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Abstract. We obtain a presentation for the singular part of the Brauer monoid with
respect to an irreducible system of generators consisting of idempotents. As an application
of this result we get a new construction of the symmetric group via connected sequences of
subsets. Another application describes the lengths of elements in the singular part of the
Brauer monoid with respect to the system of generators mentioned above.
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1. INTRODUCTION

The symmetric group S, is a central object of study in many branches of math-
ematics. There exist several “natural” analogues (or generalizations) of S,, in the
theory of semigroups. The most classical ones are the symmetric semigroup 7,, and
the inverse symmetric semigroup ZS,,. These arise when one tries to generalize
Cayley’s Theorem to the classes of all semigroups or all inverse semigroups. A less
obvious semigroup generalization of S, is the so-called Brauer semigroup B, which
appears in the context of centralizer algebras in representation theory, see [2]. B,
contains §,, as the subgroup of all invertible elements and has a nice geometric real-
ization (see Section 2). The deformation of the corresponding semigroup algebra, the
so-called Brauer algebra, has been intensively studied by specialists in representation
theory, knot theory and theoretical physics. The semigroup properties of B, were
studied in [9], [10], [8], [5], [7], [6]-

Given a finitely generated semigroup, a fundamental question is to find its presen-
tation with respect to some (irreducible) system of generators. For example, for S,
and ‘B,, several such presentations are known. However, for semigroups one can even
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make the problem more semigroup-oriented, and ask to find a presentation for the
singular part of the semigroup which, by definition, is the set of all non-invertible
elements. In the case of a finite semigroup all non-invertible elements form again a
semigroup and hence the problem to find a presentation for the singular part makes
sense. For example, in [4] a presentation for the singular part of ZS,, is found (a
presentation for ZS,, itself can be found in [1]).

From [8] we know that 9B, \ S, has a natural irreducible system of generators
consisting of idempotents. The main aim of the present paper is to obtain a presen-
tation of B,, \ S,, with respect to this system of generators. Surprisingly enough, the
system of the corresponding defining relations is not big and all relations have an
obvious interpretation via the geometric realization of %B,,. This result is presented
in Theorem 5. As usual, a tricky part in the proof of Theorem 5 is to show that the
listed system of defining relations is complete. This part of the proof is quite techni-
cal and occupies the whole Section 4. In Section 5 we present several combinatorial
applications of Theorem 5. These include an interesting combinatorial realization of
the symmetric group via equivalence classes of sequences of “connected” two-element
subsets, and a computation of the maximal length for an element in 9B, \ S,, with
respect to our system of generators.

Acknowledgments. The paper was written during the visit of the first au-
thor to Uppsala University which was supported by the Swedish Institute. The
financial support of the Swedish Institute and the hospitality of Uppsala Univer-
sity are gratefully acknowledged. For the second author the research was partially
supported by the Swedish Research Council.

2. PRELIMINARIES ABOUT ‘B,

Let n be a positive integer. Put n = {1,...,n} and n’ = {1’,...,n’}. We consider
the map ’: n — n’ as a fixed bijection and denote the inverse bijection by the same
symbol, that is (')’ = z for all x € n. The elements of the Brauer semigroup B,
are all possible partitions of n U n’ into two-element blocks. It is easy to see that
[B.,,| = (2n — 1)L

A two-element subset {i,j} of nUn’ will be called

e a left bracket provided that {i,j} C n;

e a right bracket provided that {i,j} C n’;

e a line, if {i,j} is neither a left nor a right bracket.

Obviously, every element of B,, contains the same number of left and right brackets.
Let m € 9B, and assume that {ig,jr}, k € K, is the list of all left brackets of ;
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{uy,v.}, k € K, is the list of all right brackets of m; and {f;, g}, | € L, is the list of
all lines of . Then we have

(1) 7= {{ik, Jx brerc {up, Vi tkeres {fi gl hier }-

We say that 7 has corank corank(m) = 2|K| < 2[3n].

It is convenient to represent the elements of 95, geometrically as a kind of mi-
crochips as follows: we have two sets of pins (which correspond to elements in n and
n’ respectively), which are connected in pairs (this corresponds to the partition of
nUn’ into two-element blocks which our element from 9B, represents). An example
is shown in Figure 1, for convenience the same element is also written in the form (1).

6 — — 6
5— ||® — 5
4— — 4
3— | v — 3
2 — | o — 2
1— r\- — 1

Figure 1. The element {{1,5},{4,6},{2',4'},{3,5'},{2,1'},{3,6'}} of Bg.

Now we would like to define multiplication in 98B,,. To give a formal definition,
for 7 € B, and z,y € nUnN’ we set x =, y provided that x and y are in the same
block of w. The relation =, is an equivalence relation on n U n’ with two-element

equivalence classes. Take now 7,7 € B,,. Define a new equivalence relation, =, on
nUn’ as follows:

e for z,y € n we have x = y if and only if z =, y or there is a sequence cy, . . ., a5,

s > 1, of elements in n such that z =x ¢}, c1 = ¢, b =x b, ..., Cas—1 =1 Cas

and b, =x v;

e for z,y € n we have ' = y' if and only if ' =, 3 or there is a sequence
Cly.--,C2s, 8 2 1, of elements in n such that ' =; ¢1, ¢} =5 ¢, ca =; ¢c3, ...,
Che 1 =n Chy and cas =, Y

e for x,y € n we have x = ¢/ if and only if ¢ = x if and only if there is a sequence
Cly. .- C25—1, S = 1, of elements in n such that © =, ¢}, ¢1 = o, b =, ¢, ...,
Che_o =n Che_1 and cas—1 =, Y.

It is easy to see that = determines an equivalence relation on n U n’ with two-
element classes and thus is an element of B,,. We define this element to be the
product 7r. It is straightforward that this multiplication is associative. In our
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geometric realization the above multiplication reduces to concatenation of chips, see
an example in Figure 2.

B
o
o

+ ¢
,

.

7

] : |

Figure 2. Elements of Bg and their multiplication.

AVA

Note that the element {{k, %'} cn} is the identity element in B,,. It is easy to see
(see for example [9]) that the group of all invertible elements in 9B, is precisely the
set of all elements of corank 0, and it is isomorphic to §,,. We identify the elements
of this subgroup of B, with S,, in the following way: m € &, corresponds to the
element {{k,m(k)}ren}. Then the subsemigroup of all non-invertible elements of
B,, coincides with B, \ S,.

We denote by R, L, H, D and J Green’s relations, in particular, for a semigroup
S and a € S, H, denotes the H-class of S containing a (similarly for all other
relations). We will need the following description of Green’s relations for 9B,,, which
was obtained in [9]:

Lemma 1. Let 7,7 € B,,. Then
(i) mRr if and only if m and T have the same left brackets;
(ii) wL7 if and only if m and T have the same right brackets;
(iii) 7H7 if and only if m and T have both the same left brackets and the same right
brackets;
(iv) «Dr if and only if 7 J7 if and only if corank(mw) = corank(r).
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3. AN IRREDUCIBLE SYSTEM OF GENERATORS FOR ‘B, \ S,

For i,j € n, i # j, define o, ; as follows:

045 = {{7'7]}7 {ilaj/}v {k? k/}k?éivj}'

We have 05 ; = 0;,; = 07 ; and corank(c; ;) = 2. We will call these elements atoms.

