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Abstract. We prove existence results for the Dirichlet problem associated with an elliptic
semilinear second-order equation of divergence form. Degeneracy in the ellipticity condition
is allowed.
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1. Introduction

We consider the semilinear boundary value problem

(1.0)




−

m∑
i,j=1

∂
∂xi

(
aij(x) ∂u

∂xj

)
= f(u) in Ω

u = 0 on ∂Ω

where Ω is a bounded open subset of � m , f is a real valued function defined on � ,
and the coefficients ai,j(x) satisfy the ellipticity condition

m∑

i,j=1

aij(x)pipj > α
m∑

i=1

νi(x)p2
i for a.e. x ∈ Ω and for any p ∈ � m

with νi(x) satisfying sufficiently general hypotheses.
We obtain some results of existence, uniqueness and boundedness for weak solu-

tions of problem (1.0) with minimal hypotheses on f . Similar results, when f has
a natural polynomial growth, have been obtained in [3], [5], [7] and in [8] by pseu-
domonotone operators’ theory, while our proof uses fixed-point theorems. The paper
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is structured as follows. In Sections 2 and 3 we state hypotheses and results. In

Section 4 we establish some useful lemmas and, finally, in Section 5 we prove our
main theorems.

2. Functional spaces

Let � m be the Euclidean m-space with a generic point x = (x1, x2, . . . , xm), Ω a
bounded open subset of � m . The notation measx will indicate the m-dimensional
Lebesgue measure.

If u(x) is a measurable function defined in Ω, we will denote by |u|p (1 6 p 6 ∞)
the usual norm in the space Lp(Ω).
� � ������������ !�

2.1. Let νi(x) (i = 1, 2, . . . ,m) be a positive and measurable
function defined in Ω such that

νi(x) ∈ L1(Ω), ν−1
i (x) ∈ Lgi(Ω)

where
m∑
i

1
gi
< 2 (gi > 1) if m > 3 (m = 2).

The symbolH1(νi,Ω) stands for the completion of C1(Ω) with respect to the norm

‖u‖1 =
( ∫

Ω

(
|u|2 +

m∑

i=1

νi(x)
∣∣∣ ∂u
∂xi

∣∣∣
2
)

dx
) 1

2

;

H1
0 (νi,Ω) denotes the closure of C∞0 (Ω) in H1(νi,Ω).
Finally, H−1(ν−1

i ,Ω) denotes the dual space of H1
0 (νi,Ω) (see also [5], [6] and [10]

for details concerning the weighted Sobolev spaces).

3. Hypotheses, problems and results

� � ������������ !�
3.1. The coefficients aij(x) (i, j = 1, 2, . . . ,m) are functions de-

fined and measurable in Ω satisfying

aij(x) = aji(x),
aij(x)√
νi(x)νj(x)

∈ L∞(Ω) (i, j = 1, 2, . . . ,m).

� � ������������ !�
3.2. There exists α > 0 such that for almost every x in Ω we have

(3.1)
m∑

i,j=1

aij(x)pipj > α

m∑

i=1

νi(x)p2
i for any p ∈ � m .
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Let a : H1
0 (νi,Ω)×H1

0 (νi,Ω) → � be such that

a(u, v) =
∫

Ω

m∑

ij=1

aij(x)
∂u

∂xj

∂v

∂xi
dx,

and define

τ = inf
u∈H1

0 (νi,Ω)\{0}

a(u, u)
|u|2

.

In Section 4 we prove the following

Lemma 4.4. Let us assume that (2.1), (3.1), (3.2) hold. Then τ > 0 and there
exists u0 ∈ H1

0 (νi,Ω) such that τ = a(u0, u0) and

a(u, u0) = τ

∫

Ω

uu0 dx for any u ∈ H1
0 (νi,Ω);

moreover, we can choose u0 > 0.

Definition 3.2. Let H be a Hilbert space, f , g ∈ C1(H, � ), and let

E = {u ∈ H : g(u) = 0, g′(u) 6= 0} .

