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Abstract. Let T be a Banach space operator. In this paper we characterize a-Browder’s
theorem for T by the localized single valued extension property. Also, we characterize
a-Weyl’s theorem under the condition Ea(T ) = πa(T ), where Ea(T ) is the set of all eigen-
values of T which are isolated in the approximate point spectrum and πa(T ) is the set of
all left poles of T. Some applications are also given.
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1. Introduction and definitions

Throughout this paper, L(X) denotes the algebra of all bounded linear operators

acting on a Banach space X. For T ∈ L(X), let T ∗, N(T ), R(T ), σ(T ), σp(T ) and

σap(T ) denote respectively the adjoint, the null space, the range, the spectrum, the

point spectrum and the approximate point spectrum of T . Let α(T ) and β(T ) be

the nullity and the deficiency of T defined by

α(T ) = dimN(T ) and β(T ) = codimR(T ).

If the range R(T ) of T is closed and α(T ) < ∞ or β(T ) < ∞, then T is called an

upper semi-Fredholm or a lower semi-Fredholm operator, respectively.

In the sequel SF+(X) (resp. SF−(X)) will denote the set of all upper (resp. lower)

semi-Fredholm operator.

If T ∈ L(X) is either upper or lower semi-Fredholm, then T is called a semi-

Fredholm operator, and the index of T is defined by ind(T ) = α(T ) − β(T ). If both

α(T ) and β(T ) are finite, then T is a Fredholm operator.
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An operator T is called Weyl if it is Fredholm of index zero. For T ∈ L(X)

and n ∈ N define cn(T ) and c′n(T ) by cn(T ) = dimR(T n)/R(T n+1) and c′n(T ) =

dimN(T n+1)/N(T n). The descent q(T ) and the ascent p(T ) are given by

q(T ) = inf{n : cn(T ) = 0} = inf{n : R(T n) = R(T n+1)},

p(T ) = inf{n : c′n(T ) = 0} = inf{n : N(T n) = N(T n+1)}.

A bounded linear operator T is called Browder if it is Fredholm of finite ascent

and descent. The essential spectrum σe(T ), Weyl spectrum σw(T ), and Browder

spectrum σb(T ) of T ∈ L(X) are defined by

σe(T ) = {λ ∈ C : T − λ is not Fredholm},

σw(T ) = {λ ∈ C : T − λ is not Weyl},

σb(T ) = {λ ∈ C : T − λ is not Browder}.

Evidently

σe(T ) ⊆ σw(T ) ⊆ σb(T ).

For a subset K ⊆ C , we write acc K or iso K for the accumulation or isolated

points of K, respectively.

We say that Weyl’s theorem holds for T ∈ L(X) if

σ(T ) \ σw(T ) = E0(T ),

where E0(T ) is the set of isolated points of σ(T ) which are eigenvalues of finite

multiplicity, and that Browder’s theorem holds for T ∈ L(X) if

σw(T ) = σb(T ).

For T ∈ L(X), let SF−

+(X) be the class of all T ∈ SF+(X) with ind T 6 0. The es-

sential approximate point spectrum σSF−

+

(T ) and the Browder essential approximate

point spectrum σab(T ) (see [24], [25]) are defined by

σSF−

+

(T ) = {λ ∈ C : T − λ is not in SF−

+(X)},

σab(T ) = {λ ∈ C : T − λ /∈ σSF−

+

(T ) or p(T − λ) = ∞}.

We say that a-Weyl’s theorem holds for T ∈ L(X) if

σap(T ) \ σSF−

+

(T ) = Ea
0 (T ),
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where Ea
0 (T ) is the set of isolated points of σap(T ) which are eigenvalues of finite

multiplicity, and that a-Browder’s theorem holds for T ∈ L(X) if

σSF−

+

(T ) = σab(T ).

In [10], [26], it is shown that for any T ∈ L(X) we have the implications

a-Weyl’s theorem⇒Weyl’s theorem⇒ Browder’s theorem,

a-Weyl’s theorem⇒ a-Browder’s theorem⇒ Browder’s theorem.

