Mathematic Bohemica

Filip Švrček

Operators on $G M V$-algebras

Mathematica Bohemica, Vol. 129 (2004), No. 4, 337-347

Persistent URL: http://dml.cz/dmlcz/134044

Terms of use:

© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

OPERATORS ON GMV-ALGEBRAS

Filip Švrček, Olomouc

(Received November 7, 2003)

Abstract. Closure $G M V$-algebras are introduced as a commutative generalization of closure $M V$-algebras, which were studied as a natural generalization of topological Boolean algebras.

Keywords: $M V$-algebra, $D R l$-monoid
MSC 2000: 06D35, 06F99

1. Introduction

It is well known that Boolean algebras are algebraic counterparts of the classical propositional two-valued logic similarly as $M V$-algebras (see [1], [2]) are for Łukasiewicz infinite valued logic. Every $M V$-algebra contains a Boolean algebra, which is formed by the set of its idempotent elements. The same property is possessed also by $G M V$-algebras, the non-commutative generalization of $M V$-algebras (see [5] or [9]).

In the paper [11], closure $M V$-algebras are introduced and studied as a natural generalization of topological Boolean algebras (see [12]). The additive closure operator is here introduced as a natural generalization of the topological closure operator on topological Boolean algebras. The aim of this paper is to generalize the results of [11] to the case of $G M V$-algebras.

The paper is divided into Introduction and three main sections. In Section 2, the closure $G M V$-algebras are introduced and the relation between additive closure operators and multiplicative interior operators on $G M V$-algebras is described. In the case of closure $M V$-algebras there is a one-to-one correspondence between additive closure operators and multiplicative interior operators. In the paper, it is shown that this correspondence exists also for closure $G M V$-algebras, but the relation is there a little bit different.

In Section 3 one works with idempotent elemets of a closure $G M V$-algebra, for example, it is shown that every idempotent element of a closure $G M V$-algebra induces a new closure $G M V$-algebra, similarly as is the case for closure $M V$-algebras.

Finally, in the last section $G M V$-algebras are factorized via their normal ideals and the connections between congruences and normal c-ideals of closure $G M V$-algebras are described with help of $D R l$-monoids, which are studied in [6] or in [13].

2. Closure $G M V$-algebras

Definition 1. An algebra $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1)$ of signature $\langle 2,1,1,0,0\rangle$ is called a $G M V$-algebra, iff the following conditions are satisfied for each $x, y, z \in A$:
(GMV1) $\quad x \oplus(y \oplus z)=(x \oplus y) \oplus z$,
(GMV2) $x \oplus 0=0=0 \oplus x$,
(GMV3) $x \oplus 1=1=1 \oplus x$,
(GMV4) $\sim 1=0, \neg 1=0$,
(GMV5) $\sim(\neg x \oplus \neg y)=\neg(\sim x \oplus \sim y)$,
(GMV6) $y \oplus(x \odot \sim y)=(\neg y \odot x) \oplus y=x \oplus(y \odot \sim x)=(\neg x \odot y) \oplus x$,
(GMV7) $y \odot(x \oplus \sim y)=(\neg y \oplus x) \odot y$,
(GMV8) $\sim(\neg x)=x$,
where $x \odot y:=\sim(\neg x \oplus \neg y)$.
Remark 1 . We can define the relation of the partial order \leqslant on every $G M V$ algebra \mathscr{A}. We put

$$
x \leqslant y \Leftrightarrow \neg x \oplus y=1 \quad \forall x, y \in A .
$$

Then (A, \leqslant) is a distributive lattice, where each x, y satisfy

- $x \vee y=y \oplus(x \odot \sim y)=(\neg y \odot x) \oplus y$,
- $x \wedge y=y \odot(x \oplus \sim y)=(\neg y \oplus x) \odot y$.

Definition 2. An algebraic structure $G=(G,+, 0, \vee, \wedge)$ of signature $\langle 2,0,2,2\rangle$ is called an l-group iff

1. $(G,+, 0)$ is a group,
2. (G, \vee, \wedge) is a lattice,
3. $x+(y \vee z)+w=(x+y+w) \vee(x+z+w) \quad \forall x, y, z, w \in G$, $x+(y \wedge z)+w=(x+y+w) \wedge(x+z+w) \quad \forall x, y, z, w \in G$.
An element $u \in G(u>0)$ is said to be a strong unit of an l-group G iff

$$
(\forall a \in G)(\exists n \in \mathbb{N})(a \leqslant n u),
$$

where $n u \stackrel{\text { def }}{=} \underbrace{u+u+\ldots+u}_{n}$.