A point u0 ∈ H is a critical point of f |E if d
dtf(h(t))|t=0 = 0 for all C1 paths

h(t) : ]− ε, ε[→ E such that h(0) = u0.
"#�%$'&�(*)

3.3. If there exists u0 ∈ E such that f(u0) = min{f(u) : u ∈ E}, then
(f |E)′ (u0) = 0.

Theorem 3.4 (see, e.g., [2]). A point u0 ∈ E is a critical point of f |E if and only
if there exists λ ∈ � such that f ′(u0) = λg′(u0).

Now, if f ∈ C( � ) satisfies the condition

u ∈ H1
0 (νi,Ω) ⇒ f(u) ∈ H−1(νi,Ω),

we obtain the following well posed problem
+(*�-,/.0�%$

. Find a function u(x) ∈ H1
0 (νi,Ω) such that

(3.1)
∫

Ω

m∑

ij=1

aij(x)
∂u

∂xj

∂v

∂xi
dx = (f(u), v) (1)

for any v(x) ∈ H1
0 (νi,Ω).

(1) We denote by (·, ·) the duality pairing between H10 (νi,Ω) and H−1(νi,Ω).
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A function u(x) satisfying (3.1) is a weak solution of Problem (1.0).

"#�%$'&�(*)
3.5. When f does not depend on u, f ∈ H−1(νi,Ω), the hypotheses

(2.1), (3.1), (3.2) are sufficient to ensure existence and uniqueness of a weak solution
of problem (1.0), moreover we have

‖u‖1,0 6 ‖f‖H−1(νi,Ω).

Proof follows from Lemma 4.1 and the Lax-Milgram theorem (see Remark 4.2 for
the definition of ‖u‖1,0).

In Section 5 we prove

Theorem 5.1 (Existence, uniqueness and boundedness). Let us assume that
(2.1), (3.1), (3.2) hold and let f be Lipschitz continuous with a Lipschitz constant
L < τ .

Then there exists a unique weak solution u(x) of problem (1.0); moreover, u(x) ∈
L∞(Ω) and

(5.0) ‖u‖∞ 6 γ(L, g,m,measx Ω).

Theorem 5.2. Let us assume that (2.1), (3.1), (3.2) hold and let f be a bounded
continuous function. Then Problem (1.0) has a weak solution u(x). Moreover, u(x) ∈
L∞(Ω) and (5.0) holds.

4. Preliminary lemmas

Lemma 4.1. If the hypothesis (2.1) is satisfied then there exists a constant
C = C(m, gi, |ν−1

i |gi) such that

(4.1) |u|2? 6 C

( ∫

Ω

m∑

i=1

νi(x)
∣∣∣ ∂u
∂xi

∣∣∣
2

dx
) 1

2

for all u ∈ H1
0 (νi,Ω),

where 2? = 2m
(
m− 2 +

m∑
i=1

1
gi

)−1
.

Moreover, the imbedding of H1
0 (νi,Ω) into L2(Ω) is compact.
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+(*�1�32
. Let us fix mi = 2gi

gi+1 . Then

(4.2)
∣∣∣ ∂u
∂xi

∣∣∣
mi

6 |ν−1
i |

1
2
gi

∣∣∣ν
1
2
i

∂u

∂xi

∣∣∣
2
.

Since
m∑

i=1

1
mi

=
m∑

i=1

gi+1
2gi

= 1
2

(
m+

m∑
i=1

1
gi

)
> 1, Sobolev’s imbedding theorem yields

(see, for instance, [12])

(4.3) |u|q 6 C(m,mi, q)
m∏

i=1

∣∣∣ ∂u
∂xi

∣∣∣
1
m

mi

where q = m
(
− 1 +

m∑
i=1

1
mi

)−1
.

