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Abstract. The paper gives new integral representations of the g-Drazin inverse of an ele-
ment a of a C∗-algebra that require no restriction on the spectrum of a. The representations
involve powers of a and of its adjoint.
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1. Introduction

Let A be a complex unital C∗-algebra with unit 1. Following [4], we define the
g-Drazin inverse (or the generalized Drazin inverse) of a ∈ A as the element b ∈ A
such that

(1.1) ab = ba, b2a = b, a2b = a + u,

where u is quasinilpotent, that is, λ1−u is invertible in A for all λ 6= 0. The g-Drazin
inverse b of a is unique when it exists, and is denoted by aD. The g-Drazin index

i(a) of a is defined to be 0 if a is invertible, k if the element u in (1.1) is nilpotent
of index k, and ∞ if u is quasinilpotent but not nilpotent. The g-Drazin inverse of

finite index will be called the Drazin inverse since Drazin’s original definition [3] is
consistent with u nilpotent.

We note that if i(a) is finite, then for any m > i(a),

(1.2) am+1aD = am.
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According to [4, Theorem 4.2], an element a ∈ A is g-Drazin invertible if and only if

there exists an idempotent p ∈ A such that

(1.3) ap = pa is quasinilpotent, a + p is invertible.

The element p is the spectral idempotent of a denoted by a � . We have

(1.4) aD = (a + p)−1(1− p) and a � = 1− aDa.

An element c ∈ A is a Moore-Penrose inverse of a ∈ A if

(1.5) aca = a, cac = c, (ac)∗ = ac, (ca)∗ = ca.

The Moore-Penrose inverse is unique, whenever it exists; we will denote it by a†.

According to [6, Theorem 2.5], the following is true.

Lemma 1.1. An element a ∈ A is Moore-Penrose invertible if and only if a∗a (re-
spectively aa∗) is Drazin invertible. The Moore-Penrose inverse of a is then expressed

by

(1.6) a† = (a∗a)Da∗ = a∗(aa∗)D.

In this case 0 is at most a simple pole of the resolvent of a∗a (respectively aa∗).

The reverse relation between the Drazin and Moore-Penrose inverse is well known
for matrices. We give an analogous result for elements of C∗-algebras, which improves

on [6, Proposition 3.7]:

Lemma 1.2. If a ∈ A is Drazin invertible and m > i(a), then a2m+1 is Moore-

Penrose invertible, and

(1.7) aD = am(a2m+1)
†
am.

�! #"$"&%
. If k > i(a), then ak+j(aD)j = ak for any j > 0. In particular,

ak(aD)kak = a2k(aD)k = ak, which means that ak is (von Neumann) regular. By [6,
Theorem 2.8], ak is Moore-Penrose invertible. Consequently, a2m+1 is Moore-Penrose

invertible whenever m > i(a). Then

am(a2m+1)
†
am = (aD)m+1a2m+1(a2m+1)

†
a2m+1(aD)m+1

= (aD)m+1a2m+1(aD)m+1

= (aD)2m+2a2m+1 = aD.

�
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For a g-Drazin invertible element a ∈ A with an arbitrary g-Drazin index we can

employ the so-called ‘core-quasinilpotent decomposition’, that often enables us to
reduce problems to the case i(a) 6 1. Write c = a(1 − a � ) and s = aa � . Then c is
g-Drazin invertible with i(c) 6 1, s is quasinilpotent (nilpotent in the case of a finite
index), and

(1.8) a = c + s, cs = sc = 0, aD = cD.

We call c the core of a and s the quasinilpotent part of a. In particular, we have the
following result [6, Proposition 3.8].

Lemma 1.3. Let a ∈ A be g-Drazin invertible and let c be the core of a. Then

aD = c(c3)
†
c.

The following integral representation was given in [2, Theorem 2.2] as a gener-
alization of [4, Theorem 6.3], and is valid for a g-Drazin invertible a with finite or

infinite g-Drazin index.

Theorem 1.4. Let A be a Banach algebra. If a ∈ A is g-Drazin invertible and

its nonzero spectrum contained in the open right half plane, then

(1.9) aD =
∫ ∞

0

exp(−ta)(1− a � ) dt.

This representation is a useful tool in theory of singular differential equations,

where it can be applied to derive conditions for the asymptotic convergence of solu-
tions (see [1], [7]).

The purpose of the present paper is to derive integral representations of the g-
Drazin inverse in a C∗-algebra valid without any restriction on the spectrum of a,

based on the integral representation (1.9), and the mutual relationship between the
g-Drazin and Moore-Penrose inverse as expressed in Lemmas 1.1 and 1.2.

2. The case of finite g-Drazin index

The following analogue of Showalter’s integral representation [8] of the Moore-

Penrose inverse for C∗-algebras was given in [6, Example 3.5]:
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Lemma 2.1. Let b ∈ A be a Moore-Penrose invertible element of a C∗-algebra

A. Then

(2.1) b† =
∫ ∞

0

exp(−tb∗b)b∗ dt =
∫ ∞

0

b∗ exp(−tbb∗) dt.