If an l-group G contains a strong unit u, then we call it a unital l-group and write (G, u).

Let \leqslant be the lattice order on (G, \vee, \wedge). Then for the l-group G we can use notation $G=(G,+, 0, \leqslant)$, which is equivalent to the former notation.

Remark 2 .
a) Let $(G,+, 0, \leqslant)$ be an l-group and let u be a strong unit of G. If we put

$$
x \oplus y:=(x+y) \wedge u, \quad \neg x:=u-x, \quad \sim x:=-x+u,
$$

then $\Gamma(G, u)=([0, u], \oplus, \neg, \sim, 0, u)$ is a $G M V$-algebra.
b) On the other hand, A. Dvurečenskij has shown that for each $G M V$-algebra \mathscr{A} there exists a unital l-group (G, u) such that $\mathscr{A} \cong \Gamma(G, u)$-see [4].

We can now define the additive closure and the multiplicative interior operator in the same way as for the $M V$-algebras. From [12], Theorem 5 and Theorem 6, we know that additive closure operators on an $M V$-algebra \mathscr{A} generalize topological closure operators on the Boolean algebra $B(\mathscr{A})$ of its idempotent elements.

Definition 3.

a) Let $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1)$ be a $G M V$-algebra and $\mathrm{Cl}: A \rightarrow A$ a mapping. Then Cl is called an additive closure operator on \mathscr{A} iff for each $a, b \in A$

1. $\mathrm{Cl}(a \oplus b)=\mathrm{Cl}(a) \oplus \mathrm{Cl}(b)$;
2. $a \leqslant \mathrm{Cl}(a)$;
3. $\mathrm{Cl}(\mathrm{Cl}(a))=\mathrm{Cl}(a)$;
4. $\mathrm{Cl}(0)=0$.
b) If Cl is an additive closure operator on \mathscr{A} then $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1, \mathrm{Cl})$ is called a closure $G M V$-algebra and $\mathrm{Cl}(a)$ is called the closure of an element $a \in A$. An element a is said to be closed iff $\mathrm{Cl}(a)=a$.

Definition 4.

a) Let $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1)$ be a $G M V$-algebra and Int: $A \rightarrow A$ a mapping. Then Int is called a multiplicative interior operator on \mathscr{A} if and only if for each $a, b \in A$
$1^{\prime} . \operatorname{Int}(a \odot b)=\operatorname{Int}(a) \odot \operatorname{Int}(b) ;$
$2^{\prime} . \operatorname{Int}(a) \leqslant a ;$
$3^{\prime} . \operatorname{Int}(\operatorname{Int}(a))=\operatorname{Int}(a)$;
$4^{\prime} . \operatorname{Int}(1)=1$.
b) If Int is a multiplicative interior operator on \mathscr{A}, then an algebra $\mathscr{A}=$ $(A, \oplus, \neg, \sim, 0,1$, Int $)$ is called an interior $G M V$-algebra and $\operatorname{Int}(a)$ is called the interior of an element $a \in A$. An element a is said to be open $\operatorname{iff} \operatorname{Int}(a)=a$.

Lemma 1. Let $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1, \mathrm{Cl})$ be a closure $G M V$-algebra. We put
a) $\operatorname{Int}\urcorner(a)=\neg \mathrm{Cl}(\sim a)$,
b) $\operatorname{Int}^{\sim}(a)=\sim \mathrm{Cl}(\neg a)$
for each $a \in A$. Then these two operators are multiplicative interior operators on \mathscr{A} and for each $a, b \in A$ we have
a) $\mathrm{Cl}(a)=\sim \operatorname{Int}^{\urcorner}(\neg a)$,
b) $\mathrm{Cl}(a)=\neg \operatorname{Int}^{\sim}(\sim a)$.

