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Abstract. In this paper some properties of quadratic forms whose base points lie in the
point set FΠ, the fundamental domain of the modular group, and transforming these forms
into the reduced forms with the same discriminant ∆ < 0 are given.
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1. Introduction

A real binary quadratic form F (or just a form) is a polynomial in two variables
of the shape

F (X, Y ) = aX2 + bXY + cY 2

with real coefficients a, b, c. We denote F briefly by [a, b, c]. The discriminant of F
is defined by the formula b2 − 4ac and is denoted by ∆(F ). F is an integral form iff
a, b, c ∈ � , and F is positive definite iff ∆(F ) < 0 and a, c > 0.
Let Π be the modular group PSL(2, � ), i.e. the set of the transformations

S(z) =
az + b

cz + d
, a, b, c, d ∈ � , ad− bc = 1.

Π is generated by the transformations T (z) = −1/z and V (z) = z +1; let U = T ·V .
Then U(z) = −1/(z + 1). Then Π has a representation

Π =
〈
T, U : T 2 = U3 = I

〉
.

T and U are elliptic transformations and their fixed points in the upper halfplane
are i and % = e2 � i/3.
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We denote the symmetry with respect to the imaginary axis by R, that is R(z) =
−z. Then the group Π = Π ∪ RΠ is generated by the transformations R, T and U ,
and has a representation

Π =
〈
R, T, U : R2 = T 2 = U3 = I

〉
.

Π is called the extended modular group and Π is a subgroup of index 2 in Π. There-
fore Π is a normal subgroup of Π.
There is a strong connection between transformations and matrices. Throughout

this paper, we identify each matrix A with −A so that both represent the same
transformation, and we use the matrix representation of transformations.

2. The connections between forms and Π

In this section we examine the connections between forms and Π. Now we give
the relation of forms to the extended modular group. We define the form gF by the
formula

gF (X, Y ) = (ar2 + brs+ cs2)X2 +(2art+ bru+ bts+2csu)XY +(at2 + btu+ cu2)Y 2

for g =
(

r s

t u

)
∈ Π and F (X, Y ) = aX2 + bXY + cY 2.

This definition of gF is a group action on the set of forms, that is,

(
1 0
0 1

)
F = F

and g(hF ) = (gh)F for every g, h ∈ Π. Furthermore, ∆(F ) = ∆(gF ) for g ∈ Π,
that is, the action of Π on the set of forms leaves the discriminant invariant. If F is
positive definite or integral then so is gF for all g ∈ Π.
Let � = {z ∈ � : Im (z) > 0} be the complex upper halfplane. For a positive

definite form F = [a, b, c] with discriminant ∆(F ) < 0, there exists a unique z =
z(F ) ∈ � such that

F = a(X + zY )(X + zY ).

We call z the base point of F in � . Indeed, for z = x + iy we have

F = a(X + zY )(X + zY ) = aX2 + 2axXY + a|z|2Y 2.

Then we obtain 2ax = b and a|z|2 = c, so x = 1
2b/a and y = 1

2

√
−∆(F )/a. Since y

is positive,

z =
b + i

√
−∆(F )

2a
∈ � .
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Conversely, for a given point z ∈ � there exists a positive definite quadratic form
F = [a, b, c] whose base point is z. For z = x + iy let a = 1/|z|2, b = 2x/|z|2 and
c = 1. Then we have the positive definite quadratic form

(2.1) F = [a, b, c] =
[

1
|z|2 ,

2x

|z|2 , 1
]

with discriminant ∆(F ) = −4y2/|z|4 < 0 and its base point is z.
So the map Φ: F → z(F ) is a bijection between the set of positive definite forms

with a fixed discriminant and the points of � . There is a relation between positive
definite forms with the same discriminant and their base points in � .
Let F and G be two positive definite forms with the same discriminant. Then F

and G are properly equivalent iff there exists a g ∈ Π such that gF = G. Moreover,
F and G are properly equivalent iff z(F ) and z(G) are in the same orbit in Π. The
proper equivalence classes of forms are just the orbits of the action of Π on the set
of forms.
Let F = [a, b, c] be a positive definite form with discriminant ∆(F ). Then F is

said to be almost reduced if |b| 6 a 6 c. We denote the set of almost reduced forms
with discriminant ∆ by h(∆). Flath showed in [2] that the number of almost reduced
forms with given discriminant ∆ < 0 is finite, i.e.h(∆) is finite.
Any positive definite integral form can be transformed into an almost reduced

one by an element of Π. Let us prove that a positive definite integral form F =
aX2 + bXY + cY 2 that does not satisfy |b| 6 a 6 c can be modified within its
proper equivalence class as follows. If c < a, permute X and Y by replacing F by(