An example of an atom can be found in Figure 3.

*—o

Figure 3. The atom o013 of B4.

The following statement was proved in [8]. However, because of the poor avail-
ability of [8] we will prove it here as well.

Proposition 2. The set of all atoms is an irreducible system of generators in
B, \ Sn.

To prove this statement we will need several auxiliary lemmas.

Lemma 3. The semigroup B, \ S, is generated by the set of all elements of
corank 2.

Proof. Letw e B, \S, be written in the form (1) as follows:

m={{4,00) Yier, {uj, v} jes {f}, 9} jes }-

We have J # 0, I C n, and 6: I — n is an injection. Assume that corank(w) > 2.
Fix jo € J. Construct a bijection 9¥: n\ {uj,, v, } — 0\ {fjo,gj,} as follows:

o U(i) =0(i) for all i € I;

o J(uj) = f; and ¥(v;) = g; for all j € J\ {jo}.
Put now 7 = {{i, (i)' }irtusy 00 > {jo> Vjo }+ {9}, } }- We have corank(r) = 2 and

direct calculation shows that 7 = [] o sw; - T- The statement follows. O
jeJ
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Lemma 4. Every element of the maximal subgroup corresponding to an atom is
decomposable into a product of atoms.

Proof. Let m € B, be a group element of corank 2, H-related to some atom.
From Lemma 1 it follows that in this case 7 = {{i,0(i)}izu,v, {u, v}, {u/,v'}} for
some u,v € n, u # v, and some bijection, 6: n\ {u,v} — n\ {u,v}. We consider ¢
as an element of Sy (4,0} Let

0=, iy G )

’ ? 7P

be a cyclic decomposition of . By direct calculation one obtains that

(2) T = Oup0, (1) - Oy 0wy ot Tup 0, () -, ) O

The statement follows. O

Now we are ready to prove Proposition 2:

Proof of Proposition 2. First we show that atoms generate B, \ S,.
Because of Lemma 3 it is enough to show that any element m € 9B, of corank 2
decomposes into a product of atoms. We again write 7 in the form (1):

T= {{7’7 9(2')/}1'61, {u7 ’U}7 {flhg/}}’

where u,v € n, u # v; f,g € n, f # ¢g; and 0: n\ {u,v} — n\ {f,g9} is a
bijection. Without loss of generality we may assume that v # f. Consider the
element 7 = oy yo74 = {{v, f}.{f", 9’} {9.v'}. {k. K"} ktv.f.g }- From Lemma 1 we
have nHo,, 7 and 0y, , R0y, 7. Hence, due to Green’s Lemma, we have that the map

x +— 27 from H,, , to H,, - is a bijection. Therefore there exists £ € H such

Ou,v
that 7 = £7. By Lemma 4, £ decomposes into a product of atoms. Hence so does 7
as well.

Now we prove that no atom can be decomposed into a product of other atoms. Let
Ou,v = Ougvy - Oupv,- LThe product oy, o, ... Oy, Must contain the left bracket
{u1,v1} by the definition of multiplication in 9B,,. However, the element o, , contains
the unique left bracket {u,v}. This implies that {u1,v1} = {u,v} and the desired

statement follows. The proof is complete. O

After Proposition 2 it is natural to ask what is the presentation of B, \ S, with
respect to the system {o,,} of generators. We answer this question in the next
section.
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4. MAIN RESULT

Denote by T the semigroup generated by 7;;, 4,/ € n, i # j, subject to the

following relations (here i, j, k, [ are pairwise different):

Tij = Tjis

2 _ .

Tij = Tigs
Ti,jTi,kThi = Ti,jTi,iTk,l;

Ti,jTi,kTjk = Ti,jTj,ks
Ti,jT5,kTi,j = Ti,js
Tig Th1Tik = Ti,jTj1Ti k>

Ti,j Tkl = TkiTi,j-

A straightforward calculation shows that the generators o; ; of B, \ S, satisfy
the relations (3)—(9) (the relations (3) and (4) are obvious, and the relations (5)—
(9) are illustrated in Figures 4, 5, 6, 7 and 8). Thus there is a homomorphism

p: T — B, \ S, sending 7; ; to 0; ;. Our main goal in the section is to prove the

following theorem:

7 —|-o—o—|—|-o—o —| - o—|—|-o—e

o e ] [ O

k| o—e—|— j [ — - —o|—|-o—T®

| o—o|—|-0—o|— ] [ o——o|—|-o Lo ] E
Figure 4. An example illustrating the relation (5).

e

k| o—e—|—

o

—|o—e

JI

Figure 5. An example illustrating the relation (6).

e

k| o—e—|—

JL

JE[G

—|o—e *—o

Figure 6. An example illustrating the relation (7).
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i | o |— | o |—

k| oe—eo|— — oo |— _

l Q—Fj [H o—o | — |
Figure 7. An example illustrating the relation (8).

i i — o |—

k| o—e]|— —|-o—

Figure 8. An example illustrating the relation (9).

Theorem 5. ¢: T — B, \ S,, is an isomorphism.

The rest of this section is devoted to the proof of Theorem 5, which we will divide
into steps formulated as lemmas and propositions. To distinguish 7; ; from the atoms
0i; we will call 7 ; quarks. Two quarks 7; ; and 73,; are said to be connected provided
that {4,7} N {k,1} # 0. We denote by A = A,, the set of all quarks (the alphabet
of our presentation for T'), and by A™ the free semigroup over A. In what follows
we will do all our computations with words in T, not A™. In particular, v = w for
v,w € AT means that v =w in T

A word 7y, j, Tiy gy - - - Tigj, € AT will be called connected if 7, ;, and 7;_,, ;.. are
connected for all 1 < s < k — 1. We start with the following statement:

Proposition 6. Fach element of the semigroup T can we written in the form
WTiy j1 Tin jo - - - Tin,jus Where wr, ;€ AT is connected and all sets {is,js}, s =
1,...,k, are pairwise disjoint.