Proof. We restrict ourselves to the case a), since b) can be proved analogously.
$1^{\prime} . \operatorname{Int} \neg(a \odot b)=\neg \mathrm{Cl}(\sim(a \odot b))=\neg \mathrm{Cl}(\sim a \oplus \sim b)=\neg(\mathrm{Cl}(\sim a) \oplus \mathrm{Cl}(\sim b))=\neg \mathrm{Cl}(\sim a) \odot$ $\neg \mathrm{Cl}(\sim b)=\operatorname{Int}\urcorner(a) \odot \operatorname{Int}\urcorner(b) ;$
$2^{\prime} . \operatorname{Int}^{\urcorner}(a)=\neg \mathrm{Cl}(\sim a) \leqslant \neg \sim a=a ;$
$\left.\left.\left.3^{\prime} . \operatorname{Int}\right\urcorner(\operatorname{Int}\urcorner(a)\right)=\neg \mathrm{Cl}(\sim \neg \mathrm{Cl}(\sim a))=\neg \mathrm{Cl}(\mathrm{Cl}(\sim a))=\neg \mathrm{Cl}(\sim a)=\operatorname{Int}\right\urcorner(a)$;
$\left.4^{\prime} . \operatorname{Int}\right\urcorner(1)=\neg \mathrm{Cl}(\sim 1)=\neg \mathrm{Cl}(0)=\neg 0=1$.

The next lemma shows that the operator Cl from Definition 3 and the operators Int ${ }^{\sim}$, Int \urcorner from Lemma 1 are all isotone.

Lemma 2. If $a \leqslant b$ for any $a, b \in A$, then $\mathrm{Cl}(a) \leqslant \mathrm{Cl}(b)$ and $\operatorname{Int}\urcorner(a) \leqslant \operatorname{Int}\urcorner(b)$, as well as $\operatorname{Int}^{\sim}(a) \leqslant \operatorname{Int}^{\sim}(b)$.

Proof. Let $a \leqslant b$. Then $\operatorname{Cl}(b)=\operatorname{Cl}(a \vee b)=\operatorname{Cl}(a \oplus(b \odot \sim a))$. Therefore $\mathrm{Cl}(b)=\mathrm{Cl}(a) \oplus \mathrm{Cl}(b \odot \sim a) \geqslant \mathrm{Cl}(a) \vee \mathrm{Cl}(b \odot \sim a)$, and so $\mathrm{Cl}(a) \leqslant \mathrm{Cl}(b)$.

Similarly from $a \leqslant b$ we have $\operatorname{Int}^{\sim}(a)=\operatorname{Int}^{\sim}(a \wedge b)=\operatorname{Int}^{\sim}(b \odot(a \oplus \sim b))=$ $\operatorname{Int}^{\sim}(b) \odot \operatorname{Int}^{\sim}(a \oplus \sim b) \leqslant \operatorname{Int}^{\sim}(b) \wedge \operatorname{Int}^{\sim}(a \oplus \sim b)$, hence $\operatorname{Int}^{\sim}(a) \leqslant \operatorname{Int}^{\sim}(b)$ and analogously for Int \urcorner.

In the case of closure $M V$-algebras, here we were able to construct from one closure operator just one interior operator by the rule $\operatorname{Int}(x)=\neg \mathrm{Cl}(\neg x)$ and then get back to the original one. Now, let us try to describe the situation for closure $G M V$-algebras.

Remark 3. Let us consider a closure $G M V$-algebra \mathscr{A} and a mapping $f: A \rightarrow$ A. We can define two new operators $\Phi\urcorner(f)$ and $\Phi^{\sim}(f)$ on A by the reles $\left.\Phi\right\urcorner(f)(a)=$ $\neg f(\sim a)$ and $\Phi^{\sim}(f)(a)=\sim f(\neg a)$. Then we clearly have that $\left.\Phi\right\urcorner \circ \Phi^{\sim}=\mathrm{id}=\Phi^{\sim} \circ \Phi^{\urcorner}$ and if we take an additive closure operator Cl on \mathscr{A} instead of the arbitrary mapping f on \mathscr{A}, then (by Lemma 1) we see that there exists a one-to-one correspondence between the aditive closure operators and the multiplicative interior operators on the closure $G M V$-algebras. Compared to closure $M V$-algebras, the relation is here a little bit different as we are going to show.

