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(Received November 18, 2003)

Abstract. The nonlinear difference equation

(E) xn+1 − xn = anϕn(xσ(n)) + bn,

where (an), (bn) are real sequences, ϕn :  −→  , (σ(n)) is a sequence of integers and
lim

n−→∞σ(n) =∞, is investigated. Sufficient conditions for the existence of solutions of this
equation asymptotically equivalent to the solutions of the equation yn+1 − yn = bn are
given. Sufficient conditions under which for every real constant there exists a solution of
equation (E) convergent to this constant are also obtained.
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1. Introduction

In this paper we are concerned with the asymptotic behavior of solutions of non-

linear difference equations of the form

(E) xn+1 − xn = anϕn(xσ(n)) + bn, n = 1, 2, . . .

where (an), (bn) are real sequences, ϕn : � −→ � , (σ(n)) is a sequence of integers
and lim

n−→∞
σ(n) = ∞.

By a solution of equation (E) we mean a real sequence (xn) defined for n > min
i>1

σ(i)

which satisfies (E) for all sufficiently large n. Equations of the form (E), in particular
when σ(n) = n − k, have been studied by a number of authors, see for example

[2–5], [7–12] and the references cited therein. However, in most of these papers the
oscillation of equation (E) has been investigated.
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Our purpose in this paper is to study asymptotic properties of solutions of equation

(E). We will give sufficient conditions for the existence of solutions of equation (E)
asymptotically equivalent to the solutions of the equation

yn+1 − yn = bn.

We obtain also sufficient conditions under which for every constant c ∈ � there exists
a solution of equation (E) convergent to c. This result generalizes the main theorem
of [7]. A special case of equation (E), namely, the difference equation

xn+1 − xn = anϕn(xn+1), n = 1, 2, . . .

will also be considered.

Let (X, d), (Y, %) be metric spaces, and let Φ be a family of maps ϕ : X −→ Y .
Φ is said to be equicontinuous at a point p ∈ X if for every ε > 0 there exists δ > 0
such that if d(x, p) < δ, then %(ϕ(x), ϕ(p)) < ε for any ϕ ∈ Φ. We say that Φ is
equicontinuous if it is equicontinuous at every point p ∈ X .
If for any ε > 0 there exists δ > 0 such that %(ϕ(x1), ϕ(x2)) < ε for any pair

x1, x2 ∈ X such that d(x1, x2) < δ and every ϕ ∈ Φ, then Φ is said to be uniformly
equicontinuous.

Φ is said to be locally bounded if for any point p ∈ X there exist a neighborhood
U of p in X and a constant M > 0 such that |ϕ(t)| 6 M for every t ∈ U , ϕ ∈ Φ.
If |ϕ(t)| 6 M for all t ∈ X , ϕ ∈ Φ, then we say that Φ is bounded.
If ψ : X −→ � , U ⊆ X , then ψ|U denotes the restriction of ψ defined by ψ|U :

U −→ � , (ψ|U)(x) = ψ(x) for x ∈ U .
The space of all sequences x : � −→ � is denoted by SQ.
The Banach space of all bounded sequences x ∈ SQ with the norm ‖x‖ = sup{|xn| :

n ∈ � } is denoted by BS.

2. Main results

To prove our results we need some lemmas.

Lemma 1. Let X,Y be metric spaces. If X is compact and Φ is a locally bounded
family of maps ϕ : X −→ Y , then Φ is bounded.
���������

. Since X is compact, so it follows that there exists a finite covering

{U1, . . . , Un} of X and constants M1, . . . ,Mn such that |ϕ(x)| 6 Mi for any x ∈ Ui

and arbitrary ϕ ∈ Φ. If M = M1 + . . . +Mn, then |ϕ(x)| 6 M for any x ∈ X and
ϕ ∈ Φ. �
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Lemma 2. Let X and Y be metric spaces. If X is compact and Φ is an equicon-
tinuous family of maps ϕ : X −→ Y , then Φ is uniformly equicontinuous.
���������

