ym3
− ym3−1 > 0. Thus the solution {∆yn} of (17) has two generalized zeros in

[m1, m3 − 1] = {m1, m1 + 1, . . . , m3 − 2, m3 − 1}.
(ii) Let ym1−1 > 0, ym1

< 0, ym2−1 < 0, ym2
> 0, ym3−1 > 0 and ym3

6 0. Hence

∆ym1−1 < 0, ∆ym2−1 > 0 and ∆ym3−1 < 0. Thus {∆yn} has two generalized zeros
in [m1, m3 − 1].

(iii) Let ym1
= 0, ym1+1 < 0, ym2−1 < 0, ym2

> 0, ym3−1 > 0 and ym3
6 0. Then

∆ym1
< 0, ∆ym2−1 > 0 and ∆ym3−1 < 0. Hence {∆yn} has two generalized zeros

in [m1 + 1, m3 − 1].

(iv) Let ym1
= 0, ym1+1 > 0, ym2−1 > 0, ym2

6 0, ym3−1 < 0 and ym3
> 0. Then

∆ym1
> 0, ∆ym2−1 < 0 and ∆ym3−1 > 0. Thus {∆yn} has two generalized zeros in

[m1 + 1, m3 − 1].

If m1 = 0, then ym1
= 0. We arrive at a contradiction as in cases (iii) and (iv). In

each case, we obtain a contradiction to the fact that (17) is disconjugate. Hence the

theorem is proved. �

Theorem 4.12. Let pn < 0. If there exists a positive number k such that

k2 + (rn + 1)k − pn = 0, n > 0,

then (15) is disconjugate on [0,∞).

This follows from Theorem 4.11 and Corollary 6.9 in [3].

E x am p l e 6. All conditions of Theorem 4.12 hold for k = 2 for the equation

yn+3 − 6yn+2 + 11yn+1 − 6yn = 0, n > 0.

Hence it is disconjugate on [0,∞). As {{1} , {2n} , {3n}} is a basis of the solution
space of the equation, any solution {yn} of the equation can be written as yn =

C1 + C22
n + C33

n, where C1, C2, C3 are constants such that C2
1 + C2

2 + C2
3 6= 0. It

cannot have more than two generalized zeros in [0,∞).
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In [1], Henderson and Peterson obtained sufficient conditions for disconjugacy of

∆3yn−1 + pn∆yn + qnyn = 0.

However, our results and techniques are different from theirs.

Results similar to Theorems 4.8 and 4.11 also hold for the equations of the form

(19) ∆(bn−1∆
2yn−1) + cn∆yn = 0, n > 1,

where bn > 0. Indeed, we have the following theorem.

Theorem 4.13. (i) If all solutions of

(20) ∆(bn−1∆un−1) + cnun = 0, n > 1,

are nonoscillatory, then all solutions of (19) are nonoscillatory. (ii) If (20) is discon-

jugate on [0,∞), then (19) is disconjugate on [0,∞).

The proof is similar to those of Theorems 4.8 and 4.11 if we observe that {∆yn}
is a solution of (20) if {yn} is a solution of (19).

5. Conclusions

There are many results concerning oscillation of (1) which are yet to be generalized

to (2). It seems that there is no result in literature which would provide sufficient

conditions for nonoscillation of all solutions of (2) although we have such results for

(1). Indeed, the following results hold for (1) (See [6]).

Theorem 5.1. If p < 0, q = 1
3r2, r 6= 0 and p− 1

3qr + 2
27r3 = 0, then all solutions

of (1) are nonoscillatory.

Theorem 5.2. If p < 0, q < 1
3r2, r < 0 and

0 < p − qr

3
+

2r3

27
<

2

3
√

3

(

r2

3
− q

)3/2

,

then all solutions of (1) are nonoscillatory.
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Theorem 5.3. If p < 0, r < 0, p/r 6 q < 1
3r2 and

2

3
√

3

(

r2

3
− q

)3/2

>
qr

3
− p − 2r3

27
> 0,

then all solutions of (1) are nonoscillatory.

Theorem 5.4. If p < 0, r < 0, p/r 6 q < 1
3r2 and

0 <
2

3
√

3

(

r2

3
− q

)3/2

=
qr

3
− p − 2r3

27
,

then all solutions of (1) are nonoscillatory.
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