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Abstract. It is well-known that every MV-algebra is a distributive lattice with respect to
the induced order. Replacing this lattice by the so-called directoid (introduced by J. Ježek
and R.Quackenbush) we obtain a weaker structure, the so-called skew MV-algebra. The pa-
per is devoted to the axiomatization of skew MV-algebras, their properties and a description
of the induced implication algebras.
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It was shown in [3] that every MV-algebra can be considered as a distributive lat-

tice with sectionally antitone involutions satisfying a certain compatibility condition

which can be expressed in the form of Exchange Identity where the term operation

x → y = ¬x ⊕ y is considered. Analogously, when a lattice is substituted by a

commutative directoid, the resulting MV-like algebra called a non-associative MV-

algebra in [5] is obtained. This approach was generalized in [10] where the axiomatic

system of non-associative MV-algebras was slightly modified. Then the resulting

algebra, called the weak MV-algebra, is neither associative nor commutative but it

still satisfies the  Lukasiewicz axiom

¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

On the other hand, weak MV-algebras have the property that every section [p, 1] can

be equipped with polynomial operations ⊕p and ¬p such that ([p, 1];⊕p,¬p, 1) is a

weak MV-algebra again.

This work is supported by the Czech Government via the project No.MSM6198959214.
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Our aim is to replace the commutative directoid (alias λ-semilattice) by a general

one which need not be commutative. The resulting algebra, called here the skew MV-

algebra will be surely weaker than that of [10]. However, the new axiomatic system

is still very simple and fully readable. In fact, this shows the power of directoids

equipped with sectional involutions.

1. Basic concepts

The concept of the directoid was introduced by J. Ježek and R. Quackenbush [11]

in order to axiomatize algebraic structures defined on upward directed ordered sets.

In a certain sense, directoids generalize semilattices. For the reader’s convenience,

we repeat definitions and basic properties of these concepts.

An ordered set (A; 6) is upward directed if U(x, y) 6= ∅ for every x, y ∈ A, where

U(x, y) = {a ∈ A; x 6 a and y 6 a}. Elements of U(x, y) are referred to as common

upper bounds of x, y. Of course, if (A; 6) has a greatest element then it is upward

directed.

Let (A; 6) be an upward directed set and let ∨ denote a binary operation on A.

The pair A = (A;∨) is called a directoid if

(i) x ∨ y ∈ U(x, y) for all x, y ∈ A;

(ii) if x 6 y then x ∨ y = y and y ∨ x = y.

The following axiomatization of directoids was given in [11]:

Proposition. A groupoid A = (A;∨) is a directoid if and only if it satisfies the

identities

(D1) x ∨ x = x;

(D2) (x ∨ y) ∨ x = x ∨ y;

(D3) y ∨ (x ∨ y) = x ∨ y;

(D4) x ∨ ((x ∨ y) ∨ z) = (x ∨ y) ∨ z (skew associativity).

Then the binary relation 6 defined on A by the rule

x 6 y if and only if x ∨ y = y

is an order and x ∨ y ∈ U(x, y) for each x, y ∈ A.

A directoid A = (A;∨) is called commutative if it satisfies the identity

(D5) x ∨ y = y ∨ x.

It was shown in [11] that commutative directoids are axiomatized by the identities

(D1), (D4) and (D5).
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Let us denote the greatest element of an ordered set by 1 and the least by 0. We

call a directoid bounded if it has both 0 and 1.

Let (A; 6, 1) be an ordered set with the greatest element 1. For p ∈ A, the interval

[p, 1] will be called a section. A mapping f of [p, 1] into itself will be called a sectional

mapping. To distinguish sectional mappings on different sections, we introduce the

following notation: if f is a sectional mapping on [p, 1] and x ∈ [p, 1] then f(x)

will be denoted by xp. A sectional mapping on [p, 1] is called a switching mapping if

pp = 1 and 1p = p and it is called an involution if xpp = x for each x ∈ [p, 1]. Of

course, any involution is a bijection and if a sectional mapping on [p, 1] is a switching

involution then

xp = 1 iff x = p and xp = p iff x = 1.

(A; 6, 1) will be called an ordered set with sectionally switching involutions if there

is a sectional switching involution on the section [p, 1] for each p ∈ A.

As is well-known, MV-algebras were introduced in the late fifties of the 20th

century by C. C. Chang [6] as an algebraic semantics of the  Lukasiewicz many-valued

sentential logic. More precisely, an MV-algebra is any algebra (A,⊕,¬, 0) of type

(2, 1, 0) satisfying the following identities:

(MV1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z;

(MV2) x ⊕ y = y ⊕ x;

(MV3) x ⊕ 0 = x;

(MV4) ¬¬x = x;

(MV5) x ⊕ 1 = 1 (where 1 := ¬0);

(MV6) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

The prototypical example of an MV-algebra is the algebra Γ(G, u) = ([0, u],⊕,¬,

0), where (G, +,−, 0,∨,∧) is an Abelian lattice-ordered group, 0 < u ∈ G and

[0, u] = {x ∈ G : 0 6 x 6 u}, and the operations ⊕ and ¬ are defined via x ⊕ y :=

(x + y)∧ u and ¬x := u− x, respectively. D. Mundici proved (see e.g. [7]) that every

MV-algebra A is isomorphic to an MV-algebra Γ(G, u).