From (4.2) and (4.3) we obtain

|u|2? 6 C

m∏

i=1

(
|ν−1

i |
1

2m
gi

∣∣∣ν
1
2
i

∂u

∂xi

∣∣∣
1
m

2

)
.

Now, let {un} be a sequence of functions of H1
0 (νi,Ω) with equibounded norms

and let {Πk} be a sequence of open intervals in Ω such that
1. Πk ⊂ Πk+1 for any k ∈ 4 ,
2. lim

k→+∞
Πk = Ω,

3. for any closed, bounded subset C of Ω there exists k : C ⊂ Πk, k > k.

Let us denote by W 1,1(Π1) the usual Sobolev space on the set Π1.
It follows that the norms of {un} in W 1,1(Π1) are equibounded; in fact, applying

the Hölder inequality we obtain the following estimate:

‖un‖W 1,1(Π1) =
∫

Π1

|un| dx+
∫

Π1

m∑

i=1

∣∣∣∂un

∂xi

∣∣∣ dx

6
( ∫

Π1

|un|2 dx
)

(measΠ1)
1
2 +

m∑

i=1

(∫

Π1

1
νi(x)

dx
) 1

2

‖un‖1

6 const ‖un‖1.

Due to the compact imbedding of W 1,1(Π1) into L1(Π1) (see e.g. [1]) there is a
subsequence {u1,n} from {un} that converges a.e. in Π1.
The same procedure can be done on each Πj for j = 2, 3, . . . . Hence we get a

system of sequences {uj,n}, n, j = 1, 2, . . . (where {uj,n} is a subsequence of {uj−1,n})
such that {uj,n} is convergent a.e. in Πj for j = 1, 2, . . ..
By the diagonals method we obtain that {un,n} converges a.e. in Ω and, by virtue

(4.1), in L2(Ω).

191



"#�%$'&�(*)
4.2. If the hypothesis (2.1) holds, then

(∫
Ω

m∑
i=1

νi(x)| ∂u
∂xi
|2 dx

)1/2

con-

stitutes an equivalent norm in H1
0 (νi,Ω). We will denote this norm by ‖u‖1,0.

Lemma 4.3. Let u(x) ∈ H1
0 (νi,Ω) and k > 0, then the function min(u, k) belongs

to H1
0 (νi,Ω).

+(*�1�32
. Define v = min(u, k) for u ∈ H1

0 (νi,Ω) and let {ϕn} be a sequence of
functions of C∞0 (Ω) such that

lim
n→+∞

‖ϕn − u‖1 = 0.

Let ψn = min(ϕn, k) for any n ∈ 4 .
By regularization, we can prove that ψn belongs to H1

0 (νi,Ω); moreover, because
the norms of {ψn} are equibounded in H1

0 (νi,Ω), there exists a subsequence that
weakly converges in H1

0 (νi,Ω). On the other hand,

|v(x) − ψn(x)| 6 |u(x)− ϕn(x)| a.e. in Ω,

so {ψn} converges to v in L2(Ω). �

The conclusion now follows easily.
+(*�1�325�32768�9$:$'&

4.4. We observe that

(4.4) τ = inf
{
a(u, u) : u ∈ H1

0 (νi,Ω),
∫

Ω

u2 dx = 1
}
,

and we define f, g : H1
0 (νi,Ω) → � as

f(u) = a(u, u), g(u) =
∫

Ω

u2 dx− 1.

Let

E = {u ∈ H1
0 (νi,Ω): g(u) = 0}.

Then
τ = inf

u∈E
f(u).

Let {un} be a sequence such that a(un, un) → τ ; from (3.2) and Remark 4.2 we have
that {un} is bounded in H1

0 (νi,Ω), so there exist {unk
}, u0 ∈ H1

0 (νi,Ω) such that
unk

⇀ u0 weakly in H1
0 (νi,Ω). By the compact imbedding of H1

0 (νi,Ω) into L2(Ω)
(Lemma 4.1), unk

→ u0 strongly in L2(Ω), which gives
∫
Ω u

2
0 dx = 1. Therefore

u0 ∈ E.
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Finally, by virtue of

τ 6 a(u0, u0) 6 lim inf
k→+∞

a(unk
, unk

) = τ

we obtain

τ = a(u0, u0)

and f attains its minimum at u0 ∈ E. By Remark 3.3 we have

(f |E)′(u0) = 0.