Our first result is a combination of Lemma 1.2 and 2.1.

Theorem 2.2. If a ∈ A is Drazin invertible, then a2m+1 is Moore-Penrose in-

vertible for any m > i(a), and

aD =
∫ ∞

0

am exp(−t(a2m+1)
∗
a2m+1)(a2m+1)

∗
am dt(2.2)

=
∫ ∞

0

am(a2m+1)
∗
exp(−ta2m+1(a2m+1)

∗
)am dt.(2.3)

�! #"$"&%
. According to Lemma 1.2, b = a2m+1 is Moore-Penrose invertible. By

Lemma 2.1, we obtain

aD = amb†am = am

( ∫ ∞

0

exp(−tb∗b)b∗ dt

)
am

=
∫ ∞

0

am exp(−tb∗b)b∗am dt,

which is (2.2); equation (2.3) is proved similarly. �
')(+*-,. #/

2.3. It is of interest to observe that we can give an alternative proof
of the preceding theorem independent of Showalter’s representation, using our The-

orem 1.4 and the mutual relationship between the Drazin and Moore-Penrose in-
verse as expressed in Lemma 1.1 and 1.2. Indeed, we show that the element q =
(a2m+1)∗a2m+1 is Drazin invertible with the nonzero spectrum in the interval (0,∞)
and apply Theorem 1.4:

∫ ∞

0

am exp(−t(a2m+1)
∗
a2m+1)(a2m+1)

∗
am dt

=
∫ ∞

0

am exp(−tq)q(aD)m+1 dt

= am

( ∫ ∞

0

exp(−tq)(1− q � ) dt

)
q(aD)m+1

= amqDq(aD)m+1.

We show that the last expression is equal to aD using Lemma 1.1 and 1.2.

We give a direct proof of our second representation.
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Theorem 2.4. If a ∈ A is Drazin invertible, then a2m+1 is Moore-Penrose in-

vertible for any m > i(a), and

aD =
∫ ∞

0

exp(−tam(a2m+1)
∗
am+1)am(a2m+1)

∗
am dt(2.4)

=
∫ ∞

0

am(a2m+1)
∗
am exp(−tam+1(a2m+1)

∗
am) dt.(2.5 )

�! #"$"&%
. In this proof we use the core-nilpotent decomposition (1.8) of a. Write

c = a(1− a � ) for the core of a. For any k > i(a), ak = ak(1− a � ) = ck. Hence

am(a2m+1)
∗
am+1 = cm(c2m+1)

∗
cm+1.

For brevity write s = cm(c2m+1)∗cm+1 and q = (c2m+1)∗c2m+1. Then
∫ t

0

exp(−τam(a2m+1)
∗
am+1)am(a2m+1)

∗
am dτ

=
∫ t

0

exp(−τs)scD dτ = cD − exp(−ts)cD.

Since cD = aD, it is enough to show that lim
t→∞

exp(−ts)cD = 0. We have

si = cmqi(cD)m, i = 1, 2, . . .

by induction, and

exp(−ts)cD = cm exp(−tq)(cD)m+1.

Since c2m+1 is Moore-Penrose invertible by Lemma 1.2, q is simply polar with the
nonzero spectrum in (0,∞). Hence by [5, Example 2.3],

lim
t→∞

exp(−tq) = q � .

Then by Lemma 1.1 and Lemma 1.2,

cmqDq(cD)m+1 = cm((c2m+1)
∗
c2m+1)

D
(c2m+1)

∗
c2m+1(cD)m+1

= cm(c2m+1)
†
cm

= cD,

and

lim
t→∞

cm exp(−tq)(cD)m+1 = cmq � (cD)m+1 = cm(1− qDq)(cD)m+1

= cD − cmqDq(cD)m+1 = 0.

This proves (2.4). Equation (2.5) is proved similarly. �
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3. The case of infinite g-Drazin index

We now turn our attention to a g-Drazin invertible element whose g-Drazin index
may be infinite.

Theorem 3.1. Let a ∈ A be g-Drazin invertible with the core c = a(1 − a � ).
Then

aD =
∫ ∞

0

c exp(−t(c3)
∗
c3) (c3)

∗
c dt(3.1)

=
∫ ∞

0

c(c3)
∗
exp(−tc3(c3)

∗
) c dt(3.2)

=
∫ ∞

0

exp(−tc(c3)
∗
c2) c(c3)

∗
c dt(3.3)

=
∫ ∞

0

c(c3)
∗
c exp(−tc2(c3)

∗
) dt.(3.4)

�! #"$"&%
. First we obtain the integral representations for c as special cases of

Theorems 2.2 and 2.4, and then use equation aD = cD. �

Theorem 3.1 holds for a finite as well as for an infinite index; the compensation

for this additional generality is that the integrand involves the core c rather than the
original element a. However, we may substitute for ck and (ck)∗ using the equations

ck = ak(1− a � ) = (1− a � )ak,

(ck)
∗

= (ak)
∗
(1− (a � )∗) = (1− (a � )∗)(ak)

∗
.
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