Another well-known fact is that for any MV-algebra A, the relation 6 given by

(A) x 6 y ⇔ ¬x ⊕ y = 1

is a lattice order on A where x ∨ y = ¬(¬x ⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y) are the

lattice operations, and the top and the bottom element is 1 and 0, respectively.

Moreover, for any MV-algebra A and p ∈ A, one can define a structure of an

MV-algebra on the section [p, 1] in a natural way as follows:

(B) x ⊕p y = ¬(¬x ⊕ p) ⊕ y and ¬px = ¬x ⊕ p.

In the recent years a non-commutative generalization of MV-algebras has been

introduced and studied by G. Georgescu and A. Iorgulescu [8] and independently by

J. Rach̊unek [12] under the name pseudo MV-algebras.
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Another approach to generalize MV-algebras by omitting associativity (MV1) but

keeping commutativity (MV2) was done by the first author and J. Kühr [5]. More

precisely, they considered algebras (A;⊕,¬, 0) of type (2,1,0) satisfying the axioms

(MV2)–(MV6), where the axiom (MV1) is substituted by two axioms

(C) ¬x ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z) = 1;

(D) ¬x ⊕ (x ⊕ y) = 1.

These algebras are called NMV-algebras (non-associative MV-algebras) [5]. Clearly,

every MV-algebra satisfies the axioms (C) and (D) as well.

To clarify the role of the axiom (C), let us note that its validity enables us to

prove that the relation 6 defined by (A) remains transitive (hence being an order

relation). From the logical point of view, such a property is quite natural since in

all reasonable logics the set of truth values should be partially ordered.

We have seen that the sections in an MV-algebra form MV-algebras as given by

(B). However, this is not true for NMV-algebras: it turns out that for an NMV-

algebra A, the sections [p, 1] have the structure of an NMV-algebra as defined by

(B) if and only if ⊕ is associative. In other words, an NMV-algebra shares the above

property if and only if it is an MV-algebra.

This fact motivated R. Halaš and L. Plojhar [10] to find a new class of generalized

MV-algebras admitting the same structure on sections. They defined and investi-

gated the so-called WMV-algebras.

An algebra (A;⊕,¬, 0) is called a weak MV-algebra (orWMV-algebra for short) if

it satisfies the axioms

(W1) ¬¬x = x;

(W2) ¬x ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z) = 1;

(W3) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x;

(W4) x ⊕ 0 = 0 ⊕ x = x;

(W5) x ⊕ 1 = 1 ⊕ x = 1 (1 := ¬0);

(W6) ¬y ⊕ (¬x ⊕ y) = 1;

(W7) p 6 x 6 y ⇒ ¬y ⊕ p 6 ¬x ⊕ p.

These algebras can be viewed as commutative directoids, (alias λ-semilattices)

with respect to the induced order.

In what follows we replace the commutative directoid by a general one which need

not be commutative. Thus the resulting algebra will be surely weaker than the

WMV-algebra.
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2. Skew MV-algebras

Definition 1. Let D = (D;∨) be a bounded directoid with sectionally switching

involutions. Define

x ⊕ y = (x0 ∨ y)y, ¬x = x0.

Then A(D) = (D;⊕,¬, 0) will be called a skew MV-algebra.

Theorem 1. Let D = (D;∨) be a bounded directoid with sectionally switch-

ing involutions and A(D) its skew MV-algebra. Then the following identities are

satisfied:

(1) ¬¬x = x (double negation);

(2) x ⊕ 0 = 0 ⊕ x = x;

(3) ¬x ⊕ (y ⊕ x) = 1;

(4) ¬x ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z) = 1;

(5) ¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ x) ⊕ x = ¬(¬x ⊕ y) ⊕ y;

(6) ¬(¬(x ⊕ y) ⊕ y) ⊕ y = x ⊕ y.

P r o o f. By definition, we have

(1) ¬¬x = x00 = x;

(2) x ⊕ 0 = (x0 ∨ 0)0 = (x0)0 = x00 = x, 0 ⊕ x = (00 ∨ x)x = (1 ∨ x)x = 1x = x;

(3) ¬x ⊕ (y ⊕ x) = (x ∨ (y0 ∨ x)x)(y
0
∨x)x

= ((y0 ∨ x)x)(y
0
∨x)x

= 1.