Proof. We useinduction on the length of element. For elements of length 1 the
statement is obvious. Let v = w7y, j, Ty j, - - - Ti jx € T be such that wr;, ;, € AT is
connected and all sets {is,js}, s =1,...,k, are pairwise disjoint. Let further 7; ; be
a generator. To complete the proof we have to show that the element v7; ; can be
written in the desired form. Without loss of generality we can assume that we have
one of the following cases:

Case 1: the set {i,;j} is disjoint with all {is, js}, s = 1,..., k. In this case the
statement is trivial.
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Case 2: the set {7, j} is disjoint with all {3, js}, s =2, ..., k, but not with 7, j,.
In this case we can use (9) to write

UTi,j = WTiy 1 Ti,jTia,ga « - Tik,jk

Observe that w;, j, 7; ; is connected, and the necessary statement follows again.
k
Case 3: i =4y and j € | {4s,s}. Using (9) we can even assume j = j,. Using
s=2
(9) and (8) we have
UTi,j = WTi,j1 Tiz,jTi,5 Tiz,gs « + « Tin,ji = WTi,g1 Tio g1 Ti,i Tisogs + - Tig, -
Here wr; j, 74, j, is connected and the sets {i2,71}, {%,}, {is,7s}, s = 3,...,k, are
disjoint. The claim follows.
k k
Cased: i€ U {is,jstand j & U {is,js}- Using (9), we can even assume i = is.

s=2 s=1
In this case we can use (9) to write

(10) UTi,j = WTiy 1 Tija Tij Tisja - - - Tik -
Now we have

(11) Tixsjr Tirja T = Tinja TingaTing Tin i iy (DY (7
= Tix,ja Tirja TinjaTin i iy (DY
= Tix,ja Tirja TingaTin i Tiy (DY
= Tiv,j1 Ti1,j2 Ti1,5Ti,51 Ti,j ( Yy

= Tiy 1 Tinga Tin g Tin,in Tig - (DY (8))-

From (10) and (11) we have
UTi,j = WTiy,51 Ti,ja Ti,5 Tiz,ja -« + Tiroje = Wiy, g1 Tix g2 Tin 5 Tia 1 Ta,5 Tis g - - - Tie, e

Here w7y, jyTiy,jaTin,jTir,j» 18 connected and the sets {i1,71}, {¢,7}, {is,7s}, s =
3,...,k, are disjoint. The claim follows.
k
Case 5: 4,5 € (U {is,Jsr- I {4,5} = {is,Js} for some s > 2, the statement

s=2
follows from (9) and (4). Otherwise, using (9) we can even assume i = iz, j = j3. In

this case we can use (9) to write

(12) VTij = WTiy s Ti,jo Tia i Tirj Tiaria - + - Tinoi -
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Now we have

(13)

Tiv,g1 74,52 Tis,j Ti,j

From (12) and (13) we have

UTi,j = WTiy 51 Ti,ja Tis,jT4,5 Tia,ja - -

= Tix,j1Tija Tiz,j2 Ti,j

(by (8))
(by (9))

Ti,j2 Tiz,j2 Tix,j1 Tjz,51 Tix 51 Ti,j

Ti,j2 Tiz,jo Tix 51 Ti,j

Ti,j2 Tix,j1 Tja iz Tjz,51 Ti1, 51 Tij
Ti g2 Tix,j1 Tix iz Tja, g1 Tix g1 Ti,j
Tix,j1 Tix iz Tiyja Tja, g1 Tix g1 Ti,j
Tiy,g1 Tiv i3 Ti,52 Tiia Tiy 51 Ta, g

Tiy,51 Tiv i3 Tis, g2 Tiyiy Tin, 1 Ti,g

Tiv,51 Tiv,i3Tiyi1 Tin g1 Tis, g2 Ti,g

Tig gk — Wiy, 51 Tiy iz Tiia Tin g1 Tis, g2 Ti,5 Tia, ja

.o 'Tik»jk'

Here Wy, j, Tiy isTisiy Tiz 18 connected and the sets {i1,j1}, {is,j2}, {3, 5}, {is: 75},
s =4,...,k, are disjoint. The claim follows.

Now the proof is completed by induction.

d

Lemma 7. There is a unique anti-involution x: T — T satisfying 7;"; = 7;,; for

alli,j € {1,2,...,n},i #j.
Proof.

Existence follows from the fact that the relations (3)—(9) are stable

with respect to *. Uniqueness follows from the fact that 7' is generated by 7 ;,

i#je{1,2,....n}.

Lemma 8. Let 7; jw € A" be connected. Then (7, jw)(7; jw)* =7, ;.

Proof.
the definition of * we compute

* — . . . . . . . . . . . .
(Ti,jw)(n,jw) = Ti,jTiv, g1+ -+ Tigogn Tin,je - - Tin,ga1 Tiog
= Ti,jTir,g1 -+ Tig—1,0k—1 Tik g Tik—1,0k—1
= Ti,jTiv g1 -+ Tin—o,dk—2Tin—1,0k—1Tik—2,Jk—2

= Ti,jTir,j1Ti,j

= Tij-
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If {is,js}, s = 1,...,k, are pairwise disjoint, the element 7, ;, ... 7;, j will be
called a standard idempotent. That such element is indeed an idempotent, follows
immediately from (9) and (4).

Corollary 9.
(i) Every element of T is L-equivalent to a standard idempotent.
(i) T is regular.
(iii) The map ¢ induces a bijection between the sets of L-classes for the semigroups
T and B, \ S,,. Similarly for the R-, H-, and D-classes.

Proof. Let v € A". By Proposition 6 we can write v = WTi, j, Tis js - - - Tix s>
where wr;, j, € AT is connected and all sets {is,js}, s = 1,....k, are pairwise
disjoint. By definition, the element € = 75, j, Ti; 4, - - - Tix 5, i standard. We obviously
have v = w;, j, €. By Lemma 8 we have

Tiy,j1 W U = Tiy ;W WTiy 1 Tig,jo - - Tig,jie = Tiv,ga Tizygz + o« Tigoje — €

Hence vLe, which proves (i). (i) implies that every £-class of T' contains an idempo-
tent, and hence (ii) follows.

By Lemma 1, the images of standard idempotents under ¢ belong to different
L-classes of B, \ S,,. Hence different standard idempotents of T belong to different
L-classes of T'. In particular, there is a bijection between L-classes of T' and standard
idempotents. Since ¢ is surjective, there is also a bijection between L-classes of
B,,\ S, and standard idempotents. This implies (iii) for £-classes. For R-classes the
statement now follows by applying *. For H- and D-classes the statement follows
from the definition and the corresponding statements for £- and R-classes. This

completes the proof. O
For k=1,...,[3n] set ex = 712734 ... Top—1,2¢ and let H, denote the H-class of
T containing the element ei. For 4,5 € {3,...,n}, i # j, set v, ; = T1,27T1,,T1,;T1,2.

Note that, using (5) and (6), we have
(14) T1,27T1,i7T1,57T1,2 = T1,271,i74,571,571,2 = T1,272,574,572,iT1,2 = T1,272,572,iT1,2-

Lemma 10. The elements v; ;, i,j € {3,...,n}, i # j, generate Hy as a monoid.

Proof. Let w € A" be such that w € H;. Since 712 is the unit element in
the group H1, we have w = 7 swry 2 and hence we can assume that w has the form
T1,0w'Ty 2 for some w' € AT. We claim that w is connected. Indeed, assume that
w is not connected. Then direct calculation shows that ¢(w) € B, has corank at
least 4. At the same time the corank of ¢(e;) is 2. This contradicts Lemma 1.
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We prove our lemma by induction on the length of w’ = 7, ;, ... 7, j, (note that w’
is connected since w is). Because of (4) we can always assume that 7;_ ;. # 7i_ ., j. .
forall s=1,...,k—1, 7 4 # 712 and 7, j # 71,2. The basis of our induction will
be the cases k = 0,1,2. If kK = 0,1, then from (4) and (7) it follows that w = 71 2,
and the statement is obvious.