Let us denote for each even non-negative integer i and for an operator Cl_{0}

$$
\begin{aligned}
\mathrm{Cl}_{i}^{\urcorner} & =\underbrace{\Phi\urcorner \circ \ldots \circ \Phi\urcorner}_{i}\left(\mathrm{Cl}_{0}\right), \\
\mathrm{Cl}_{i}^{\sim} & =\underbrace{\Phi^{\sim} \circ \ldots \circ \Phi^{\sim}}_{i}\left(\mathrm{Cl}_{0}\right)
\end{aligned}
$$

and for each odd non-negative integer i

$$
\begin{aligned}
& \operatorname{Int}_{i}^{\urcorner}=\underbrace{\Phi\urcorner \circ \ldots \circ \Phi\urcorner}_{i}\left(\mathrm{Cl}_{0}\right), \\
& \operatorname{Int}_{i}^{\sim}=\underbrace{\Phi^{\sim} \circ \ldots \circ \Phi^{\sim}}_{i}\left(\mathrm{Cl}_{0}\right) .
\end{aligned}
$$

The following theorem is an easy consequence of the preceding Remark 3 and of Lemma 1.

Theorem 3. Let Cl_{0} be an additive closure operator on a $G M V$-algebra \mathscr{A}. Then we have for each $k \in \mathbb{N} \cup\{0\}$
a) $\mathrm{Cl}_{2 k}^{\sim}$ and $\mathrm{Cl}_{2 k}^{\sim}$ are additive closure operators on \mathscr{A};
b) $\operatorname{Int}_{2 k+1}^{\neg}$ and $\operatorname{Int}_{2 k+1}^{\sim}$ are multiplicative interior operators on \mathscr{A}.

3. Idempotent elements of closure $G M V$-algebras

Now, we can consider the set $B(\mathscr{A})=\{a \in A ; a \oplus a=a\}$ of additively idempotent elements of a $G M V$-algebra \mathscr{A}. One can show that $B(\mathscr{A})$ is just the set of multiplicatively idempotent elements in $\mathscr{A} . B(\mathscr{A})$ is a sublattice of the lattice (A, \vee, \wedge), contains 0 a 1 and is also a Boolean algebra. Analogously as for $M V$-algebras one can show that the operations \oplus, \odot coincide on $B(\mathscr{A})$ with the lattice operations \vee, \wedge-see [10].

Lemma 4. Let \mathscr{A} be a $G M V$-algebra and let a be an idempotent element in \mathscr{A}. Then
a) $y \odot a=a \odot y=a \wedge y$,
b) $a \odot(x \oplus y)=(a \odot x) \oplus(a \odot y)$,
c) $(x \oplus y) \odot a=(x \odot a) \oplus(y \odot a)$
for each $x, y \in A$.
Proof. a) Let $y \leqslant a$. Then $a \leqslant y \oplus a \leqslant a \oplus a=a$, thus $y \oplus a=a$ and hence, by [9], Theorem $7, y \odot a=y=y \wedge a$.

Let now $y \in A$ be arbitrary. Clearly $y \odot a \leqslant y, a$. Let $z \in A, z \leqslant y, a$. Then also $z=z \odot a \leqslant y \odot a$, and consequently $y \odot a=y \wedge a$. Similarly $a \odot y=a \wedge y$.
b) Let $a \in B(\mathscr{A})$. Using distributivity of " \oplus " over " \wedge " we obtain

$$
(a \wedge x) \oplus(a \wedge y)=(a \oplus a) \wedge(x \oplus a) \wedge(a \oplus y) \wedge(x \oplus y)
$$

hence by a), $a \odot(x \oplus y)=(a \odot x) \oplus(a \odot y)$.
c) Analogously to the case b).

Similarly as for closure $M V$-algebras, we can show that every idempotent element a in a closure $G M V$-algebra \mathscr{A} determines a new closure $G M V$-algebra on the interval $[0, a]$.

Theorem 5. Let $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1, \mathrm{Cl})$ be a closure $G M V$-algebra and let a be an idempotent element in \mathscr{A}. We put

- $x \oplus_{a} y=x \oplus y$,
- $\neg_{a} x=\neg(x \oplus \sim a)$,
- $\sim_{a} x=\sim(\neg a \oplus x)$,
- $0_{a}=0$,
- $1_{a}=a$,
- $\mathrm{Cl}_{a}(x)=a \odot \mathrm{Cl}(x)$
for each $x, y \in A$. Then $\mathscr{A}_{a}=\left([0, a], \oplus_{a}, \neg_{a}, \sim_{a}, 0_{a}, 1_{a}, \mathrm{Cl}_{a}\right)$ is a closure $G M V$ algebra and we have
- $x \odot_{a} y=x \odot y$,
- $\left.\operatorname{Int}_{a}{ }^{2}(x)=a \odot \operatorname{Int}\right\urcorner(\neg a \oplus x)$,
- $\operatorname{Int}_{a}^{\sim}(x)=a \odot \operatorname{Int}^{\sim}(x \oplus \sim a)$.