Clearly, ¬(¬x ⊕ y) ⊕ y = ((x ∨ y)y ∨ y)y = (x ∨ y)yy = x ∨ y, since (x ∨ y)y > y.

We use this fact in the sequel:

(4) ¬x⊕(¬(¬(¬(¬x⊕y)⊕y)⊕z)⊕z) = ¬x⊕((x∨y)∨z) = (x∨((x∨y)∨z))(x∨y)∨z =

((x ∨ y) ∨ z)(x∨y)∨z = 1;

(5) ¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ x) ⊕ x = (x ∨ y) ∨ x = x ∨ y = ¬(¬x ⊕ y) ⊕ y;

(6) ¬(¬(x ⊕ y) ⊕ y) ⊕ y = (x ⊕ y) ∨ y = (x0 ∨ y)y ∨ y = (x0 ∨ y)y = x ⊕ y. �

Axiom (5) of Theorem 1 is a weak form of the  Lukasiewicz axiom. Moreover, (2)

is (MV3), (3) is a modification of (D) and (4) is (C) mentioned in the introduction.

Lemma 1. Let A = (A;⊕,¬, 0) be an algebra satisfying (1), (2) and (3). Then

¬1 = 0, ¬0 = 1 and the following identities are satisfied:

(C1) x ⊕ ¬x = 1 = ¬x ⊕ x;

(C2) x ⊕ 1 = 1 = 1 ⊕ x;

(C3) ¬y ⊕ (¬(¬x ⊕ y) ⊕ y) = 1.

P r o o f. Obviously, ¬1 = ¬¬0 = 0 by (1). If we put x = 0 = y in (3) and apply

(2), we get 1 = ¬0 ⊕ (0 ⊕ 0) = ¬0.

411



(C1) Putting y = 0 in (3), we get by (2): 1 = ¬x ⊕ (0 ⊕ x) = ¬x ⊕ x. Putting y = 0

and x = ¬x in (3), we obtain by (2) and (1): 1 = ¬¬x ⊕ (0 ⊕ ¬x) = x ⊕ ¬x.

(C2) Applying (3), (1) and (C1), we obtain: 1 = ¬¬x⊕ (x⊕¬x) = x⊕ 1. By (3) and

(2) we infer: 1 = ¬0 ⊕ (x ⊕ 0) = 1 ⊕ x.

(C3) Clearly follows from (3). �

Lemma 2. Let A = (A;⊕,¬, 0) be an algebra of type (2, 1, 0) satisfying (1)–(5).

Define

x 6 y if and only if ¬x ⊕ y = 1.

Then the relation 6 is an order on A and 0 6 x 6 1 for each x ∈ A. Moreover,

x 6 y ⊕ x holds for all x, y ∈ A, and x 6 y implies

¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

P r o o f. By (C1), 6 is reflexive. Suppose x 6 y and y 6 x, Thus ¬x⊕y = 1 and

¬y⊕x = 1. If we insert the first equality into (5), we get ¬(¬(¬1⊕y)⊕x)⊕x = ¬1⊕y,

which together with (2) yields ¬(¬y⊕x)⊕x = y. By assumption we have ¬y⊕x = 1,

thus x = 0 ⊕ x = y, whence 6 is antisymmetrical. Now, suppose x 6 y and y 6 z.

Then ¬x ⊕ y = 1, ¬y ⊕ z = 1 and using (2) and (4) yields

¬x ⊕ z = ¬x ⊕ (¬1 ⊕ z) = ¬x ⊕ (¬(¬y ⊕ z) ⊕ z)

= ¬x ⊕ (¬(¬(¬1 ⊕ y) ⊕ z) ⊕ z)

= ¬x ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z) = 1.

Thus x 6 z. Hence, 6 is an order on A. Moreover, (C2) yields ¬x ⊕ 1 = 1 and

¬0⊕x = 1⊕x = 1, thus 0 6 x 6 1. According to (3) we conclude x 6 y⊕x. Finally,

if x 6 y then ¬x⊕ y = 1 and, by (5), ¬(¬x⊕ y)⊕ y = ¬(¬(¬(¬x⊕ y)⊕ y)⊕x)⊕x =

¬(¬(¬1 ⊕ y) ⊕ x) ⊕ x = ¬(¬y ⊕ x) ⊕ x, which proves the last assertion. �

Lemma 3. Let D = (D;∨) be a bounded directoid with sectional involutions,

A(D) its skew MV-algebra and x, p ∈ D. Then (x ∨ p)p = ¬x ⊕ p.