. Let d, % be metrics of the spaces X , Y , respectively. If p ∈ X , r > 0,
then B(p, r) denotes the ball {x ∈ X : d(p, x) < r}. Let ε > 0. For any p ∈ X there
exists such a δp > 0 that

ϕ(B(p, 2δp)) ⊆ B(ϕ(p), ε/2)

for any ϕ ∈ Φ. From the covering {B(p, δp) : p ∈ X} choose a finite subcovering
{B(p1, δp1), . . . , B(pn, δpn)}. Let δ = min(δp1 , . . . , δpn). If t, s ∈ X , d(t, s) < δ then

t ∈ B(pk, δpk
) for some k ∈ {1, . . . , n}. Then

d(s, pk) 6 d(s, t) + d(t, pk) < δ + δpk
6 2δpk

.

Hence, %(ϕ(t), ϕ(s)) 6 %(ϕ(t), ϕ(pk)) + %(ϕ(pk), ϕ(s)) < ε/2 + ε/2 = ε. �

Lemma 3. If the sequence of partial sums of a series
∑
bn is bounded, then every

solution of the equation ∆yn = bn is bounded.
���������

. Assume ∆yn = bn. Then

yn+1 − y1 = ∆y1 + ∆y2 + . . .+ ∆yn = b1 + . . .+ bn = sn.

By assumption the sequence (sn) is bounded, so the sequence (yn) is bounded, too.
The main results of this paper are the following two theorems. In the proofs of

these theorems we use the technique similar to that used in [6]. �

Theorem 1. Assume the series
∑
an is absolutely convergent, the sequence of

partial sums of the series
∑
bn is bounded, y is a solution of the equation ∆yn = bn,

Y is the set of values of the sequence y. If there exists a neighbourhood U of the

closure Y such that the family {ϕn|U} is locally bounded and equicontinuous, then
there exists a solution x of (E) such that

xn = yn + o(1).

���������
. By Lemma 3 the set Y is bounded. Therefore the closure Y is compact.

Hence, it follows that there exists an open set V such that V is compact and Y ⊆
V ⊆ V ⊆ U. Using Lemma 2 and Lemma 1 one can show that the family {ϕn|V } is
bounded and uniformly equicontinuous.
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Since Y is compact, so there exists a number a > 0 such that if s ∈ Y , t ∈ � and
|s − t| 6 a then t ∈ V . There exists M > 1 such that |ϕn(t)| 6 M for any t ∈ V ,

n ∈ � . Let us denote rn =
∞∑

j=n

|aj | for n ∈ � . There exists p ∈ � such that Mrn < a

for any n > p. Let

T = {x ∈ BS : xn = 0 for n < p and |xn| 6 Mrn for n > p}.
S = {x ∈ BS : xn = yn for n < p and |xn − yn| 6 Mrn for n > p}.

Obviously, T is a convex and closed subset of the space BS. Let ε > 0. It is easy
to construct a finite ε-net for the set T . Hence, T is compact. Since the mapping

F : T −→ S defined by F (x) (n) = xn + yn is an affine isometry of T onto S, it
follows that S is also convex and compact. If x ∈ S and k ∈ � , then yk ∈ Y and

|xk − yk| < a. Hence, xk ∈ V . Therefore, |ϕn(xk)| 6 M for any x ∈ S, n, k ∈ � . For
x ∈ S, let us define the sequence A(x) by

A(x)(n) =




yn for n < p,

yn −
∞∑

j=n

ajϕj(x(σ(j))) for n > p.

If x ∈ S and n > p, then

|A(x)(n) − yn| =
∣∣∣∣
∞∑

j=n

ajϕj(x(σ(j)))
∣∣∣∣ 6

∞∑

j=n

|aj ||ϕj(x(σ(j)))| 6 Mrn.

Therefore A(x) ∈ S. Hence, it follows that A(S) ⊆ S.