Let k = 2. If either 1 or 2 occurs in both {i1, j1} and {i2, j2}, we are done by (14).
If not, without loss of generality and up to the application of * we can assume that
i1 =1 and is = 2. Then j; = j, since w is connected. Hence, using (6) we get

T1,271,5: 72,51 71,2 = T1,271,5: 71,2,

reducing everything to the case k = 1.
Now we proceed by induction and prove the step £k — 1 = k, where k > 2. If
{i2,72} N{1,2} # 0, using (7) we can write

T1,2Tiy 51 Tig,ja Tis,gs + + « Tik,ju 71,2 = T1,2Tiy 51 Tio, 52 T1,2Ti 52 Tig,ja -+« Tig,jk 71,2

and the statement follows from the induction hypothesis. If {iz,jo} N {1,2} = 0
then, using (5) if necessary, we may assume i; = 1 and j; = jo. Assume first that
J1 € {is, js}, say js = j1. Then by (5) we have

T1,27T1,51 Tia,j1 Tig,j1 = T1,272,in Tig,j1 Tig,j1+

If i3 = 2, then (6) gives T2, Tiy j1 T2,51 = T2,i, T2, and reduces our expression to the
case k— 1. If ig # 2, using (5) we have 72, Ty jy Tis jn = 72,i2T2,i5 Tis i1 » Which reduces
our expression to the case {is, j2} N {1,2} # (} considered above.

Finally, assume that j; ¢ {i3,j3}. Then without loss of generality we can assume
i3 = ig. If j3 = 1, then by (6) we have T1,51 Tig,j1 Tiz, 1 = T1,51 Tio,1, which reduces
our expression to the case k — 1. If js # 1, using (5) we have 71 j,Ti, j1 Tis.js =
T1,j1 T1,js Tis,js » Which reduces our expression to the case {ia, j2}N{1,2} # 0 considered
above. Now the proof is completed by induction. O

For 3 <i<n—1sety; ="it1-

Lemma 11. Leti,j € {3,...,n}, i # j.
(1) vij =V

ii) ~; ; decomposes into a product of y;’s.
(i) i p p gl
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Proof. We have
Yi,j = T1,271,i7T1,571,2
= T1,272,iT1,iT1,;71,2  (by (6))
= T1272,:T2,;T1;71,2  (by (5))
=T1272,:T2,;7T12 (by (6))
=T271,;7iT12  (by (14)),
which proves (i).
Because of (i) we can assume j > 4. If j = ¢ + 1 then (ii) is obvious. We proceed

by induction on j — ¢ and assume that some 7; ; decomposes into a product of ~;’s.
We have

(15) YiiViVij = T1,2T1,iT1,jT1,2T1,;T1,j+1T1,27T1,iT1,;Ti,2 (by (4))
= T12T1,iT1,; 71,417,277, T12 - (DY (7))
= T1,27T1,iT1,;T1,j+171,27T2,;72,:71,2 (by (14))
= T1,27T1,iT1,571,j+175,j4+172,572,iT1,2 (by (5))
= T1,271,iT1,575,j+172,572,iT1,2 ( (6))
= T1,271,iT1,5T5,j+1T4,j+172,iT1,2 (by (5))
= T12T1,iT1,4T1,iTij+172,iT12 - (by (5))
= T1,2T1,iT;,j4+172,iT1,2 (by (7))
= T1,27T1,iTi,j+171,54+171,2 (by (5))
=T12T1:T1j4+1712  (by (6))
= Yij+1-

The statement (ii) now follows by induction. t

Lemma 12. The elements ~;, i = 3,...,n — 1, satisfy the following relations:
(a) 7 =712
(b) vivs =% li =3l > 1;
() v = vy |t =gl = 1.

Proof. We have

V; = T1oTLiTLi T2 LT+ (DY (4))
= T1,272,i+172,iT1,2T1,iT1,i+171,2  (by (14))
= T1,27T2,i+172,iT1,iT1,i+171,2  (by (6))
= T1,272,i+1T1,i+171,47T1,44+171,2 (by (5))

= T1,272,i+171,i+171,2 (by (7))
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= T1,27T1,i+171,2 (by (6))
=T1,2 (by (7));

which implies (a).
To prove (b) we may assume j > i + 2. We have

YiYj = T12TLiTLi+1T1,2T1,TLj+17T12  (by (4))

~—

= T1,271,iT1,i4+171,272,571,571,54+171,2 ( y (6)
(by (5))

= T1,9T1,iTi,jTi+1,jT2,;T2,j+17T1,j+171,2  (by (5))

= T1,271,iT1,i4+1Ti4+1,572,571,5T1,54+171,2

= T1,2T1,iT4,5Ti+1,572,572,54+171,2 ( (6))
(by (5))
(by (5))
(by (5))

= T1,2T2,jT2,j+1Tij+171iT1,i+1712  (by (5))

= T1,272,5T4,5Ti+1,5Ti+1,j+172,54+171,2
T1,272,5T4,5Ti,54+1Ti+1,54+172,54+171,2

= T1,272,572,54+1Ti,j4+1Ti4+1,54+17T1,i+171,2

= T1,2T2,jT2,j+171,271,iTLi+171,2 - (by (5))

= T1,271,54+171,57T1,27T1,i7T1,i+171,2 (by (14))
T1,2T1,jT1,j+17T1,2T1,iT1i+171,2  (by Lemma 11 (i))
=77 (by (4))

This gives (b).
Finally, to prove (c) we may assume j =i + 1. We have

Vit1ViVit1 = T12T1i1T1,i427T1,2T1iT,i+171,2TLi+1TLi+2T12 - (by (4))

= T1,27T1,i+17T1,i+271,27T1,i7T1,i+171,i4+271,2 ( ())
14))

5))

= T1,272,i+272,i+171,27T1,iT1,i+171,i4+271,2 ( (
= T1272,i42T2,i+1Tii+1T1,iTLi+1 7142712 (DY (
(6))
(5))

)

= T1,272,i4+272,i4+172,i+274,54+271,i+271,2 (by (5)

= T1,272,i+272,i41Ti,i+1T1,i+17T1,i+271,2 (DY

= T1,272,i+272,i+1Ti,i+1Tii+2T1,i42T1,2 (DY

= T1,272,i+274,i+271,i4+271,2 (by (7))
T1,27T1,iTi,i+2T1,i+271,2  (by (5))
= T1271,iTLi+271,2  (by (6))

= Yi,i+2-

Now (c) follows from (15). This completes the proof.
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Corollary 13.
(i) Hy = Sp—2.
(ii) Let m € T be such that nDey. Then the restriction of ¢ to H, is injective.