0 1
−1 0

)
F = cX2 − bXY + aY 2. If |b| > a, replace F by

(
1 0
n 1

)
F = aX2 + (b + 2an)XY + (an2 + bn + c)Y 2

where n ∈ � is chosen such that |b+2an| 6 a. By alternating these two modification
procedures we are led to a sequence of forms Fn = anX2 + bnXY + cnY 2 such that
an > an+1 and an > an+2. Since all of the an’s are positive integers, the sequence
must stop. This can only happen when |b| 6 a 6 c as desired, i.e. every positive
definite integral form is equivalent to an almost reduced form.
For any given positive definite quadratic form F = [a, b, c] we know that F can

be writtten as F = a(X + zY )(X + zY ) for some complex number z. We may
assume that Im (z) > 0 since z and z play symmetric roles. The condition |b| 6 a is
equivalent to |z + z| 6 1, that is |Re (z)| 6 1/2. The condition a 6 c translates to
zz > 1, that is |z| > 1. In other words, the form F = [a, b, c] is almost reduced when
z lies in the region pictured in Figure 1, which is the fundamental region of Π.
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Figure 1

We denote this region by FΠ. The transformation R is a symmetry with respect to
the imaginary axis, so the points on the right side of the imaginary axis are equivalent
to the points on the left side. Hence the positive definite quadratic form F is said to
be reduced if z lies in the region pictured in Figure 2. This region is the fundamental
region of Π, we denote it by FΠ and call it the fundamental region of the form.

x

yFΠ

x = − 1
2

|z| = 1

Figure 2

This definition has been made so that there exists a unique reduced form in each
equivalence class of Π.
Now we will give some properties of positive definite forms whose base points lie

in some point set in FΠ.

Theorem 2.1. For m > 2 consider the line x = −1/m. Then there exists an
integral positive definite quadratic form F = [a, b, c] with discriminant ∆(F ) = −D,
where 0 < D < m2, whose base point z(F ) lies on the line x = −1/m.
������� �

. We know that for a given point z = x + iy in � there exists a positive
definite quadratic form F = [a, b, c] = [1/|z|2, 2x/|z|2, 1] with discriminant ∆(F ) =
−4y2/|z|4. So we have y = m +

√
m2 −D/m

√
D from the equation −4y2/|z|4 = −D

for x = −1/m. Thus we have the positive definite quadratic form

(2.2) F = [a, b, c] =
[

mD

2
(
m +

√
m2 −D

) ,
−D

m +
√

m2 −D
, 1

]
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with discriminant ∆(F ) = −D whose base point is z = x + iy ∈ � .
Now we want the form F in (2.2) to be an integral form. To achieve this we have

two cases:!#"%$'&
1. If m is odd, then D is even. In this case let m = 2k + 1 for k ∈ � +.

Then F is an integral form, i.e. a, b ∈ � if and only if D = m2 − (2l− 1)2, 1 6 l 6 k.
Let a, b ∈ � . We want to determine D numbers such that a, b ∈ � . Since √m2 −D

is odd we have
√

m2 −D = 2l−1 for l ∈ � . Then l > 1, m2−D = (2l−1)2 and thus
D = m2− (2l−1)2. Since D is positive, m2− (2l−1)2 = (m− (2l−1))(m+(2l−1))
must be positive. Since l > 1, we have m+(2l−1) is positive. Therefore m− (2l−1)
must be positive. This shows that k + 1 > l. Thus we obtain D = m2 − (2l− 1)2 for
1 6 l 6 k. Conversely, let D = m2 − (2l − 1)2 for 1 6 l 6 k. Then we have

a =
mD

2
(
m +

√
m2 −D

) =
m

(
m2 − (2l − 1)2

)

2 (m + (2l − 1))
=

m (m− (2l− 1))
2

∈ �

since m− (2l− 1) is even, and similarly

b =
−D

m +
√

m2 −D
=
−

(
m2 − (2l− 1)2

)

m + (2l− 1)
= −m + (2l − 1) ∈ � .

!#"%$'&
2. Let m be even, say m = 2k for k ∈ � . Then F is an integral form,

i.e. a, b ∈ � if and only if D = m2 − t2 for 1 6 t 6 m − 1. Let a, b ∈ � . We
will determine D numbers such that a, b ∈ � . Let

√
m2 −D = t for t ∈ � + since

m2−D > 0. Then D = m2− t2. Since D is positive, m2− t2 = (m− t)(m + t) must
be positive. Since m + t is positive, m − t must be positive. Thus we have m > t,
i.e. t 6 m−1. Therefore D = m2− t2 for 1 6 t 6 m−1. Conversely, let D = m2− t2

for 1 6 t 6 m− 1. Then we have

a =
mD

2
(
m +

√
m2 −D

) =
m

(
m2 − t2

)

2 (m + t)
=

m (m− t)
2

∈ �

since m is even and

b =
−D

m +
√

m2 −D
=
−(m2 − t2)

m + t
= −(m− t) ∈ � .