P r o o f. Since x ⊕ y = (¬x ∨ y)y, we have ¬x ⊕ p = (¬¬x ∨ p)p = (x ∨ p)p. �
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Lemma 4. Let D = (D;∨) be a bounded directoid with sectionally antitone

involutions and A(D) its skew MV-algebra. Then A(D) satisfies the identity

(AN) ¬(¬(¬(¬(¬(¬x ⊕ z) ⊕ z) ⊕ y) ⊕ y) ⊕ z) ⊕ (¬x ⊕ z) = 1.

P r o o f. Evidently, z 6 x ∨ z 6 (x ∨ z) ∨ y, thus x ∨ z, (x ∨ z) ∨ y ∈ [z, 1]. Since

the sectional involution in [z, 1] is antitone, we have (x ∨ z)z > ((x ∨ z) ∨ y)z. By

Lemma 3, (x ∨ z)z = ¬x ⊕ z and

((x ∨ z) ∨ y)z = ¬((x ∨ z) ∨ y) ⊕ z = ¬(¬(¬(x ∨ z) ⊕ y) ⊕ y) ⊕ z

= ¬(¬(¬(¬(¬x ⊕ z) ⊕ z) ⊕ y) ⊕ y) ⊕ z.

Since a 6 b if and only if ¬a ⊕ b = 1, we obtain (AN). �

Theorem 2. Let A = (A;⊕,¬, 0) be an algebra of type (2, 1, 0) satisfying (1)–

(5). Define x ∨ y = ¬(¬x ⊕ y) ⊕ y, xy = ¬x ⊕ y for x ∈ [y, 1] and 1 = ¬0.

Then D(A) = (A;∨) is a bounded directoid with sectionally switching involutions.

Moreover, if A satisfies also (AN) then the sectionally switching involutions are even

antitone.

P r o o f. By (C1), (C3) and (2), x ∨ x = ¬(¬x ⊕ x) ⊕ x = ¬1 ⊕ x = 0 ⊕ x = x.

Further, (5) yields

(x ∨ y) ∨ x = ¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ x) ⊕ x = ¬(¬x ⊕ y) ⊕ y = x ∨ y.

Using (C3) and (2) we get

y ∨ (x ∨ y) = ¬(¬y ⊕ (¬(¬x ⊕ y) ⊕ y)) ⊕ (¬(¬x ⊕ y) ⊕ y)

= ¬1 ⊕ (¬(¬x ⊕ y) ⊕ y) = ¬(¬x ⊕ y) ⊕ y = x ∨ y.

To prove skew associativity (D4) we use the identities (4), (1) and (2):

x ∨ ((x ∨ y) ∨ z)

= ¬(¬x ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z)) ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z)

= ¬1 ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z) = ¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z = (x ∨ y) ∨ z.

Hence, (A;∨) is a directoid.

Let x ∈ L. Then, using (C2), (2) and (C1), we obtain

0 ∨ x = ¬(¬0 ⊕ x) ⊕ x = ¬(1 ⊕ x) ⊕ x = ¬1 ⊕ x = 0 ⊕ x = x,

1 ∨ x = ¬(¬1 ⊕ x) ⊕ x = ¬(0 ⊕ x) ⊕ x = ¬x ⊕ x = 1,

thus 0 6 x 6 1 for the order 6 induced by (A;∨).
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It remains to prove that (A;∨) has sectionally switching involutions on each its

section. To this end suppose x ∈ [a, 1]. Denote xa = ¬x ⊕ a. Then, by Lemma 2,

a 6 ¬x ⊕ a = xa, thus xa ∈ [a, 1], i.e. the mapping x 7→ xa is really a sectional

mapping on [a, 1]. Further,

xaa = ¬xa ⊕ a = ¬(¬x ⊕ a) ⊕ a = x ∨ a = x,

i.e. it is an involution. Moreover, 1a = ¬1⊕ a = 0⊕ a = a, aa = ¬a⊕ a = 1 and thus

(A;∨) is a bounded directoid with sectionally switching involutions.

Finally, suppose A satisfies also the identity (AN). Let x, y ∈ [a, 1] with x 6 y.

Then x∨y = y and x∨a = x, i.e.¬(¬x⊕a)⊕a = x and ¬(¬(¬(¬x⊕a)⊕a)⊕y)⊕y = y.

Putting z = a in (AN) we have

1 = ¬(¬(¬(¬(¬(¬x ⊕ a) ⊕ a) ⊕ y) ⊕ y) ⊕ a) ⊕ (¬x ⊕ a)

= ¬(¬y ⊕ a) ⊕ (¬x ⊕ a),

thus ya = ¬y⊕ a 6 ¬x⊕ a = xa, proving that the involution x 7→ xa is antitone. �

We call D(A) = (A;∨) the directoid assigned to A.