Proof. “H; contains £; and hence is a group. By Lemmas 11 and 10, H; is
generated by v;, i = 3,...,n — 1. By Lemma 12, ~;’s satisfy Coxeter relations of
type A,—_3. Hence H; is a quotient of S,,_5. However, ¢(H1) is a maximal subgroup
of B,,, which is isomorphic to S,,—2 by [9, Theorem 1]. The statement (i) follows.

(i) implies that the restriction of ¢ to Hj is injective. Then for arbitrary = € T
such that 7De; the statement (ii) follows from Green’s Lemma. O

To prove Theorem 5 we have to generalize the statement of Corollary 13 (ii) to all
other H-classes. For this we will use the following statement:

Proposition 14. |[Hy| = (n —2k)! for all k, 1 < k < [4n].

Proof. We proceed by induction on k. The case kK = 1 follows from Corol-
lary 13 (i). Let us prove the induction step k—1 = k. From the induction hypothesis
and Green’s Lemma it follows that every H-class, which is D-equivalent to Hg_1,
has cardinality (n —2(k — 1))!.

Fori=1,2,... k set

01‘ = T1,273,4 - - - T2§—3,20—272i+1,2i+2 - - - T2k—1,2k -

If m € Ly, then, using Proposition 6, one shows that 77,1 2; € L., . Let f;: Ly, —
L., denote the map f;(7) = 772;_1,2;.- This induces the map

.f: H‘Cé‘l _>£sk

such that the restriction of f to Ly, coincides with f;. By Proposition 6 we have
that f is surjective. Our aim is to prove that even f; is surjective.

Let 4,5 € {1,2,...,k}, i # j. Define a: Ly, — Ly, via a(m) = m72;2;7T2i—1,2; and
B: Lo, — Lo, via B(m) = TT2;2;T2j—1,2;. Consider the diagram

B
(16) Lo, <— =L, .

€k
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Every element m € Ly, satisfies m72;_1,2; = ™ by the definition of #;. Every element
m € Ly, satisfies m2;_12; = m by the definition of 6;. Further,

Tj—1,2T2i,2j T2i—1,2iT2j—1,2] = T2j—1,2jT2i—1,2j—1T2i—1,2iT2j—1,25 (by (5))
= T9j_1,2jT2i—1,2j—1T2j—1,2;T2i—1,2i (by (9))

= T25-1,257T2i—1,2i (by (7))
This implies for all © € Ly, the following equalities

(fie)(m) = (fj0)(7T25-1,25)
= MT25-1,2572,2572i—1,2i725—1,25
= MT25-1,257T2i—1,2i
= TT2i-1,2i

= fi(m).

Hence fja = f;. Analogously one shows that f;8 = f;. Thus the diagram (16) is
commutative, which implies that the map f; is surjective.

Lemma 15. For any m € Ly, there exists w € T such that wHm, w # 7, and
fi(m) = fi(w).

Proof. Set w = m73471,372,373.4. Direct calculation shows that ¢(m)Le(w).
Hence w € Ly, by Corollary 9 (iii). Further, we have (73471 372373.4)%> = 734 by
the statement analogous to that of Lemma 12 (a), which implies wRm, that is wHr.
Direct calculation shows that o(m) # @(7)@(73,471,372,373,4) and hence 7 # w. On
the other hand,

fi(w) = 773 471 372,373 4712
= TT34T1 372,371,234 (by (9))
= 734713712734 (by (6))
= TT73,471,373,471,2 (by (9))
=ar34m12 (by (7))
=nm2 (since w € Ly,)

= fl(ﬂ').
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Lemma 16. Assume that w,7 € Ly, are such that fi(w)H f1(r). Then there
exists ) € H, such that f1(n) = fi(7).

Proof. If 7 € H,, we have nothing to prove, hence we assume that 7 &
Hr. We have 7 2 H771,2. In particular, 77 2 R771,2. Moreover, we also have that
corank(p(77,2)) = 2k. Then, applying * to the statement of Proposition 6, we
obtain that there exist w,w’ € AT, pairwise distinct i1, j1,. .., jx, and a,b €
{1,2,...,k} such that 7712 = 7, j, ... Ty W, TTL,2 = Tiy s - - - Tip,j, W, the word
Tia.j. W is connected, and the word 7;, ;, w’ is connected. Since both corank(p(7)) =
corank(p(7)) = 2k — 2 and 7 ¢ R, without loss of generality we may assume
Tygym=mforalll=1,...,k—1and 7, ;7 =7 forall [ = 2,..., k. Then, applying
Proposition 6, we get some v € AT and ¢ € {2,3,...,k} such that 7 = 7, j, ... Ti, j, U
and the word 7;_; v is connected. Put n = 7;, j, 7%, 4, 7. Since 7, ;7 = T by the
above and

Tir gk Tix i Tin g1 Tinyin Tikoge = Tik,jw

(by two applications of (7)), we have nLt.
Further, since 7;, ;. v is connected, we have (7;, ;,v)(7i, ;. V)" = Ti..;. by Lemma 8.
Using (9), this implies nR7;, j, Tiy ix Tin jo - - - Tin,ju- UsINg (9), we further have

Tiv,g1Tiv,ik Tig,ga + +  Tig,ge = Tizogo + - Tig—1,0k—1 741,01 Ti1 ik Tin,Jn -

Since 7y, j, Tiy iy, Tixji 1S connected, by the same argument as above we have 7;, j, 7i, 4,
Tig,jo = -+ Tik,ijTil,leiQ,jg v T 11 Hence 77R7'i1,j1 v T 1,1 It follows that
nRm and hence nHr.

The statement now follows from the following computation (using (7)):

— e . . . . e . . . . . . . . /
fl (77) =N71,2 = Tiy 51 Tinie TT1,2 = Tig g1 Tivsie Tin g1 - Tig,je W

= Tiy,j1 ...Tik,jkw/ =TT1,2 = fl(T).

0

Since fi1: L9, — L., is surjective, Lemma 16 implies that the restriction of f; to
Ho, is a surjection on a union of H-classes in L., . By Corollary 9 (iii), the number
of H-classes in the latter union can be computed in the semigroup 9%, via ¢, and it
is easy to see that it equals ("~ (3F~2).