Accordingly, Theorem 3.4 yields

(f)′(u0) = λ(g)′(u0) for some λ ∈ �

or

a(u, u0) = λ

∫

Ω

uu0 dx for any u ∈ H1
0 (νi,Ω).

Choosing u = u0 we have

τ = a(u0, u0) = λ

∫

Ω

u2
0 dx⇒ τ = λ.

Obviously u0 ∈ H1
0 (νi,Ω) is such that

a(u, u0) = τ

∫

Ω

uu0 dx for any u ∈ H1
0 (νi,Ω).

Next, Lemma 4.3 implies that if u satisfies (4.4) then |u| also satisfies (4.4), therefore
we can choose u0 to be non-negative.

5. Proof of main results

Define G : H−1(ν−1
i ,Ω) → H1

0 (νi,Ω) as

G(g) = w where w is a weak solution of




−

m∑
i,j=1

∂
∂xi

(aij(x) ∂w
∂xj

) = g in Ω

w = 0 on ∂Ω

Remark 3.5 ensures that G is a linear continuous map. For u ∈ H1
0 (νi,Ω) define

F (u) = G(f(u)). Then a fixed point u of F is a solution of problem (1.0).
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+(*�1�325�327;<���%�3(*�%$
5.1. We claim that

u ∈ L2(Ω) ⇒ f(u) ∈ L2(Ω).

Indeed,

|f(u)| 6 |f(u)− f(0)|+ |f(0)| 6 L|u|+ |f(0)|,

thus ∫

Ω

|f(u)|2 dx 6 2L2

∫

Ω

|u|2 dx+ 2|f(0)|2 measx Ω.

We proceed to show that F is a contractive mapping. We see at once that

|f(u)− f(v)|2 6 L|u− v|2 for any u, v ∈ H1
0 (νi,Ω).

By (3.1) and Remark 4.2 we deduce that

α‖u‖21,0 6 a(u, u) = (f(u), u) 6 c|f(u)|2‖u‖1,0

or
‖u‖1,0 6 c

α
|f(u)|2.

Consequently, G is continuous from L2(Ω) → L2(Ω). Therefore

(5.1)
|F (u)− F (v)|2 = |G(f(u)− f(v))|2 6 ‖G‖?|f(u)− f(v)|2

6 L‖G‖?|u− v|2.

Since τ |u|22 6 a(u, u) =
∫
Ω f(u)u dx 6 |f(u)|2|u|2 or

|G(f(u))|2
|f(u)|2

6 1
τ
,

it results that
‖G‖? 6 1

τ
.

We conclude from (5.1) that

|F (u)− F (v)|2 6 L

τ
|u− v|2

and finally that, since L < τ , F has a fixed point in H1
0 (νi,Ω).

Now, let us fix k > 0, then from (3.1) for v = u−min(u, k) we get

(5.2) α‖v‖21,0 6 L

∫

Ω

|u||v| dx+
∫

Ω

|f(0)||v|.
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Lemma 4.1 and the definition of v imply

∫

Ω

|u||v| dx 6
∫

Ω(u>k)

v2 dx+ k

∫

Ω(u>k)

v dx

6 |v|22? [measx Ω(u > k)]1−
2
2? + k

∫

Ω(u>k)

v dx

6 c2‖v‖21,0[measx Ω(u > k)]1−
2
2? + k

∫

Ω(u>k)

v dx.

Therefore from (5.2) we obtain

(5.3) ‖v‖21,0(α− Lc2[measx Ω(u > k)]1−
2
2? ) 6 (Lk + |f(0)|)

∫

Ω(u>k)

v dx.