Proof. Availability of axioms (GMV1)-(GMV8) from Definition 1 for the algebra $\left([0, a], \oplus_{a}, \neg a, \sim_{a}, 0, a\right)$ are proved in [9], so \mathscr{A}_{a} is a $G M V$-algebra. In the second part of the proof we need to show that Cl_{a} is an additive closure operator on \mathscr{A}_{a}.

1. $\mathrm{Cl}_{a}(x \oplus y)=a \odot \mathrm{Cl}(x \oplus y)=a \odot(\mathrm{Cl}(x) \oplus \mathrm{Cl}(y))=(a \odot \mathrm{Cl}(x)) \oplus(a \odot \mathrm{Cl}(y))=$ $\mathrm{Cl}_{a}(x) \oplus \mathrm{Cl}_{a}(y) ;$
2. $\mathrm{Cl}_{a}(x)=a \odot \mathrm{Cl}(x) \geqslant a \odot x=a \wedge x=x$;
3. $\mathrm{Cl}_{a}\left(\mathrm{Cl}_{a}(x)\right)=a \odot \mathrm{Cl}(a \odot \mathrm{Cl}(x)) \leqslant a \odot \mathrm{Cl}(\mathrm{Cl}(x))=a \odot \mathrm{Cl}(x)=\mathrm{Cl}_{a}(x)$; on the other hand, according to 2 we get $\mathrm{Cl}_{a}(x)=a \odot \mathrm{Cl}(x) \leqslant \mathrm{Cl}_{a}(a \odot \mathrm{Cl}(x))=$ $\mathrm{Cl}_{a}\left(\mathrm{Cl}_{a}(x)\right)$, so, together we have $\mathrm{Cl}_{a}\left(\mathrm{Cl}_{a}(x)\right)=\mathrm{Cl}_{a}(x)$;
4. $\mathrm{Cl}_{a}(0)=a \odot \mathrm{Cl}(0)=a \odot 0=a \wedge 0=0$.

Further, $\operatorname{Int}_{a}^{\neg}(x)=\neg_{a} \mathrm{Cl}_{a}\left(\sim_{a} x\right)=\neg((a \odot \mathrm{Cl}(\sim(\neg a \oplus x))) \oplus \sim a)=(\neg a \oplus$ $\neg \mathrm{Cl}(\sim(\neg a \oplus x))) \odot a=(\neg a \oplus \operatorname{Int}\urcorner(\neg a \oplus x)) \odot a=\operatorname{Int}\urcorner(\neg a \oplus x) \wedge a=a \odot \operatorname{Int}\urcorner(\neg a \oplus x)$. Analogously for $\operatorname{Int}_{a}^{\sim}$.

Corollary 6. Let \mathscr{A} be a $G M V$-algebra and $a \in A$ an idempotent element. Then a mapping h given by the formula $h(x)=a \odot x$ for each $x \in A$ is a homomorphism from \mathscr{A} onto \mathscr{A}_{a}.

Proof. Let $x, y \in A$. Then

$$
h(x \odot y)=a \odot(x \odot y)=a \odot a \odot(x \odot y)=a \odot(a \odot x) \odot y
$$

By Lemma 4a) we have

$$
a \odot(a \odot x) \odot y=a \odot(x \odot a) \odot y=(a \odot x) \odot(a \odot y)=h(x) \odot_{a} h(y)
$$

Further,

- $h\left(\sim_{a} x\right)=a \odot \sim x=a \wedge \sim x=\sim x \wedge a=a \odot(\sim x \oplus \sim a)=a \odot \sim(x \odot a)=$ $a \odot \sim(a \odot x)=a \odot \sim h(x)=\sim(\neg a \oplus h(x))=\sim{ }_{a} h(x)$,
- $h(\neg a x)=a \odot \neg x=a \wedge \neg x=\neg x \wedge a=(\neg a \oplus \neg x) \odot a=\neg(a \odot x) \odot a=\neg h(x) \odot a=$ $\neg(h(x) \oplus \sim a)=\neg_{a} h(x)$,
- $h(0)=0=0_{a}$
and finally
- $h(x \oplus y)=h(\sim(\neg x \oplus \neg y))=\sim_{a} h(\neg x \odot \neg y)=\sim_{a}\left(h(\neg x) \odot_{a} h(\neg y)\right)=$ $\sim_{a}\left(\neg_{a} h(x) \odot_{a} \neg_{a} h(y)\right)=h(x) \oplus_{a} h(y)$.