We know by induction that |Hg,| = (n — 2(k — 1))!. Hence, taking into account
Lemma 15 and Green’s Lemma, we compute

(17) |Hf1(91)| < (n—(21k—2)) ’ (n — 2(5 — 1))' = (TL - 2k)!'
2
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Since [Hy(4,(6,))l = (n — 2k)! by [9, Theorem 1], (17) and Corollary 9 (iii) imply
[Hy 0] = (n — 2k)!. This forces [Hi| = (n — 2k)! by Green’s Lemma and the
statement follows by induction. O

Proof of Theorem 5. Let 1 < k < [3n]. By Proposition 14 we have
|Hi| = (n — 2k)!. By [9, Theorem 1] we have |p(Hy)| = (n — 2k)! as well. Hence
the restriction of ¢ to Hjy is injective. From Green’s Lemma it follows that the
restriction of ¢ to H, is injective for every m € T such that #Dej. From Corollary 9
(iii) it therefore follows that ¢ is injective, and hence bijective. This completes the
proof. O

5. COMBINATORIAL APPLICATIONS

5.1. Connected sequences. Two elements {i, j} and {k,[} of (}) are said to be
connected provided that {i,j} N {k,l} # 0. A connected sequence is a non-empty
sequence {i1, 71}, {i2,J2},- -, {im,Jm} of elements from (g) such that {i;,7;} and
{4141, Ji+1} are connected for all I = 1,...,m — 1. Two connected sequences will
be called equivalent provided that one of them can be obtained from the other by a
finite number of the following operations:

(I) replacing the fragment {4, 5}, {¢,7} by {¢,j} and vice versa;

(IT) replacing the fragment {4, j},{j, k}, {k,1} by {4,5},{4,1},{k, 1} and vice versa,

where i # [;

(IIT) replacing the fragment {,j},{j, k}, {k,i} by {i,7}, {k,i} and vice versa;
(IV) replacing the fragment {i, 5}, {j, k}, {é,4} by {¢,7} and vice versa.
It is obvious that each of the operations (I)—(IV), applied to a connected sequence,
produces a new connected sequence. As an immediate corollary of Theorem 5 we
have the following result:

Proposition 17. Let n € {2,3,...}.
(i) There exist only finitely many, namely in(n — 1)n!, equivalence classes of con-
nected sequences.
(ii) For all {i,j},{k,1} € (}) the number of connected sequence whose first element
is {i,7} and whose last element is {k,l}, equals (n — 2)!.

Proof. Let S denote the set of all equivalence classes of connected sequences.
Define a semigroup structure on S U {0} as follows: 0 is the zero element of S U {0},
and for f,g € S

fg if fg is connected,
f9= ,
0  otherwise.
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Let B denote the Rees quotient of %B,,\ Sy, modulo the ideal containing all elements
of corank at least 4. By Theorem 5, mapping o; ; to the connected sequence {3, j}
defines an epimorphism 1) from 9B to SU{0}. On the other hand, from the definition
of the equivalence relation on the connected sequences we have that mapping {i, j}
to 0;; defines an epimorphism ¢’: S U {0} — %B. Thus ¢ and ¢’ induce a pair of
mutually inverse bijections between the set of all elements in 95,, of corank 2 and the
set of equivalence classes of connected sequences. The claim now follows by direct
computation in B,,. O

It might be interesting to find a purely combinatorial proof for the statement of
Proposition 17.

5.2. Paths in the graph I',,. There is another interesting combinatorial inter-
pretation of the elements of *8,, of corank 2. Consider a non-oriented graph I';,, whose
vertex set is (5), and such that two vertices {¢,;j} and {k,l} are connected by an

edge if and only if {7,j} N {k,1} # 0. The graph I'y is shown in Figure 9.

— T
(1,2) ——(1,3) ——(1,4)

XX

(2,3) —— (2,4) —— (3,4)
\/

Figure 9: The graph I'y.

Obviously, the paths in I';, can be interpreted as connected sequences as defined in
the previous subsection. Then the equivalence relation on the connected sequences,
defined by the operations (I)—(IV), has the following interpretation in terms of the
graph I';;:

(I) the trivial path in each vertex is an idempotent;
(II) if the full subgraph of ', corresponding to a quadruple of vertices has the form

N

then the paths of length 2 in this subgraph with the same initial and the same

terminal points are equivalent;

(IIT) for any triple {i,j}, {4,1}, {4,1} of vertices the paths in the full subgraph T,
corresponding to these vertices, with the same initial and the same terminal
points are equivalent;
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(IV) the path consisting of going along the same edge in two different directions
coincides with the trivial path in the starting point.

These relations generate an equivalence relation on the set of all paths in I';,. From

Proposition 17 it thus follows that the number of non-equivalent paths in I',, equals

%n(n — 1)n!, and the number of non-equivalent loops at each point equals (n — 2)!.

5.3. The maximal length of an element from 9B, \ S,,. For w € B, \ S,, we
define the length 1s(w) of w as the length of the shortest possible presentation of w
as a product of the generators o; ;’s. For w € A} we define the length [(w) of w
as the length of presentation of w as a product of the generators 7; ;’s. The aim of
this subsection is to prove the following statement about the maximal value f(n) of
Is(w) on w € B, \ S,.

Theorem 18. Let n > 2. Then f(n) = [3n] — 2.

For the proof of Theorem 18 we will need several auxiliary statements. Set g(n) =
|3n] — 2. We will show that f(n) < g(n). For n # 3 we will then find an element
w € Hy,, such that Is(w) = g(n). For n = 3 we have Is(01,2023) = 2 = g(3). By
Theorem 5 we have B,, \ S,, =~ T and hence in the sequel we can work with the
semigroup 7' and the generators 7; ;’s. The function Is on 7" is defined in the obvious
way, and we consider all elements of A" as elements of 7' via the natural projection.

Lemma 19. Let u; € {3,...,n}, 1 <i < k. Then

T12Tluy -+ - ThupT1,2 = T1,2T2,uy - - - T2,u;, T1,2-

Proof. Because of (4) we may assume that u; # u;4q foralli =1,...,k — 1.
We have

TL2TLuy « - TLup T12 = T1,2T2u3 Thus Thous - - - TLa 712 (DY (6))

= T1,2T2,u1 T2usTLus - - - T 71,2 (bY (5))

= T12T2u T2us - - T2u, TLup 71,2 (DY (D))

= 7'1727'27“,1’7'2}“2 .. .Tg}ukTLg (by (6))
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Corollary 20. Let u; € {2,...,n}, 1 < i@ < k. Then there exist elements
v, €{1,...,n}\ {2}, 1 <i <k, such that

W=T12T1uy ++-Tlu,T1,2 = T1,2T2,01 ++ - T2,0,71,2-

Proof. If2¢ {uy,...,ur} then the statement follows from Lemma 19. Other-

wise let u;, = u;y = ... = Wi, = 2,11 <idg < ... <y, be all occurrences of 2 among
Uty ..., Ug. Set ug = Ug41 = 2, 49 = 0, ip41 = k + 1. The statement now follows by
applying Lemma 19 to each element Tl T 1 o+ Thaui, o 7=0,...,p. (]

Lemma 21. Let w € A" be such that w € H;. Assume that [(w) = Is(w) > 4
and set m = (w) — 2. Then there exist u; € {2,...,n}, i = 1,...,m, such that

W="T12T1u1 - Tl,u,, 71,2+

Proof. We useinduction onm = [(w)—2. If m = 2, we have w = 71 274 b T¢,dT1,2-
Without loss of generality we may assume a,d € {1,2}. If a = d = 1, we have nothing
to prove. If a = d = 2, the statement follows from Lemma 19. If a # d, using (6) we
see that 1s(w) < 4, a contradiction.