E x a m p l e 1. A bounded (non-commutative) ∨-directoid with sectionally anti-

tone involutions where a ∨ b = c and b ∨ a = d is depicted in Fig. 1. For nontrivial

sections, the sectional involutions are

[0, 1] : 0 7→ 1, 1 7→ 0, a 7→ d, d 7→ a, b 7→ c, c 7→ b;

[a, 1] : a 7→ 1, 1 7→ a, c 7→ d, d 7→ c;

[b, 1] : b 7→ 1, 1 7→ b, c 7→ d, d 7→ c.

a b

d = b ∨ aa ∨ b = c

1

0

Fig. 1
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The binary operation ⊕ of its skew MV-algebra is given by Table 1.

⊕ 0 a b c d 1
0 0 a b c d 1
a a c c c 1 1
b b d d 1 d 1
c c c 1 1 1 1
d d 1 d 1 1 1
1 1 1 1 1 1 1

Tab. 1

Evidently, ⊕ is not commutative since c = a ⊕ b 6= b ⊕ a = d.

Theorem 3. Let A = (A;⊕,¬, 0) be a skew MV-algebra and D(A) = (A;∨) its

assigned directoid. Then A(D(A)) = A. On the other hand, if (D;∨) is a bounded

directoid with sectionally switching involutions and A(D) its skew MV-algebra, then

D(A(D)) = D.

P r o o f. Let us denote A(D(A)) = (A; +,′ , 0). Then x + y = (x0 ∨ y)y =

(¬(x ⊕ y) ⊕ y)y = ¬(¬(x ⊕ y) ⊕ y) ⊕ y = x ⊕ y by virtue of the identity (6), and

x′ = x0 = ¬x, which proves A(D(A)) = A.

Conversely, denote the join operation in D(A(D)) by ⊔. Then x⊔y = ¬(¬x⊕y)⊕

y = ((x ∨ y)y ∨ y)y = (x ∨ y)yy = x ∨ y. It is easy to check that also the sectional

involutions on [p, 1] are the same in both (D;∨) and D(A(D)). Hence D(A(D)) = D.

�

Theorem 4. Let (D;⊕,¬, 0) be a skew MV-algebra, p ∈ A, x, y ∈ [p, 1]. Then, if

we define

x ⊕p y = ¬(¬x ⊕ p) ⊕ y and ¬px = ¬x ⊕ p,

the structure ([p, 1];⊕p,¬p, p) is a skew MV-algebra.

P r o o f. We shall show that ([p, 1];⊕p,¬p, p) satisfies the identities (1)–(6) for

⊕p,¬p and p instead of ⊕,¬ and 0, respectively:

(1) ¬p¬px = ¬(¬x ⊕ p) ⊕ p = x ∨ p = x.

(2) x ⊕p p = ¬(¬x ⊕ p) ⊕ p = x ∨ p = x; p ⊕p x = ¬(¬p ⊕ x) ⊕ x = p ∨ x = x.

(3) ¬px⊕p(y⊕px) = (¬x⊕p)⊕p(¬(¬y⊕p)⊕x) = ¬(¬(¬x⊕p)⊕p)⊕(¬(¬y⊕p)⊕x) =

¬(x ∨ p) ⊕ (¬(¬y ⊕ p) ⊕ x) = ¬x ⊕ (¬(¬y ⊕ p) ⊕ x) = 1.

(4) Clearly ¬(¬x⊕ p)⊕ p = x∨ p = x. Thus ¬px⊕p (¬p(¬p(¬p(¬px⊕p y)⊕p y)⊕p

z)⊕p z) = ¬(¬(¬x ⊕ p)⊕ p)⊕ (¬p(¬p(¬p(¬(¬(¬x ⊕ p)⊕ p)⊕ y)⊕p y)⊕p z)⊕p z) =

¬x⊕ (¬p(¬p(¬p(¬x⊕ y)⊕p y)⊕p z)⊕p z) = ¬x⊕ (¬p(¬p(¬(¬(¬(¬x ⊕ y)⊕ p)⊕ p)⊕

y)⊕p z)⊕p z) = ¬x⊕ (¬p(¬p(¬(¬x ⊕ y)⊕ y)⊕p z)⊕p z) = ¬x⊕ (¬p(¬(¬(¬x ⊕ y)⊕
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y)⊕ z)⊕p z) = ¬x⊕ (¬(¬(¬(¬x ⊕ y)⊕ y)⊕ z)⊕ z) = 1 according to (4). During the

last calculation we have used three times the inequality x 6 y⊕x of Lemma 2 in the

following forms: y 6 ¬x⊕ y, y 6 ¬(¬x ⊕ y)⊕ y and z 6 ¬(¬(¬x ⊕ y)⊕ y)⊕ z. This

yields for x, y, z ∈ [p, 1] that (¬x⊕y)∨p = ¬x⊕y, (¬(¬x⊕y)⊕y)∨p = ¬(¬x⊕y)⊕y

and (¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ∨ p = ¬(¬(¬x ⊕ y) ⊕ y) ⊕ z.