For a bounded linear operator T and a nonnegative integer n define T[n] to be the

restriction of T to R(T n) viewed as a map from R(T n) into R(T n) (in particular,

T[0] = T ). If for some integer n the range space R(T n) is closed and T[n] is an upper

or a lower semi-Fredholm operator, then T is called an upper or a lower semi-B-

Fredholm operator, respectively. In this case the index of T is defined as the index of

the semi-Fredholm operator T[n], see [8], [9]. Moreover, if T[n] is a Fredholm operator,

then T is called a B-Fredholm operator. A semi-B-Fredholm operator is an upper or

a lower semi-B-Fredholm operator. An operator T ∈ L(X) is said to be a B-Weyl

operator if it is a B-Fredholm operator of index zero. The semi-B-Fredholm spectrum

σSBF(T ) and the B-Weyl spectrum σBW(T ) of T are defined by

σSBF(T ) = {λ ∈ C : T − λI is not a semi-B-Fredholm operator},

σBW(T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.

We say that the generalized Weyl’s theorem holds for T if

σ(T ) \ σBW(T ) = E(T ),

where E(T ) is the set of all isolated eigenvalues of T, and the generalized Browder’s

theorem holds for T if

σ(T ) \ σBW(T ) = π(T ),

where π(T ) is the set of all poles of T (see [8, Definition 2.13]). The generalized

Weyl’s and generalized Browder’s theorems have been studied in [3], [7], [8], [28].

Similarly, let SBF+(X) be the class of all upper semi-B-Fredholm operators, and

SBF−

+(X) the class of all T ∈ SBF+(X) such that ind(T ) 6 0. Further, let

σSBF−

+

(T ) = {λ ∈ C : T − λ is not in SBF−

+(X)},

which is called the semi-essential approximate point spectrum, see [8]. We say that

T obeys the generalized a-Weyl’s theorem if

σSBF−

+

(T ) = σap(T ) \ Ea(T ),
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where Ea(T ) is the set of all eigenvalues of T which are isolated in σap(T ) ([8, Defi-

nition 2.13]). From [8], we know that

generalized a-Weyl’s theorem⇒ generalized Weyl’s theorem⇒Weyl’s theorem,

generalized a-Weyl’s theorem⇒ a-Weyl’s theorem.

Moreover, in [5] it is shown that, if E(T ) = π(T ), then

generalized Weyl’s theorem⇔Weyl’s theorem,

and if Ea(T ) = πa(T ), then

genearlized a-Weyl’s theorem⇔ a-Weyl’s theorem.

For T ∈ L(X) we say that T is Drazin invertible, if there exist B, U ∈ L(X) such

that U is nilpotent and TB = BT, BTB = B and TBT = T + U. It is known that

T is Drazin invertible if and only if it has finite ascent and descent, which is also

equivalent to the fact that T = T0 ⊕ T1, where T0 is invertible and T1 is nilpotent,

see [16, Proposition A] and [19, Corollary 2.2]. The Drazin spectrum is defined by

σD(T ) = {λ ∈ C : T − λ is not Drazin invertible}.

As in [22], define a set LD(X) by

LD(X) = {T ∈ L(X) : p(T ) < ∞ and R(T p(T )+1) is closed}.

An operator T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X). The left

Drazin spectrum σLD(T ) of T is defined by

σLD(T ) = {λ ∈ C : T − λ is not in LD(X)}.

It is known, see [8, Lemma 2.12], that

σSBF−

+

(T ) ⊆ σLD(T ) ⊆ σap(T ).

We say that λ ∈ σap(T ) is a left pole of T if T − λ ∈ LD(X), and that λ ∈ σap(T ) is

a left pole of T of finite rank if λ is a left pole of T and α(T − λ) < ∞. We denote

by πa(T ) the set of all left poles of T, and by πa
0 (T ) the set of all left poles of finite

rank. We say that T obeys the generalized a-Browder’s theorem if

σSBF−

+

(T ) = σap(T ) \ πa(T ).
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Recently, in [5] the authors proved that

generalized Browder’s theorem⇔ Browder’s theorem,

generalized a-Browder’s theorem⇔ a-Browder’s theorem.

The quasi-nilpotent part of T is the subspace

H0(T ) := {x ∈ X : lim
n→∞

‖T nx‖1/n = 0}.

The space H0(T ) is hyperinvariant under T and satisfies T−n(0) ⊆ H0(T ) for all

n ∈ N. For its further properties, see [1], [20], [21].
An operator T ∈ L(X) is said to be semi-regular if R(T ) is closed and N(T ) ⊆

R(T n) for every n ∈ N. We say that T is of Kato type at a point λ ∈ C if there exists
a pair of T -invariant closed subspaces (M, N) such that X = M ⊕N , the restriction

(T − λ)
∣

∣

M
is nilpotent and (T − λ)

∣

∣

N
is semi-regular.