So h is a homomorphism from the $G M V$-algebra \mathscr{A} into the $G M V$-algebra \mathscr{A}_{a} and since $x=a \odot x=h(x)$ for each $x \in[0, a], h$ is surjective.

Definition 5. Let $\mathscr{A}_{1}=\left(A_{1}, \oplus_{1}, \neg_{1}, \sim_{1}, 0_{1}, 1_{1}, \mathrm{Cl}_{1}\right)$ and $\mathscr{A}_{2}=\left(A_{2}, \oplus_{2}, \neg_{2}, \sim_{2}\right.$, $0_{2}, 1_{2}, \mathrm{Cl}_{2}$) be closure $G M V$-algebras and let $h: A_{1} \rightarrow A_{2}$ be a homomorphism from \mathscr{A}_{1} into \mathscr{A}_{2}. Then h is said to be a c-homomorphism from \mathscr{A}_{1} into \mathscr{A}_{2} iff (C1) $h\left(\mathrm{Cl}_{1}(x)\right)=\mathrm{Cl}_{2}(h(x))$ for each $x \in A_{1}$.

Lemma 7. Let us consider closure $G M V$-algebras \mathscr{A}_{1} and \mathscr{A}_{2}. A homomorphism h from the $G M V$-algebra \mathscr{A}_{1} into the $G M V$-algebra \mathscr{A}_{2} is a c-homomorphism from \mathscr{A}_{1} into \mathscr{A}_{2} if and only if one of the following two equivalent conditions is satisfied: (C2) $h\left(\operatorname{Int}_{1}^{ᄀ}(x)\right)=\operatorname{Int}_{2}^{ᄀ}(h(x))$, (C3) $h\left(\operatorname{Int}_{1}^{\sim}(x)\right)=\operatorname{Int}_{2}^{\sim}(h(x))$
for each $x \in A_{1}$.
Proof. A homomorphism h from \mathscr{A}_{1} into \mathscr{A}_{2} is a c-homomorphism iff

$$
h\left(\mathrm{Cl}_{1}(x)\right)=\mathrm{Cl}_{2}(h(x))
$$

for each $x \in A_{1}$, so for $\neg_{1} x$, too. From the last equation we get

$$
\sim_{2} h\left(\mathrm{Cl}_{1}\left(\neg_{1} x\right)\right)=\sim_{2} \mathrm{Cl}_{2}\left(h\left(\neg_{1} x\right)\right) .
$$

Since h is a homomorphism from \mathscr{A}_{1} into \mathscr{A}_{2}, we have got $h\left(\neg_{1} x\right)=\neg_{2} h(x)$ and also $h\left(\sim_{1} x\right)=\sim_{2} h(x)$ for each $x \in A_{1}$. Therefore we can write instead of the last equation

$$
h\left(\sim_{1} \mathrm{Cl}_{1}\left(\neg_{1} x\right)\right)=\sim_{2} \mathrm{Cl}_{2}\left(\neg_{2} h(x)\right),
$$

which is equivalent to the axiom (C3), thus

$$
h\left(\operatorname{Int}_{1}^{\sim}(x)\right)=\operatorname{Int}_{2}^{\sim}(h(x)) .
$$

The equivalence of the conditions (C 1), (C 2) we can be proved analogously.
The following theorem refers to Theorem 5 and Corollary 6 and completes our description of the relation of closure $G M V$-algebras $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1, \mathrm{Cl})$ and $\mathscr{A}_{a}=\left([0, a], \oplus_{a}, \neg_{a}, \sim_{a}, 0_{a}, 1_{a}, \mathrm{Cl}_{a}\right)$.

Theorem 8. Let \mathscr{A} be a closure $G M V$-algebra and let a be its idempotent element, which is open to at least one of multiplicative interior operators Int ${ }^{\urcorner}$and Int \sim on \mathscr{A}. Finally, let $h: A \rightarrow[0, a]$ be a mapping such that $h(x)=a \odot x$ for each $x \in A$. Then h is a surjective c-homomorphism \mathscr{A} onto \mathscr{A}_{a}.

Proof. Let us consider a mapping $h: A \rightarrow[0, a]$ such that $h(x)=a \odot x$ for each $x \in A$. We know from Lemma 6 that h is a surjective homomorphism of $G M V$-algebras \mathscr{A} and \mathscr{A}_{a}.