Let ε > 0. Then there exists δ > 0 such that if t, s ∈ V and |t − s| < δ then
|ϕn(t)− ϕn(s)| < ε for any n ∈ � . Let x, z ∈ S, ‖x− z‖ < δ. Then |xk − zk| < δ for

any k ∈ � . Hence, |ϕn(xk)− ϕn(zk)| < ε for any n, k ∈ � . Therefore

‖A(x)−A(z)‖ = sup
n>p

∣∣∣∣
∞∑

j=n

ajϕj(x(σ(j))) −
∞∑

j=n

ajϕj(z(σ(j)))
∣∣∣∣

6 sup
n>p

∞∑

j=n

|aj ||ϕj(x(σ(j))) − ϕj(z(σ(j)))|

=
∞∑

j=p

|aj ||ϕj(x(σ(j))) − ϕj(z(σ(j)))| 6 εrp.

This means that A is a continuous mapping. By Schauder’s theorem it follows that

there exists x ∈ S such that A(x) = x. Consequently, for n > p we obtain

xn = yn −
∞∑

j=n

ajϕj(x(σ(j))), xn+1 = yn+1 −
∞∑

j=n+1

ajϕj(x(σ(j))).
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Hence, if n > p then ∆xn = ∆yn + anϕn(x(σ(n))) = anϕn(x(σ(n))) + bn. Moreover,

the convergence of the series
∞∑

j=1

ajϕj(x(σ(j))) implies that xn = yn + o(1). This

completes the proof. �

Corollary 1. If the series
∑
an is absolutely convergent, the sequence of partial

sums of the series
∑
bn is bounded, the family {ϕn} is equicontinuous and locally

bounded, then for an arbitrary solution y of the equation ∆yn = bn there exists a

solution x of (E) such that
xn = yn + o(1).

���������
. Take U = � in Theorem 1. �

The next corollary generalizes Theorem 2.1 of [7].

Corollary 2. If the series
∑
an is absolutely convergent, the series

∑
bn is con-

vergent, the family {ϕn} is equicontinuous and locally bounded, then for any c ∈ �
there exists a solution of (E) which converges to c.
���������

. Choose a sequence (zn) such that ∆zn = bn. By the convergence of the
series

∑
bn, the sequence (zn) is convergent. Let λ = lim zn and yn = c + zn − λ.

Then ∆yn = bn and zn − λ = o(1). By Corollary 1, there exists a solution x of (E)
such that xn = yn + o(1). Obviously, x is convergent to c. �

Corollary 3. If the series
∑
an is absolutely convergent, the sequence of partial

sums of the series
∑
bn is bounded and {ϕn} is a periodic family (i.e., ϕn+k = ϕn for

some k ∈ � and every n ∈ � ) of continuous functions, then for an arbitrary solution
y of the equation ∆yn = bn there exists a solution x of (E) such that

xn = yn + o(1).

���������
. Obviously, the finite family {ϕ1, ϕ2, . . . , ϕk−1} of continuous functions is

equicontinuous and locally bounded. By periodicity of the sequence (ϕn) it follows
that the family {ϕn : n ∈ � } is equicontinuous and locally bounded. Hence, the
assertion follows from Corollary 1. �

Corollary 4. If the series
∑
an is absolutely convergent and the series

∑
bn is

convergent, and {ϕn} is a periodic family of continuous functions, then for any c ∈ �
there exists a solution of (E) which converges to c.

In Theorem 1 (and in Corollary 1) the sequence b is such that all solutions of the
equation ∆yn = bn are bounded. In the next theorem b is an arbitrary real sequence.
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Theorem 2. If the series
∑
an is absolutely convergent and family {ϕn} is

bounded and uniformly equicontinuous, then for an arbitrary solution y of the equa-

tion ∆yn = bn there exists a solution x of (E) such that xn = yn + o(1).
���������

. Assume y is a solution of the equation ∆yn = bn. Let rn =
∞∑

j=n

|aj | for

n ∈ � . Choose a constant M > 0 for which |ϕn(t)| 6 M for any t ∈ � and n ∈ � .
Let

T = {x ∈ BS : |xn| 6 Mrn, n ∈ � },
S = {x ∈ SQ : |xn − yn| 6 Mrn, n ∈ � },

and let F : T −→ S be defined by F (x) (n) = yn + xn, x ∈ T, n ∈ � . Then the
formula %(x, z) = sup{|xn − zn| : n ∈ � }, x, z ∈ S defines a metric on S such that F
is an isometry of T onto S. Since T is a compact and convex subset of the space BS
and S is homeomorphic to T it follows by Schauder’s theorem that every continuous
map A : S −→ S has a fixed point.