Let O(U, X) be the Fréchet space of all X-valued analytic functions on an open

subset U of C . We say that T ∈ L(X) has the single-valued extension property at

λ ∈ C (the SVEP for short) if for every open disk D(λ, r), the map

TD(λ,r) : O(D(λ, r), X) −→ O(D(λ, r), X)

f 7−→ (z − T )f

is injective. Let S(T ) be the set of all λ on which T does not have the SVEP. We

say that T has the SVEP if S(T ) = ∅, see [12]. We note that S(T ) ⊆ σp(T ).

2. Preliminary results

Definition 2.1 [13]. Let T ∈ L(X) and d ∈ N. Then T has a uniform descent

for n > d if

R(T ) + N(T n) = R(T ) + N(T d) for all n > d.

If in addition, R(T ) + N(T d) is closed, then T is said to have a topological uniform

descent for n > d.

The following result which is proved in [6] is a generalization of the result of Finch

[12].

Lemma 2.1. Let T ∈ L(X). If T is an operator of topological uniform descent

for n > d, then the following conditions are equivalent:

(i) T has the SVEP at 0.

(ii) 0 is not an accumulation point of σ(T ).
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Theorem 2.1. Let T ∈ L(X). Then T satisfies a-Browder’s theorem if and only

if T has the SVEP at λ /∈ σSBF−

+

(T ).

P r o o f. Suppose that T satisfies a-Browder’s theorem, that is

σap(T ) \ σSBF−

+

(T ) = πa(T ).

Let us see that T has the SVEP at λ /∈ σSBF−

+

(T ). If λ /∈ σSBF−

+

(T ), then λ ∈ πa(T ),

and hence λ ∈ iso σap(T ) (see [8, Remark 2.6]). This implies that T has the SVEP

at λ /∈ σSBF−

+

(T ). For the opposite implication suppose that T − λ has the SVEP

for all λ /∈ σSBF−

+

(T ). Let us prove that σap(T ) \ σSBF−

+

(T ) = πa(T ). We know that

σap(T ) \ σSBF−

+

(T ) ⊇ πa(T ). Hence it suffices to prove that σap(T ) \ σSBF−

+

(T ) ⊆

πa(T ). If λ ∈ σap(T ) and λ /∈ σSBF−

+

(T ), then T − λ is of topological uniform

descent. Since T has the SVEP at λ, hence according to Lemma 2.1 λ is isolated in

σ(T ), and hence also in σap(T ). From [8, Theorem 2.8] we conclude that λ ∈ πa(T ).

Consequently,

σap(T ) \ σSBF−

+

(T ) ⊆ πa(T ).

�

In [5], it is proved that a-Weyl’s theorem and a-Browder’s theorem are equivalent

under the condition Ea(T ) = πa(T ).

Proposition 2.1 [5]. Let T ∈ L(X) be such that Ea(T ) = πa(T ). Then the

following properties are equivalent:

i) T satisfies a-Browder’s theorem.

ii) T satisfies a-Weyl’s theorem.

The following result shows that a-Weyl’s theorem and a-Browder’s theorem are

equivalent to the SVEP at λ /∈ σSBF−

+

(T ).

Theorem 2.2. Let T ∈ L(X) be such that Ea(T ) = πa(T ). Then the following

properties are equivalent:

i) T satisfies a-Weyl’s theorem.

ii) T satisfies a-Browder’s theorem.

iii) T has the SVEP at all λ /∈ σSBF−

+

(T ).

P r o o f. Assume that Ea(T ) = πa(T ). Then i) and ii) are equivalent by Propo-

sition 2.1 and from Theorem 2.1 we get that i) is equivalent to iii). �

In the case of Hilbert spaces we have the following lemma which will be used in

the sequel.
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Lemma 2.2 [8, Theorem 2.11]. Let H be a Hilbert space, T ∈ L(H), and let λ

be an isolated point in σap(T ). Then the following properties are equivalent:

i) λ is a left pole of T.

ii) There exist T -invariant subspacesM and N of H such that T −λ = (T −λ)
∣

∣

M
⊕

(T − λ)
∣

∣

N
on H = M ⊕N where (T − λ)

∣

∣

M
is bounded below and (T − λ)

∣

∣

N
is

nilpotent.

Theorem 2.3. If T ∈ L(H), then (T − λ) is Kato type for all λ ∈ Ea(T ) if and

only if Ea(T ) = πa(T ).