To prove (5) we first derive ¬px⊕py = (¬x⊕p)⊕py = ¬(¬(¬x⊕p)⊕p)⊕y = ¬x⊕y,

since ¬(¬x ⊕ p) ⊕ p = x ∨ p = x. Thus also ¬p(¬px ⊕p y) ⊕p y = ¬p(¬x ⊕ y) ⊕p y =

¬(¬x⊕y)⊕y = x∨y. Hence ¬p(¬p(¬p(¬px⊕py)⊕py)⊕px)⊕px = ¬p(¬px⊕py)⊕py,

implying that (x ∨ y) ∨ x = x ∨ y in the assigned directoid.

Analogously we prove (6):

(6) ¬p(¬p(x ⊕p y) ⊕p y) ⊕p y = (¬((¬(¬(¬x ⊕ p) ⊕ y) ⊕ p) ⊕p y) ⊕ p) ⊕p y =

(¬(¬(¬(¬x⊕p)⊕y)⊕y)⊕p)⊕py = ¬(¬(¬(¬x⊕p)⊕y)⊕y)⊕py = ¬(¬x⊕p)⊕y = x⊕py.

�

3. Skew implication algebras

The concept of the implication algebra was introduced in the classical logic by

J. C. Abbott [1].

In the sequel we characterize the connective implication in skew MV-algebras

similarly as it was done in [4] and [9] for MV-algebras or WMV-algebras. It turns

out that the appropriate implication algebras look as follows:

Definition 2. A skew implication algebra is an algebra (A;→, 1) of type (2, 0)

satisfying the identities

(S1) x → x = 1, 1 → x = x;

(S2) (((x → y) → y) → x) → x = (x → y) → y;

(S3) x → ((((x → y) → y) → z) → z) = 1;

(S4) y → (x → y) = 1.

Lemma 5. In a skew implication algebra (A;→, 1) we have x → 1 = 1.

P r o o f. By (S1) and (S4) we have x → 1 = x → (x → x) = 1. �

Theorem 5. Let A = (A;⊕,¬, 0) be a skew MV-algebra. Define x → y = ¬x⊕y,

1 = ¬0. Then the algebra S(A) = (A;→, 1) is a skew implication algebra satisfying

(S5) 0 → x = 1.

P r o o f. (S1) x → x = ¬x ⊕ x = 1 by Lemma 1; 1 → x = ¬1 ⊕ x = 0 ⊕ x = x

by (2).
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(S2) (((x → y) → y) → x) → x = ¬(¬(¬(¬x⊕ y)⊕ y)⊕ x)⊕ x = ¬(¬x⊕ y)⊕ y =

(x → y) → y directly by (5).

(S3) x → ((((x → y) → y) → z) → z) = ¬x ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z) = 1

by (4).

(S4) y → (x → y) = ¬x ⊕ (y ⊕ x) = 1 by (3).

Moreover, 0 → x = ¬0 ⊕ x = 1 ⊕ x = 1 by Lemma 1. �

Theorem 6. Let (A;→, 1) be a skew implication algebra. Define

x 6 y iff x → y = 1.

Then (A; 6) is a directoid with 1 and with sectionally switching involutions, where

x∨y = (x → y) → y and xp = x → p for x ∈ [p, 1]. Further, for x⊕py = (x → p) → y

and ¬px = x → p, ([p, 1];⊕p,¬p, p) is a skew MV-algebra.

P r o o f. Reflexivity of 6 follows by x → x = 1.

Let x 6 y and y 6 x i.e. x → y = 1 and y → x = 1. Then, by (S1) and (S2),

x = 1 → x = (y → x) → x = ((1 → y) → x) → x = (((x → y) → y) → x) → x =

(x → y) → y = 1 → y = y, thus 6 is antisymmetrical.

Suppose now x 6 y, y 6 z. According to (S3) and x → y = 1, y → z = 1, we have

x → z = x → ((((x → y) → y) → z) → z) = 1, i.e. x 6 z. Thus 6 is transitive.

Moreover, x → 1 = 1 yields x 6 1, whence 6 is an order on A with the greatest

element 1.

Evidently, y 6 x → y by (S4), thus also y 6 (x → y) → y. Using (S3) we have

x → ((((x → x) → x) → y) → y) = 1; thus, by (S1), we obtain x → ((x → y) →

y) = 1. Therefore x 6 (x → y) → y, i.e. (x → y) → y is an upper bound of x, y.

Denote x ∨ y = (x → y) → y. To prove that (A;∨) is a directoid we need only to

show that x 6 y implies x ∨ y = y = y ∨ x. However, x 6 y implies x → y = 1, thus

x ∨ y = (x → y) → y = 1 → y = y. Due to the last assertion of Lemma 2, x 6 y

yields (x → y) → y = (y → x) → x, thus also y ∨ x = y.