For x ∈ S and n ∈ � , let

A(x)(n) = yn −
∞∑

j=n

ajϕj(x(σ(j))).

The rest of the proof is similar to the proof of Theorem 1.

Corollary 5. If the series
∑
an is absolutely convergent, lim bn = b ∈ � , the series∑

(bn − b) is convergent, the family {ϕn} is bounded and uniformly equicontinuous,
then for any c ∈ � there exists a solution x of (E) such that

xn = bn+ c+ o(1).

���������
. Choose a sequence (zn) such that ∆zn = bn − b. By the convergence

of the series
∑

(bn − b), the sequence (zn) is corvergent. Let λ = lim zn and let
yn = bn + c + zn − λ. Then ∆yn = b + ∆zn = b + bn − b = bn and zn − λ = o(1).
By Theorem 2, there exists a solution x of (E) such that xn = yn + o(1). Obviously,
xn = bn+ c+ o(1). �

Corollary 6. If the series
∑
an is absolutely convergent and {ϕn} is a periodic

family of uniformly continuous and bounded functions, then for an arbitrary solution

y of the equation ∆yn = bn there exists a solution x of (E) such that xn = yn + o(1).
���������

. This corollary is an easy consequence of Theorem 2 and the fact that

a finite family of uniformly continuous and bounded functions is uniformly equicon-
tinuous and bounded. �

354



Theorem 3. Let x be a solution of (E). If the family {ϕn} is bounded and the
series

∑
an is absolutely convergent, then

(a) if the sequence of partial sums of the series
∑
bn is bounded, then x is bounded,

(b) if the series
∑
bn is convergent, then x is convergent,

(c) if
∑
bn = ∞, then x is divergent to ∞,

(d) if
∑
bn = −∞, then x is divergent to −∞.

���������
. For n ∈ � , let

Sn =
n∑

i=1

aiϕi(x(σ(i))), tn =
n∑

i=1

bi.

Since the family {ϕn} is bounded and the series
∑
an is absolutely convergent, it

follows that the sequence (Sn) is convergent. Moreover,

xn − x1 = ∆x1 + ∆x2 + . . .+ ∆xn−1 = Sn−1 + tn−1.

From the convergence of (Sn) it follows now that if the sequence (tn) is bounded,
then (xn) is also bounded and, moreover, if (tn) is convergent then (xn) is convergent,
too. Analogously, one can prove (c), (d). �

Now we consider a special case of equation (E):

(E1) xn+1 − xn = anϕn(xn+1), an ∈ � , ϕn : � −→ � ,

i.e., we assume that σ(n) = n+ 1 and bn = 0 for every n ∈ � .
A special case of this equation (when ϕn(t) = t2 for n ∈ � , t ∈ � ) was studied

in [7].

We start with some simple lemmas.

Lemma 4. If λ ∈ � , ϕn(λ) = 0 for any n ∈ � , then the constant sequence xn = λ

is a solution of (E1).

Lemma 5. Let x be a solution of (E1). If λ ∈ � , p ∈ � , ϕn(λ) = 0 for any n ∈ �
and xp 6= λ, then xn 6= λ for any n > p.

���������
. Assume xp+1 = λ. Then xp = xp+1 − apϕ(xp+1) = λ, a contradiction.

Hence, xp+1 6= λ and so on. �

Corollary 7. Let x be a solution of (E1). If λ ∈ � , ϕn(λ) = 0 for any n ∈ � ,
then either xn = λ for all n or there exists p ∈ � such that xn = λ for any n < p

and xn 6= λ for n > p.