Now we prove the induction step m — 1 = m. Let w = 7127, j; - - Tipn jon T1,2-
Without loss of generality we may assume i; € {1,2}.

Case 1: 43 = 1. If 1 € {4, i } for all I < m, we have nothing to prove. Otherwise
let p < m be such that 1 € {4;,5,} for all | <p and 1 & {ipy1, jp+1}. Thus, without
loss of generality we may assume ¢; = 1 for all | < p. If j, = 2, the statement follows
from the induction hypothesis.

Assume that j, # 2. Without loss of generality we may write

w = 7—1:27—1:jl A Tl:jijpvjp+1 A ij:.jp+q7—jp+q7jp+q+1 A Tim :.7‘mT172'

Observe that jpyq+1 7 jp since [(w) = Is(w).
Now we apply successively the relation (5) starting from 7;, ; . and moving to
the left until we reach the element 75, ; ... We get

w = 7'1’27'1,j1 et Tl,jijp»jp+lij+l,jp+q+1 o ij+q71»jp+q+17-jp+q»jp+q+1 e Tim»jmTLQ'

If jp+q+1 = 1, then we can reduce the length of w by (6), a contradiction. Otherwise,

using (5) we can change 7;, ; ., to 71 Since we have not changed the length

sJptat1®
of w, the proof in Case 1 is now completed by induction on p.

Case 2: i1 = 2. Analogously to Case 1, we get existence of u; € {1,3,...,n},
i = 1,...,m, such that w = 712724, ... T2,4,,71,2. Now the claim follows from

Corollary 20. O
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Note that for every w € H; there exists a unique permutation 7 € S,,_2 such that

(18) w={{1,2},{1, 2}, {k,m(k — 2)' + 2}pr1,2}.
Let (i’gl), e ,i’z(jll)),. e (i’gs), e ,i’}(fs)) be a complete list of cycles of m which have

length at least 2. Set i{”) = i’flb) + 2 for all possible a,b. Then, by (2), we have the
following decomposition of w:

w = 7'1,27'171.51) . 7'171.;11) 71,2 - - .7'1,27'171.55) e 7'171.;55) T1,2-

We will call this decomposition a cyclic decomposition of w. We will also say that
71,2 is the cyclic decomposition of 71 3. In the obvious way we now define cycles in
Hi.

Lemma 22. Let w € H; be a non-trivial cycle. Then ls(w) equals the length of
the cyclic decomposition of w.

Proof. By Lemma 21 there exist u1, ..., Us@w)—2 € {2,...,n} such that

W= T1,2T1,uy -+ TLg(wy—271,2+

But then all elements from {3,...,n} moved by the cycle w should obviously occur
among g, . . . , Uig(w)—2- Lhe claim now follows from the formula (2). O
Finally, for Theorem 5 we obtain for pairwise distinct 1, u,uq,...,u; and for any
l € k that
(19) TluTluy » - Tlup Tl = TluTlug - Tlup Tliuy » - - Tl T1u-
Lemma 23. Let 1,a,u,uq,...,u, be pairwise distinct. Then

Tl,aTl,uTluy »+ - Tlup Tl = TlaTluy »» - TliupT1,aT1,u-

Proof.

TlaTluTlug » - - TLup Tlu =

T1,aTluy » - - Tl T1,uT1,aT1,u, T1,u

(
TLaTluTlug - - ThaunTLaTlup T1u = (D

(

(

T1,aTluy »» - Tl T1,uTl,u, T1,aT1,u

Tl,aTluy » - - TlurT1,aT1,u-
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Lemma 24. Let w € Hy. Then the cyclic decomposition of w is of length ls(w).

Proof. We use induction on lIs(w). If Is(w) < 3 then the statement is trivial
since, by (4) and (7), the only possibility is w = 71 2. Let us now prove the induction
step m+ 1= m+ 2.

Let w € H; be such that Is(w) = m + 2. By Lemma 21 we may write w =
T1,2T1uy - - - Tlu,T1,2 for some u; € {2,...,n}, i=1,...,m. We set ug = U1 = 2.
If all of u;’s are pairwise distinct, the word w is a cycle and the statement follows.
Suppose now that there are some repetitions among ug, u1, . . ., u,. Take the leftmost
element which repeats in this series, say u; = u. Let j > ¢ be the minimal possible
such that u; = u. Consider the element

/
W = Tl u,; -- ‘Tl,uj = T,uTluiyq -+ 'Tl7uj,17—1,u c HTl,u'

Since Is(w) = m+2, Is(w’) = j—i+1 < m+2. Hence, using the induction hypothesis,
the cyclic decomposition of w’ has length j — i + 1. Without loss of generality we
hence may assume that the subword w’ of w already coincides with the corresponding
cyclic decomposition, that is, it is a cycle.

Now we claim that wu;_1,u;,...,u;j—1 are pairwise distinct. Indeed, if not, then
u;—1 coincides with one of u;11,...,uj—1. Then applying (19) we can obtain the
fragment 7y 4, ,71,u,71,u;_, Which can be shortened by (7), a contradiction. Hence
Lemma 23 gives

Tlui—1 Tl Thuipr -+ - Thuj—2 Thuy 1 Thu; Thujp

= Tlui—1 Thuipr Thugyo - Thuj—1 Thus o1 Thu Thujyq -

This operation makes the index of the first letter with repetition smaller. Hence,
applying this procedure as many times as necessary, we may assume that ¢ = 0.
This means that w is a product of a cycle with some element v from H; of strictly
smaller length. By induction hypothesis, we may assume that v is written in its
cyclic decomposition. We are left to prove that none of the elements uq,...,u;j_1
occurs among cycles in v. Assume that some of these elements does occur. Then,
using (19), we may assume that this is u;_;. At the same time, the cycles of any
cyclic decomposition commute and hence using this and (19) we may assume that
Uj—1 = uj41. In this case we can make w shorter by applying (7), a contradiction.
This completes the proof. O
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Proposition 25. Let w € Hy. Then Is(w) < g(n). Moreover, if n > 4 then there
exists v € Hy such that 1s(v) = g(n).

Proof. If w =72 or n < 3 then the statement is obvious. Suppose now that
w # T2 and n > 4. Let m € §,,_2 be the permutation which corresponds to w by
(18). Let ¢ and s be the number of non-trivial and trivial cycles in 7 respectively.
From Lemma 24 it follows that Is(w) = (n —2) —s+c+ 1.

Case 1: n =2k, k €N. ThenlIs(w) = (2k—1)+c—s< (2k—1)+ 3(2k —2) =
3k — 2 = g(n) and the equality holds if and only if 7 contains k — 1 transpositions.