�

From Theorem 2.1 we obtain
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Corollary 2.2. 1. If m is odd, say m = 2k + 1 for k ∈ � +, then there exist k

positive definite integral forms of the type

Fj = [mj,−2j, 1], 1 6 j 6 k

with discriminant ∆(Fj) = −Dj = −4j(m − j) whose base points z(Fj) lie on the
line x = −1/m.

2. If m is even, say m = 2k for k ∈ � +, then there exist m − 1 positive definite
integral forms of the type

Fj = [kj,−j, 1], 1 6 j 6 m− 1

with discriminant ∆(Fj) = −Dj = −j(2m − j) whose base points z(Fj) lie on the
line x = −1/m.

( ) "+*-,/.0&
2.1. Let m = 7. In this case there exist three positive definite integral

forms which are

F1 = [7,−2, 1] with discriminant ∆(F1) = −24,

F2 = [14,−4, 1] with discriminant ∆(F2) = −40,

F3 = [21,−6, 1] with discriminant ∆(F3) = −48.

Now we want to find out which positive definite integral forms of the type given
in Corollary 2.2. are reduced, i.e. whose base points lie in FΠ.

Corollary 2.3. There are two positive definite integral forms of the type (2.2)
whose base points lie in ΓΠ.

������� �
. For m = 2, we have the positive definite integral form F2 = [1,−1, 1]

with discriminant ∆(F2) = −3. The base point of F2 is z(F2) = 1
2 (−1 + i

√
3); it lies

on the line x = −1/2 which is in ΓΠ. Similarly for m = ∞, we have the positive
definite integral form F∞ = [1, 0, 1] with discriminant ∆(F∞) = −4. The base point
of F∞ is z(F∞) = 1

2 i
√

4 = i; it lies on the line x = 0 which is in ΓΠ. �

The positive definite integral forms we have obtained in Corollary 2.2 are not
reduced except for F2 and F∞. We know that every positive definite integral form
can be transformed into a reduced form with the same discriminant by an element
g ∈ Π.
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Theorem 2.4. Let F = [a, b, c] be a positive definite integral form of the type
(2.2). Then there exists a g ∈ Π such that gF = FR, where FR is the reduced form
with the same discriminant.

������� �
. Consider two cases.!#"%$'&
1. If m is odd, saym = 2k+1 for k ∈ � +, then we know from Corollary 2.2

that there exist k-integral forms of the type Fj = [mj,−2j, 1], 1 6 j 6 k with
discriminant ∆(Fj) = −Dj . One of the reduced forms with discriminant ∆(FRj) =
−Dj is of the type

FRj =
[
1, 0,

Dj

4

]
.

We want to find a gj ∈ Π such that gjFj = FRj . From the definition of gF , we have
the system of equations

mjr2 − 2jrs + s2 = 1,

2mjrt− 2jru− 2jts + 2su = 0,

mjt2 − 2jtu + u2 =
Dj

4

for Fj = [mj,−2j, 1] and g =
(

r s

t u

)
∈ Π. This system has a solution for r = 0,

s = 1, t = 1 and u = j. So gjFj = FRj for gj =
(

0 1
1 j

)
.

!#"%$'&
2. If m is even, say m = 2k for k ∈ � +, then by Corollary 2.2 there exist

m − 1 integral forms of the type Fj = [kj,−j, 1], 1 6 j 6 m − 1 with discriminant
∆j = −Dj . In this case there are two possibilities:

(a) If j is odd, then one of the reduced forms with discriminant ∆(FRj) = −Dj is
of the type

FRj =
[
1, 1,

1 + Dj

4

]
.

Let us consider the system of equations

kjr2 − jrs + s2 = 1,

2kjrt− jru− jts + 2su = 1,

kjt2 − jtu + u2 =
1 + Dj

4
.

This system has a solution for r = 0, s = 1, t = 1 and u = 1
2 (j + 1). Therefore

gjFj = FRj for gj =
(

0 1
1 1

2 (j + 1)

)
.
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(b) If j is even, then one of the reduced forms with discriminant ∆(FRj) = −Dj

is of the type

FRj =
[
1, 0,

Dj

4

]
.