355



Theorem 4. Assume ε ∈ (0, 1), ϕn(0) = 0 for any n ∈ � , A,B ⊆ � , an ∈ A for
any n ∈ � , ϕn(t)/t ∈ B for n ∈ � and t 6= 0. Let x be a nontrivial solution of (E1).
Then

(a) if AB ⊆ (−∞, 1], then x has a constant sign for large n,
(b) if AB ⊆ [1,∞), then x is alternating for large n,
(c) if AB ⊆ [0, 2], then |x| is nondecreasing,
(d) if AB ⊆ (0, 2), then |x| is increasing for large n,
(e) if AB ⊆ [ε, 2− ε], then x is unbounded,
(f) if AB ⊆ (−∞, 0] ∪ [2,∞), then |x| is nonincreasing for large n,
(g) if AB ⊆ (−∞, 0) ∪ (2,∞), then |x| is decreasing for large n,
(h) if AB ⊆ (−∞,−ε] ∪ [2 + ε,∞), then x is convergent to zero.
���������

. By Lemma 5 it follows that there exists p ∈ � such that xn 6= 0 for any
n > p. Let n > p. Since xn+1 − xn = anϕn(xn+1) and xn+1 6= 0, so

xn/xn+1 = 1− anϕn(xn+1)/xn+1.

Let αn = xn/xn+1. Then αn ∈ 1−AB. If AB ⊆ (−∞, 1], then αn > 0 and xn 6= 0 6=
xn+1. Hence, xn/xn+1 > 0. This proves (a). Analogously, one can prove (b), (c),
(d), (f), (g). If AB ⊆ [ε, 2− ε] then αn ∈ [−1+ ε, 1− ε]. Hence, |xn/xn+1| 6 (1− ε),
therefore |xn| 6 (1 − ε)|xn+1|. By induction one can get |xn| 6 (1 − ε)k|xn+k| for
any k ∈ � . Hence, (e) holds. Similarly one can show (h). �

Corollary 8. Assume λ ∈ � , c > 0, ϕn(λ) = 0, an ∈ [0, c], cϕn(t+λ) 6 t for any

n ∈ � and any t ∈ � . If x is a solution of (E1), then the sequence (xn − λ) has a
constant sign for large n.
���������

. Let ψn(t) = ϕn(t + λ), A = [0, c], B = (−∞, 1/c]. Then ψn(0) = 0,
an ∈ A, ψn(t)/t ∈ B for any n ∈ � and t 6= 0. Since AB = (−∞, 1], it follows from
Theorem 4(a) that an arbitrary solution y of the equation ∆yn = anψn(yn+1) has a
constant sign for large n. Let yn = xn − λ. Then

∆yn = ∆xn = anϕn(xn+1) = anψn(xn+1 − λ) = anψn(yn+1).

�

Analogously, using Theorem 4 (b) we obtain

Corollary 9. If λ ∈ � , c > 0, ϕn(λ) = 0, an > c, cϕn(t+ λ) > t for n ∈ � , t ∈ �
and x is a solution of (E1), then the sequence (xn − λ) is alternating for large n.
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Theorem 5. Assume ε ∈ (0, 1), c > 0, cϕn(t)/t ∈ [ε, 2] for any n ∈ � and t 6= 0,
an ∈ [0, c], ϕn(0) = 0 for all n ∈ � , and let the series∑

min(an, c−an) be divergent.
Then every nontrivial solution of (E1) is unbounded.
���������

. Let x be a nontrivial solution of (E1). By Corollary 7, there is an index
p ∈ � such that xn 6= 0 for any n > p. For n > p let αn = anϕn(xn+1)/xn+1. Then

αn ∈ [εan/c, 2an/c]. Since

2an = 2(c+ an − c)/c = 2− 2(c− an)/c

we have

1− αn ∈ [−1 + 2(c− an)/c, 1− εan/c].

Hence,

|xn/xn+1| = |1− αn| 6 max(|−1 + 2(c− an)/c|, |1− εan/c|)
= max(1− 2(c− an)/c, 1− εan/c) = 1−min(2(c− an)/c, εan/c)

= 1−min(2(c− an), εan)/c.

Let βn = min(2(c− an), εan)/c. Then βn ∈ [0, 1) and |xn| 6 (1− βn)|xn+1|. If k > 1
then, by induction, we obtain

|xn| 6 (1− βn)(1− βn+1) . . . (1− βn+k−1)|xn+k |.