It remains to prove that xp = x → p is the switching involution on the section

[p, 1]. To this end, let x, y ∈ [p, 1]. Then x → y > y > p, thus x → y ∈ [p, 1].

Clearly, xp = x → p ∈ [p, 1], xpp = (x → p) → p = x ∨ p = x and 1p = 1 →

p = p. Hence (A;∨, 1) is a directoid with sectionally switching involutions and thus

([p, 1],⊕p,¬p, 1) is a skew MV-algebra for each p ∈ A. �

We can prove also the converse:
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Theorem 7. Let (D;∨) be a directoid with 1 and with sectionally switching

involutions. Define

x → y = (x ∨ y)y.

Then (D;→) is a skew implication algebra.

P r o o f. To prove this theorem we only need to verify the identities (S1)–(S4):

(S1) x → x = (x ∨ x)x = xx = 1; 1 → x = (1 ∨ x)x = 1x = x.

(S4) y → (x → y) = y → (x ∨ y)y = (y ∨ (x ∨ y)y)(x∨y)y

= ((x ∨ y)y)(x∨y)y

= 1.

Next, (x → y) → y = ((x → y) ∨ y)y = ((x ∨ y)y ∨ y)y = (x ∨ y)yy = x ∨ y; this

fact we use in the proof of (S2) and (S3):

(S2) (((x → y) → y) → x) → x = ((x ∨ y) → x) → x = (x ∨ y) ∨ x = x ∨ y.

(S3) x → ((((x → y) → y) → z) → z) = x → ((x ∨ y) ∨ z) = (x ∨ ((x ∨ y) ∨

z))(x∨y)∨z = ((x ∨ y) ∨ z)(x∨y)∨z = 1. �

Corollary 1. Let S = (S;→, 1) be a skew implication algebra with a least element

0 satisfying (S5). Define ¬x = x → 0 and x ⊕ y = (x → 0) → y. Then A(S) =

(S;⊕,¬, 0) is a skew MV-algebra.

P r o o f. If S has a least element 0 then clearly S = [0, 1] and, by Theorem 6 for

⊕ = ⊕0, ¬ = ¬0 we get the assertion. �

E x a m p l e 2. Consider a skew implication algebra S = ({a, b, c, d, 1};→, 1) given

by Table 2.

→ a b c d 1
a 1 d 1 1 1
b c 1 1 1 1
c d d 1 d 1
d c c c 1 1
1 a b c d 1

Tab. 2

Its induced directoid is shown in Fig. 2,

a b

d = b ∨ aa ∨ b = c

1

Fig. 2
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and the sectional skew MV-algebras ([a, 1],⊕a,¬a, a) and ([b, 1],⊕b,¬b, b) are deter-

mined by the tables

⊕a a c d 1
a a c d 1
c c c 1 1
d d 1 d 1
1 1 1 1 1

⊕b b c d 1
b b c d 1
c c c 1 1
d d 1 d 1
1 1 1 1 1

a c d 1
¬a 1 d c a

b c d 1
¬b 1 d c b

It is worth noticing that the directoid depicted in Fig. 2 does not determine the

skew implication algebra S uniquely. If S′ = ({a, b, c, d, 1};→, 1) is a skew implication

algebra determined by Table 3

→ a b c d 1
a 1 c 1 1 1
b c 1 1 1 1
c d c 1 d 1
d c d c 1 1
1 a b c d 1

Tab. 3

then its induced directoid is that of Fig. 2 but the sectional skew MV-algebra

([b, 1];⊕b,¬b, b) has rather different tables for the binary operation ⊕b and the unary

operation ¬b:

⊕b b c d 1
b b c d 1
c c 1 d 1
d d c 1 1
1 1 1 1 1

b c d 1
¬b 1 c d b

The sectional MV-algebra ([a, 1];⊕a,¬a, a) is the same as shown before.
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4. Congruences on skew implication algebras

As shown in the previous chapter, skew implication algebras are defined by the

identities (S1)–(S4) and hence they form a variety. Let us recall that an algebra A

with a constant 1 is weakly regular if every congruence Θ ∈ Con A is determined

by its kernel [1]Θ, i.e. if [1]Θ = [1]Φ for Θ, Φ ∈ Con A then Θ = Φ. Further, A is

congruence distributive if Con A is a distributive lattice (with respect to set inclu-

sion). A variety V is weakly regular or congruence distributive if each A ∈ V has the

corresponding property.

Theorem 8. The variety of skew implication algebras is weakly regular and

congruence distributive.