P r o o f. Suppose that Ea(T ) = πa(T ). If λ ∈ Ea(T ) then λ is isolated in σap(T )

and λ is a left pole of T. By Lemma 2.2, there exist T -invariant subspaces M and

N of H such that T − λ = (T − λ)
∣

∣

M
⊕ (T − λ)

∣

∣

N
on H = M ⊕N where (T − λ)

∣

∣

M

is bounded below and (T − λ)
∣

∣

N
is nilpotent. Hence (T − λ) is of Kato type for all

λ ∈ Ea(T ). Conversely, let λ ∈ Ea(T ). Then, by assumption, there exist T -invariant

subspaces M and N such that X = M ⊕ N, where (T − λ)
∣

∣

M
is nilpotent and

(T − λ)
∣

∣

N
is semi-regular. Since λ is isolated in σap(T ) and S(T ) ⊆ σap(T ) then T

has the SVEP at λ. In particular, (T −λ)
∣

∣

N
has the SVEP at 0. Hence, (T −λ)

∣

∣

N
is

a semi-regular operator with the SVEP in 0. Thus it follows from [2, Theorem 2.11]

that (T − λ)
∣

∣

N
is injective. Now from Lemma 2.2 we have that λ ∈ πa(T ). Hence

Ea(T ) = πa(T ). �

Combining Theorem 2.1 with the preceding theorem we obtain the following result.

Corollary 2.1. Let T ∈ L(H). If T − λ is of Kato type for all λ ∈ Ea(T ), then

the following assertions are equivalent:

i) T satisfies a-Weyl’s theorem.

ii) T satisfies a-Browder’s theorem

iii) T has the SVEP at all λ /∈ σSBF−

+

(T ).

3. Applications

Following [23], let P(X) be the class of all operators T ∈ L(X) such that for every

complex number λ there exists an integer dλ > 1 for which the following condition

holds:

(3.1) H0(T − λ) = N(T − λ)dλ .
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Theorem 3.1. Let T ∈ P(X). Then T ∗ satisfies a-Weyl’s theorem.

P r o o f. Since T has finite ascent, then by [17, Proposition 1.8] T has the SVEP

and so by Theorem 2.1 it satisfies a-Browder’s theorem. Let λ ∈ Ea(T ∗); then λ is an

isolated point of σap(T ∗) which is equal to σ(T ∗) since T has the SVEP ([18]). Since

T ∗ satisfies the generalized a-Weyl’s theorem [4], we have λ /∈ σSBF+

−

(T ∗). Hence

it follows from [8, Theorem 2.8] that λ ∈ πa(T ∗). Thus Ea(T ∗) ⊆ πa(T ∗). Since

always πa(T ∗) ⊆ Ea(T ∗), we have Ea(T ∗) = πa(T ∗). Now the result follows from

Theorem 2.2. �

An operator T ∈ L(X) is a generalized scalar operator if there exists a continuous

algebra homomorphism ϕ : C∞(C ) → L(X) such that ϕ(1) = I and ϕ(Z) = T . Since

every generalized scalar operator belongs to P(X) ([23]), we have

Corollary 3.1. Let T ∈ L(X) be a generalized scalar operator. Then T ∗ satisfies

a-Weyl’s theorem.

Let T ∈ L(H). T is a p-hyponormal operator if (TT ∗)p 6 (T ∗T )p for 0 < p 6

1. The class of p-hyponormal operators satisfies equality (3.1), hence the following

corollary holds.

Corollary 3.2 [15]. Let T ∈ L(H) be a p-hyponormal operator. Then T ∗ satisfies

a-Weyl’s theorem.

We say that T ∈ L(H) is an M -hyponormal operator if there exists a positive

number M such that ‖(T − µ)∗x‖ 6 M‖(T − µ)x‖ for all x ∈ H and all µ ∈ C . The
class ofM -hyponormal operators satisfies equality (3.1), hence we have the following

corollary.

Corollary 3.3 [15]. Let T ∈ L(H) be an M -hyponormal operator. Then T ∗

satisfies a-Weyl’s theorem.

T ∈ L(H) is said to be a log-hyponormal operator if T is invertible and log(TT ∗) 6

log(T ∗T ). Since log-hyponormal operators satisfy equality (3.1), we have the follow-

ing

Corollary 3.4 [15]. Let T ∈ L(H) be a log-hyponormal operator. Then T ∗

satisfies a-Weyl’s theorem.

A c k n ow l e d g em e n t. The authors are grateful to the referee for several help-

ful remarks and suggestions concerning the paper.
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