We need to show now that h is a c-homomorphism. Let a be open for example with respect to Int^{\sim}. Then it is enough to check availability of the condition (C3) from Lemma 7. For each $x \in A$ we have

$$
h\left(\operatorname{Int}^{\sim}(x)\right)=a \odot \operatorname{Int}^{\sim}(x)=\operatorname{Int}^{\sim}(a) \odot \operatorname{Int}^{\sim}(x)=\operatorname{Int}^{\sim}(a \odot x)=\operatorname{Int}^{\sim}(h(x)) .
$$

Let $y \leqslant a$. Then

$$
\operatorname{Int}^{\sim}(y)=\operatorname{Int}^{\sim}(a \wedge y)=\operatorname{Int}^{\sim}(a \odot(y \oplus \sim a))=a \odot \operatorname{Int}^{\sim}(y \oplus \sim a)=\operatorname{Int}_{a}^{\sim}(y)
$$

Altogether we have

$$
h\left(\operatorname{Int}^{\sim}(x)\right)=\operatorname{Int}^{\sim}(h(x))=\operatorname{Int}_{a}^{\sim}(h(x))
$$

for each $x \in A$.
Note. If a is open with respect to Int $^{\urcorner}$, then we check availability of the condition (C2) from Lemma 7.

4. FACTORIZATION ON CLOSURE $G M V$-algebras

Definition 6. Let us consider a $G M V$-algebra \mathscr{A}. Then a set $I \subset A, \emptyset \neq I$ is called an ideal of the $G M V$-algebra \mathscr{A} iff
(I1) $0 \in I$;
(I2) if $x, y \in I$, then $x \oplus y \in I$;
(I3) if $x \in I, y \in A$ a $y \leqslant x$, then $y \in I$.
An ideal I of a $G M V$-algebra \mathscr{A} is called a normal ideal iff for each $x, y \in A$
(I4) $\neg x \odot y \in I \Leftrightarrow y \odot \sim x \in I$.
Definition 7. A normal ideal I of a closure $G M V$-algebra \mathscr{A} is called a normal c-ideal iff $\mathrm{Cl}(a) \in I$ for each $a \in I$.

Remark 4. Normal ideals of $G M V$-algebra \mathscr{A} are in a one-to-one correspondence with congruences on \mathscr{A}.
a) If \equiv is a congruence on \mathscr{A}, then $0 / \equiv=\{x \in A ; x \equiv 0\}$ is a normal ideal of \mathscr{A}.
b) Let H be a normal ideal of \mathscr{A}. The relation \equiv_{H}, where

$$
x \equiv_{H} y \Longleftrightarrow(\neg y \odot x) \oplus(\neg x \odot y) \in H
$$

or equivalently

$$
x \equiv_{H} y \Longleftrightarrow(y \odot \sim x) \oplus(x \odot \sim y) \in H,
$$

is a congruence on \mathscr{A} and $H=\left\{x \in A ; x \equiv_{H} 0\right\}=0 / \equiv_{H}$ holds.
More detail is found in [5].
Note.
a) We denote by $\mathscr{A} / I=\mathscr{A} / \equiv_{I}$ the factor $G M V$-algebra of a $G M V$-algebra \mathscr{A} according to a congruence \equiv_{I} on \mathscr{A} and by \bar{x} the class of A / I which contains the element x.
b) Let \mathscr{A} be a closure $G M V$-algebra and let I be its normal c-ideal. Let us put $\mathrm{Cl}_{I}(\bar{x}):=\overline{\mathrm{Cl}(x)}$ for each $x \in A$. This definition of the operator Cl_{I} is correct as we will show in the proof of Theorem 9.

Remark 5. A $D R l$-monoid is an algebraic structure $\mathscr{A}=(A,+, 0, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ of signature $\langle 2,0,2,2,2,2\rangle$, where $(A,+, 0)$ is a monoid, (A, \vee, \wedge) is a lattice, $(A,+, \vee, \wedge, 0)$ is a lattice ordered monoid and the operations \rightharpoonup and \leftharpoondown are left and right dual residuations-see e.g. [6].

There are mutual relations between $G M V$-algebras and $D R l$-monoids which are described in [9], Theorems 12, 13.

Theorem 9. Let \mathscr{A} be a closure $G M V$-algebra and let I be its normal c-ideal. Then the factor $G M V$-algebra \mathscr{A} / I endowed with the operator Cl_{I} from the preceding Note b) is a closure GMV-algebra.