Case 2: n=2k+1, k € N. If s = 0 then there should exist a cycle in 7 of length
at least 3. Then Is(w) =2k +c<2k+ $(n—2-3)+1=3k—1= g(n) and the
equality holds if and only if 7 contains one cycle of length 3 and k — 2 transpositions.
If s > 1 thenls(w) =2k+c—s <2k—14+c<2k—14+3(n—2-1)=3k—2 < g(n).
The proof is complete. O

Lemma 26. Let iy, j1,...,ik, jr be pairwise distinct elements from n. Then there
exists a word p € AT such that [(u) < 2k,

T12 o Tok—1,2kH € Loy S omy s

and {m,m'} € p(n), m € n\ {i1, j1,. -, 0%k, 1,2,...,2k — 1,2k}.
Proof. Fora,b,c,d€n,a+#b,c+#d, set

TacTed if {a,b}N{c,d} =0,
Ha,b,c,d =

Te,d otherwise.

Note that {m,m'} € ©(a.b,c.a) provided that m # a, b, ¢, d.

Now direct calculation implies that 74 ppia.p,c,dfic,d,a,b = Ta,p for all a,b,c,d such
that a # b and ¢ # d. In particular, it follows that for any w € T such that w7, = w
we have that the coranks of the elements p(w) and @(wiig p,c,q) coincide.

In particular, the element (1), where i = 71 2. .. Tokp—1,2641,2,4, 51, has corank
2k. Further, u, satisfies p117;, 5, = p1 by the definition of y1,2,4, ;,. Hence there exist
pairwise distinct aq,b1, ..., ak—1,bk—1 from n \ {i1, 71} such that

w1 € L

Tip,g1Tay,byTap_q,b_q°

Analogously, the element ¢(us2), where po = f1f4ay by .is,52, 8lso has corank 2k. The
element fo satisfies pa7;, j, = po and po7i, j, = po by the definition of 114, b, ,is,-
Hence there exist pairwise distinct ¢, d1, ..., cx—2,dg—1 from n\ {i1, ji1,42, jo} such
that

p2 € L

Tiq,51 Tig,g2 Ter,dy -+ Tep_o,dp_o°
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Continuing this process for k£ — 2 more steps we will construct the element p; with
the desired properties. O

Proof of Theorem 18. Letn > 4. Then, by Proposition 25, there is w € T
such that ls(w) = g(n). For n = 2,3 an example of w € T such that Is(w) = g(n)
was constructed immediately after the formulation of Theorem 18. Hence we are left
to show that for any w € T we have Is(w) < g(n). Without loss of generality it is
even enough to consider those w for which 7w = w.

Let now w € T be such that 7 sw = w. Assume first that corank(¢(w)) = 2. Then
there exists a unique {7,j}, i # j, such that wr; ; = w. Without loss of generality
we have one of the following cases:

Case 1: {i,5} = {1,2}. Then the statement follows from Proposition 25.

Case 2: i =1and j # 2. Then, applying (4) and (7), we obtain w = wmy ;71 271 ;.
Setting w’ = wmy ;71,2 = wr,2 we have w = w'my ; by (7). It follows that w'Hry .
Consider the cyclic decomposition of w’. Assume that the cycles occurring in this
decomposition do not move the element j. Then, by Lemma 24 and Proposition 25,
we have that the length of this decomposition is at most g(n — 1). Since w = w'ry j,
we have Is(w) < 14 g(n — 1) < g(n). Assume now that there is a cycle in w’
which moves j. Using (19) and the fact that the cycles in the cyclic decomposition
commute, we may write w' = w”m ;71 o for some w” such that Is(w”) = Is(w') — 2.
Since w = w'my 4, we have w = w7y ; by (7), and thus Is(w) < Is(w’) < g(n).

Case 3: {i,j} N {1,2} = 0. Then we can write w = w'ry ;7 j, W € Hr,.
Consider again the cyclic decomposition of w’. If neither i nor j are moved by all the
cycles, we have Is(w) < 2+ g(n —2) < g(n). If i is moved, then, as in Case 2, we can
write w’ = w71y ;71 2 for some w” such that Is(w”) = Is(w’) — 2 and, using (7), we
obtain Is(w) < Is(w”) 42 =1s(w’) < g(n). Finally, let us assume that ¢ is not moved
but j is. Assume that z1,..., 2,7, p > 0, is a cycle in the cyclic decomposition of w'.
Then, using (19) and the fact that the cycles in the cyclic decomposition commute,
we may assume that this cyclic decomposition has the form

T172 .. ~7—1,27—1,m1 .. .Tlﬁprl}jTl}g.

Now we can compute the following expression containing the last cycle of this de-

composition:
T12TLe - - TLa,T1,jT1,271,iTi,; = (by (5))
T2l - Tle, T1,iT1,272,5Ti,; = (by (6))
T2 ey - TLa, T1,i72,iTij = (by (5))
7'1’27'1’%1 ...Tl’mpTQ’mpTQ’jTi’j = (by (5))
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7'1,27'1,9517'2,11 .. .TQ,zpilTQ’mpTQ’jTi’j = (by (6))

T1,2T2,21 - - - TQ’mpilTQ,mPTQ,jTi,j.

It follows that Is(w) < ls(w’) < g(n).

Assume now that corank(p(w)) = 2k, & > 1. We may further assume that
Ti,2...Tok—1,2kW = w and WTi, j, ... Ty 4, = w for some pairwise distinct elements
11,715 - - -5 1k, Jk- Without loss of generality we may assume that we have one of the
following cases:

Case 1: {i1,J1, -0k, Jut = {1,...,2k}. Since the map

Hriooranoron = Hriy gy oomip e

L= TTiy g1 - -« Tig,g

is obviously a bijection, there exists w’' € Hr . for which we have w =

-T2k—1,2k

W'Tiy jy - - Tipjo- From the definition of g we have g(n + 2p) = g(n) + 3p for all
positive integers n and p. Hence

Is(w) <k+1s(w)<k+(k—1)+gn—-2k—-1) =gn)+2 -k < g(n).

Case 2: [{ir,jx} N{1,...,2k}| < 1. Without loss of generality we may also
further assume {ig,jx} N {1,...,2k — 2} = (). Then, using Lemma 26, we see that
there exists p such that I(x) < 2(k — 1) and

T1,2 - T2k—3,2k—2Tig ji WL Tiy o -+ - Tig -

This implies that the map
£71,2~~~T2k—3.2k—27ik,jk - ‘C‘ril,jl---‘rik,jk

T U

is a bijection. In particular, there exists v € L ,. such that vy =

CTak—3,2k—2Tig
w. Since Ty 2...Top—126w = w, it follows that 7y 2...72k_1,2,v = v (because of
corank(p(v)) = corank(¢(w))). Hence v € Roy 5.7y o -

From the above we derive Toq—1240 = ¥T2¢—1,2¢ = v for all a = 1,...,k — 1.
Hence we can write v = 7y 2 ... Tog—3.2k—20’, where v is such that corank(p(v')) = 2
and {m,m'} € (') for all m < 2k — 2. Using induction on n and the case of
corank 2 considered above, we obtain 1s(v') < g(n — 2(k — 1)). Hence 1Is(v) <

(k—1)+g(n—2(k—1)) and from w = vy we get
Is(w) < Is(v) + 1(1) < (k — 1) + g(n — 2(k — 1)) +2(k — 1) = g(n).
This completes the proof. O
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