Since the series
∑

min(an, c − an) is divergent, the series
∑
βn is also divergent.

Hence, the infinite product (1 − β1)(1 − β2)(1 − β3) . . . is divergent to zero (i.e.,
lim pn = 0 where pn = (1− β1)(1− β2) . . . (1− βn)). Therefore, the sequence (xn) is
unbounded. �
���������� 

. If x is a solution of (E1), A = [0, c], B = [ε/c, 2/c] and the assumptions
of Theorem 5 are satisfied, then an ∈ A, ϕn(t)/t ∈ B for n ∈ � , t 6= 0 and AB = [0, 2].
Hence, by Theorem 4(c), the sequence |x| is nondecreasing.

Corollary 10. If ε ∈ (0, 1), c > 0, an ∈ [0, c/2], cϕn(t)/t ∈ [ε, 2], ϕn(0) = 0 for
n ∈ � and t 6= 0, and the series

∑
an is divergent, then every nontrivial solution of

(E1) is unbounded.
���������

. Let n ∈ � . Since an 6 c/2, so an 6 c−an. Hence, min(an, c−an) = an

and the assertion follows from Theorem 5. �
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Corollary 11. If ε ∈ (0, 1), c > 0, an ∈ [c/2, c], cϕn(t)/t ∈ [ε, 2], ϕn(0) = 0 for
n ∈ � and t 6= 0, and the series

∑
(c−an) is divergent, then every nontrivial solution

of (E1) is unbounded.
���������

. If n ∈ � then c 6 2an. Hence, c−an 6 an and min(an, c−an) = c−an

and the assertion follows from Theorem 5. �

Theorem 6. Let x be a solution of (E1). If c > 0, |an| > c, c|ϕn(t)/t| > 2 for
any n ∈ � and t 6= 0, then |x| is nonincreasing. Moreover, if the series ∑

(|an| − c)
is divergent, then x converges to zero.

���������
. For n ∈ � , let αn = 2(|an| − c)/c. If xn+1 6= 0, then

|xn/xn+1| = |1− anϕ(xn+1)/xn+1|.

Since

|anϕ(xn+1)/xn+1| > 2|an|/c = 2(|an| − c+ c)/c = 2 + αn

we obtain |xn| > (1 + αn)|xn+1|. Obviously, the last inequality is also valid in the
case xn+1 = 0. Hence, the sequence |xn| is nonincreasing. Moreover, by induction
we obtain

|xn| > (1 + αn)(1 + αn+1) . . . (1 + αn+k−1)|xn+k |.

If the series
∑

(|an| − c) is divergent, then the series
∑
αn is divergent, too. Hence,

the infinite product (1 + α1)(1 + α2)(1 + α3) . . . is also divergent (i.e., lim pn = ∞
where pn = (1 − α1)(1 − α2) . . . (1 − αn)). It follows that the sequence (xn) is
convergent to zero. �
���������� 

. If x is a solution of (E1), A = (−∞,−c] ∪ [c,∞), B = (−∞,−2/c] ∪
[2/c,∞) and the assumptions of Theorem 6 are satisfied, then an ∈ A, ϕn(t)/t ∈ B
for n ∈ � , t 6= 0 and AB = (−∞,−2]∪ [2,∞)]. Hence, the fact that the sequence |x|
is nonincreasing for large n follows also from Theorem 4(f).

Theorem 7. Assume c > 0 and an > c for any n ∈ � . If all functions ϕn are

positive and there exists L > 0 such that cϕn(t) > t for any t > L and n ∈ � , then
all solutions of (E1) are increasing and convergent.
���������

. Since the sequence (an) and the functions ϕn are positive, so all solu-

tions of (E1) are increasing. Assume a solution (xn) is unbounded. There exists an
index p such that xn > L for any n > p.

If n > p, then

1− xn/xn+1 = anϕn(xn+1)/xn+1.
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But 0 < (xn/xn+1) < 1 and (anϕn(xn+1)/xn+1) < 1. Hence,

(ϕn(xn+1)/xn+1) < (1/an) 6 (1/c),

a contradiction. Thus (xn) is bounded and therefore it is convergent. �
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