Proof. Let us consider $x \equiv_{I} y$. Then $(\neg x \odot y) \oplus(\neg y \odot x) \in I$, therefore $\neg x \odot y, \neg y \odot x \in I$ and $\mathrm{Cl}(\neg x \odot y), \mathrm{Cl}(\neg y \odot x) \in I$. Further we have

$$
\mathrm{Cl}(\neg y \odot x) \oplus \mathrm{Cl}(y)=\mathrm{Cl}((\neg y \odot x) \oplus y)=\mathrm{Cl}(x \vee y) \geqslant \mathrm{Cl}(x)
$$

Since \mathscr{A} is actually a $D R l$-monoid, we get

$$
\mathrm{Cl}(\neg y \odot x) \geqslant \mathrm{Cl}(x) \rightharpoonup \mathrm{Cl}(y)=\neg \mathrm{Cl}(y) \odot \mathrm{Cl}(x) .
$$

So we have $\neg \mathrm{Cl}(y) \odot \mathrm{Cl}(x) \in I$, since $\mathrm{Cl}(\neg y \odot x) \in I$. We can show analogously that $\neg \mathrm{Cl}(x) \odot \mathrm{Cl}(y) \in I$. Therefore we can see that $(\neg \mathrm{Cl}(x) \odot \mathrm{Cl}(y)) \oplus(\neg \mathrm{Cl}(y) \odot \mathrm{Cl}(x)) \in I$, so $\mathrm{Cl}(x) \equiv{ }_{I} \mathrm{Cl}(y)$, and the operation Cl_{I} is therefore correctly defined on A / I. Moreover, $\mathrm{Cl}_{I}: A / I \rightarrow A / I$ satisfies axioms 1-4 from Definition 3, because

1. $\mathrm{Cl}_{I}(\bar{a} \oplus \bar{b})=\mathrm{Cl}_{I}(\overline{a \oplus b})=\overline{\mathrm{Cl}(a \oplus b)}=\overline{\mathrm{Cl}(a) \oplus \mathrm{Cl}(b)}=\overline{\mathrm{Cl}(a)} \oplus \overline{\mathrm{Cl}(b)}=\mathrm{Cl}_{I}(\bar{a}) \oplus$ $\mathrm{Cl}_{I}(\bar{b})$,
2. $\mathrm{Cl}_{I}(\bar{a})=\overline{\mathrm{Cl}(a)} \geqslant \bar{a}$,
3. $\mathrm{Cl}_{I}\left(\mathrm{Cl}_{I}(\bar{a})\right)=\mathrm{Cl}_{I}(\overline{\mathrm{Cl}(a)})=\overline{\mathrm{Cl}(\mathrm{Cl}(a))}=\overline{\mathrm{Cl}(a)}=\mathrm{Cl}_{I}(\bar{a})$,
4. $\mathrm{Cl}_{I}(\overline{0})=\overline{\mathrm{Cl}(0)}=\overline{0}$.

Corollary 10. There is a one-to-one correspondence between the normal c-ideals and the congruences of the closure $G M V$-algebras.

References

[1] Chang, C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490.
[2] Chang, C. C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80.
[3] Cignoli, R. O. L., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many -Valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000.
[4] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, 2000.
[5] Georgescu, G., Iorgulescu, A.: Pseudo-MV-algebras. Multiple Valued Logic 6 (2001), 95-135.
[6] Kovář, T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis Palacký University, Olomouc, 1996.
[7] Rachi̊nek, J.: DRl-semigroups and MV-algebras. Czechoslovak Math. J. 48 (1998), 365-372.
[8] Rachi̊nek, J.: $M V$-algebras are categorically equivalent to a class of $D R l_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437-441.
[9] Rachůnek, J.: A non-commutative generalization of $M V$-algebras. Czechoslovak Math. J. 52 (2002), 255-273.
[10] Rachuinek, J.: Prime spectra of non-commutative generalizations of $M V$-algebras. Algebra Univers. 48 (2002), 151-169.
[11] Rachůnek, J., Švrček, F.: MV-algebras with additive closure operators. Acta Univ. Palacki., Mathematica 39 (2000), 183-189.
[12] Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Panstw. Wyd. Nauk., Warszawa, 1963.
[13] Swamy, K. L. N.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105-114.

Author's address: Filip Šurček, Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: svrcekf @seznam.cz.