P r o o f. By Theorem 6.4.3 in [2], a variety V is weakly regular if and only if

there exist an integer n > 1 and binary terms t1, . . . tn such that t1(x, y) = . . . =

tn(x, y) = 1 if and only if x = y. Of course, one can choose n = 2 and t1(x, y) =

x → y, t2(x, y) = y → x. If t1(x, y) = t2(x, y) = 1 then, by Theorem 6, x 6 y

and y 6 x, thus x = y. Moreover, t1(x, x) = 1 = t2(x, x) by (S1), thus the variety

W of skew implication algebras is weakly regular. Further, for b(x, y) = y → x we

have b(x, x) = 1, b(x, 1) = 1 and b(1, x) = x; thus, by Theorem 8.3.2 in [2], W is

arithmetical at 1 and hence also distributive at 1. Together with weak regularity, W

is congruence distributive (see e.g. Theorem 8.2.8 in [2].) �

Since every congruence on a skew implication algebra S is fully determined by its

kernel, a natural question arises how to characterize congruence kernels (for the sake

of characterizing congruences on S).

Lemma 6. Let S be a skew implication algebra and Θ ∈ Con S. Then 〈x, y〉 ∈ Θ

if and only if x → y, y → x ∈ [1]Θ.

P r o o f. If 〈x, y〉 ∈ Θ then also 〈x → y, 1〉 = 〈x → y, y → y〉 ∈ Θ and

〈y → x, 1〉 = 〈y → x, y → y〉 ∈ Θ, thus both x → y, y → x ∈ [1]Θ. Conversely,

if x → y, y → x ∈ [1]Θ then 〈x → y, 1〉 ∈ Θ, 〈y → x, 1〉 ∈ Θ and hence 〈(x →

y) → y, y〉 = 〈(x → y) → y, 1 → y〉 ∈ Θ. Further, x = (1 → x)Θ((y → x) →

x) = (((1 → y) → x) → x)Θ(((x → y) → y) → x) → x = (x → y) → y by (S2),

i.e. 〈x, (x → y) → y〉 ∈ Θ. Applying transitivity of Θ we conclude 〈x, y〉 ∈ Θ. �

A subset D of a skew implication algebra S = (S;→, 1) is called a deductive system

of S provided the following conditions hold:

(I1) 1 ∈ D;

(I2) if x ∈ D and x → y ∈ D, then y ∈ D;
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(I3) if x → y ∈ D and y → x ∈ D, then (z → x) → (z → y) ∈ D and (x → z) →

(y → z) ∈ D.

We are going to characterize the congruence kernels.

Theorem 9. Let S = (S;→, 1) be a skew implication algebra. A subset D ⊆ S

is a congruence kernel of some Θ ∈ Con S if and only if D is a deductive system of

S. Moreover, if D is a deductive system of S then it is a kernel of ΘD defined by

(∗) 〈x, y〉 ∈ ΘD iff x → y, y → x ∈ D.

P r o o f. Let D = [1]Θ for some Θ ∈ Con S. Obviously, 1 ∈ D and if x ∈ D and

x → y ∈ D then 〈x, 1〉 ∈ Θ, 〈x → y, 1〉 ∈ Θ, thus also 〈(x → y) → y, 1〉 = 〈(x →

y) → y, (1 → y) → y〉 ∈ Θ and 〈(x → y) → y, y〉 = 〈(x → y) → y, 1 → y〉 ∈ Θ,

i.e. 〈y, 1〉 ∈ Θ, which proves y ∈ D.

Finally, if x → y, y → x ∈ D = [1]Θ then 〈x, y〉 ∈ Θ by Lemma 6. Hence

〈z → x, z → y〉 ∈ Θ and 〈x → z, y → z〉 ∈ Θ. Applying Lemma 6 once more we

conclude that D satisfies also the condition (I3), i.e. D is a deductive system of S.

Conversely, let D be a deductive system of S and define ΘD by (∗). All we need

to show is that ΘD is a congruence on S since the weak regularity then yields that

it is unique with the kernel D. Of course, ΘD is reflexive and symmetric. Assume

〈x, y〉, 〈y, z〉 ∈ ΘD. Then, by (∗), x → y, y → x, y → z, z → y ∈ D and by (I3) we

have (y → z) → (x → z) ∈ D, which due to (I2) and y → z ∈ D implies x → z ∈ D.

Analogously we can prove z → x ∈ D, thus 〈x, z〉 ∈ ΘD, which proves transitivity of

ΘD.

Now, suppose 〈x, y〉, 〈u, v〉 ∈ ΘD. Hence x → y, y → x, u → v, v → u ∈ D and,

due to (I3), also (x → u) → (y → u) ∈ D and (y → u) → (x → u) ∈ D, which proves

〈x → u, y → u〉 ∈ ΘD. Analogously we can show 〈y → u, y → v〉 ∈ ΘD and, applying

transitivity of ΘD, we obtain 〈x → u, y → v〉 ∈ ΘD. Hence, ΘD is a congruence

on S. �
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