Recalling that

lim
k→+∞

measx Ω(u > k) = 0

we can certainly choose k̃ > 0 such that for any k > k̃ we have

Lc2[measx Ω(u > k)]1−
2
2? 6 α

2
.

We apply this inequality to (5.3) obtaining

(5.4) ‖v‖1,0 6 2c
α

[measx Ω(u > k)]1−
1
2? (|f(0)|+ Lk) for any k > k̃.

Let h, k be real numbers, h > k > k̃. Then one has

|v|2? =
[ ∫

Ω(u>k)

|u− k|2?

dx
] 1

2?

> (h− k)[measx Ω(u > h)]
1
2? ;

furthermore, (5.4) and Lemma 4.1 yield

(5.5) [measx Ω(u > h)]
1
2? 6 2c2

α(h− k)
(|f(0)|+ Lk)[measx Ω(u > k)]1−

1
2? .

Next, if k > 0, we get

measx Ω(u > k) 6 1
k2?

∫

Ω(u>k)

u2?

dx,
2c2

αk
(|f(0)|+ 2Lk)2

2?−1
2?−2 [measx Ω(u > k)]1−

2
2?

6 2c2

αk2?−1
(|f(0)|+ 2Lk)2

2?−1
2?−2

( ∫

Ω(u>k)

u2?

dx
)1− 2

2?

.
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Now, the first term of the above inequality goes to zero as k → +∞, so we can fix
k1 (> k̃) such that

(5.6)
2c2

α
(|f(0)|+ 2Lk1) [measx Ω(u > k1)]

1− 2
2? 2

2?−1
2?−2 6 k1.

Moreover, one has

(5.7)
2c2

α(h− k)
(|f(0)|+ Lk) 6 2c2

(h− k)
(|f(0)|+ 2Lk1) if 0 6 k 6 k1.

Combining (5.5) and (5.7) we obtain

[measx Ω(u > h)]
1
2? 6 2c2

α(h− k)
(|f(0)|+ 2Lk1) [measx Ω(u > k)]1−

1
2?

for any h, k ∈ � such that k1 6 k < h 6 2k1.

Assuming in [k1,+∞[ that

ϕ(k) =

{
[measx Ω(u > k)]

1
2? if k1 6 k 6 2k1

0 if k > 2k1

we get

ϕ(h) 6 2c2

α(h− k)
(|f(0)|+ 2Lk1) [ϕ(k)]2

?−1

for any h, k ∈ � such that k1 6 k < h 6 2k1, and from Stampacchia’s lemma (see

[11], p. 212) we deduce

ϕ(k1 + d) = 0,

where d is the first term of (5.6).
We can obtain the same conclusion for −u, so the proof of the theorem is complete.
+(*�1�32=�32>;<���%�3(*�%$

5.2. Set F as in Theorem 5.1. Since the imbedding of

H1
0 (νi,Ω) into L2(Ω) is compact, we have that F is also compact from L2(Ω) into

L2(Ω); therefore, by Schaefer’s fixed point theorem, it will be sufficient to prove that
the set of all solutions of the equation

(5.8) u = µF (u) for 0 < µ < 1

is unbounded.
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Indeed, if u satisfies (5.8), then u is solution of




−

m∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= µf(u) in Ω

u = 0 on ∂Ω,

therefore
τ |u|22 6 a(u, u) = µ

∫

Ω

f(u)u dx 6 M (measx Ω)
1
2 |u|2

or

|u|2 6 M (measx Ω)
1
2

τ
.

Now, if we fix in (3.1) v = u−min(u, k), k > 0 we get

α‖u‖21,0 6 M

∫

Ω

v dx 6 M |v|2? [measx Ω(u > k)]
2?−1
2? .

This inequality, as in the previous theorem, implies

‖u‖∞ < +∞.

?A@ )1B��DC=.0�DEGF3�%$H�%B1�I�
. Research was supported by the grant MURST 60% of
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