Thus we have the system of equations

kjr2 − jrs + s2 = 1,

2kjrt− jru− jts + 2su = 0,

kjt2 − jtu + u2 =
Dj

4
.

This system has a solution for r = 0, s = −1, t = 1 and u = 1
2j. Therefore

gjFj = FRj for gj =
(

0 − 1
1 1

2 j

)
. �

( ) "+*-,/.0&
2.2. Letm = 7. Then there exist three positive definite integral forms

which are

F1 = [7,−2, 1] with discriminant ∆(F1) = −24,

F2 = [14,−4, 1] with discriminant ∆(F2) = −40,

F3 = [21,−6, 1] with discriminant ∆(F3) = −48

and the reduced forms are

FR1 = [1, 0, 6] with discriminant ∆(FR1) = −24,

FR2 = [1, 0, 10] with discriminant ∆(FR2) = −40,

FR3 = [1, 0, 12] with discriminant ∆(FR3) = −48.

Thus we have

g1F1 = FR1 for g1 =
(

0 1
1 1

)
,

g2F2 = FR2 for g2 =
(

0 1
1 2

)
,

g3F3 = FR3 for g3 =
(

0 1
1 3

)
.

Let m = 8. Then there exist seven positive definite integral forms. When j is odd,
the integral forms are

F1 = [4,−1, 1] with discriminant ∆(F1) = −15,

F3 = [12,−3, 1] with discriminant ∆(F3) = −39,

F5 = [20,−5, 1] with discriminant ∆(F5) = −55,

F7 = [28,−7, 1] with discriminant ∆(F7) = −63
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and the reduced forms are

FR1 = [1, 1, 4] with discriminant ∆(FR1) = −15,

FR3 = [1, 1, 10] with discriminant ∆(FR3) = −39,

FR5 = [1, 1, 14] with discriminant ∆(FR5) = −55,

FR7 = [1, 1, 16] with discriminant ∆(FR7) = −63.

So

g1F1 = FR1 for g1 =
(

0 1
1 1

)
,

g3F3 = FR3 for g3 =
(

0 1
1 2

)
,

g5F5 = FR5 for g5 =
(

0 1
1 3

)
,

g7F7 = FR7 for g7 =
(

0 1
1 4

)
.

When j is even the integral forms are

F2 = [8,−2, 1] with discriminant ∆(F2) = −28,

F4 = [16,−4, 1] with discriminant ∆(F4) = −48,

F6 = [24,−6, 1] with discriminant ∆(F6) = −60

and the reduced forms are

FR2 = [1, 0, 7] with discriminant ∆(FR2) = −28,

FR4 = [1, 0, 12] with discriminant ∆(FR4) = −48,

FR6 = [1, 0, 15] with discriminant ∆(FR6) = −60.

So

g2F2 = FR2 for g2 =
(

0 − 1
1 1

)
,

g4F4 = FR4 for g4 =
(

0 − 1
1 2

)
,

g6F6 = FR6 for g6 =
(

0 − 1
1 3

)
.

Now we consider a positive definite quadratic form whose base points lie on a circle
centered at (0, 0).
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Theorem 2.5. For m > 1 consider the circle C : x2 + y2 = 1/m2. Let C̃ = C ∩ �
and 0 < D < 4m2. Then there exist two types of positive definite quadratic forms,
namely F = [a,−b, c] and G = [a, b, c] with the same discriminant ∆(F ) = ∆(G) =
−D whose base points z(F ) and z(G) lie on C̃ .
������� �

. We know that for any given number z ∈ � there exists a form F =
[a, b, c] = [1/|z|2, 2x/|z|2, 1] with discriminant ∆(F ) = −4y2/|z|4 < 0 whose base
point is z. For z = x + iy the circle C is the circle |z| = 1/m. Thus we have
y = 1

2

√
D/m2 from the equation −4y2/|z|4 = −D and x = ± 1

2

√
4m2 −D/m2 for

|z| = 1/m. Therefore we have the following two types of positive definite quadratic
forms:

F = [a,−b, c] = [m2,−
√

4m2 −D, 1],(2.3)

G = [a, b, c] = [m2,
√

4m2 −D, 1]

with discriminant ∆(F ) = ∆(G) = −D whose points z(F ) and z(G) lie on C̃.
We want the quadratic forms F and G to be of integral form. To get this let

b =
√

4m2 −D. Then b ∈ � , i.e.F and G are integral forms iff D = 4m2 − t2 for
1 6 t 6 2m − 1. Let b ∈ � . Then √4m2 −D ∈ � . Since 4m2 − D is positive,√

4m2 −D must be positive. Let
√

4m2 −D = t for t ∈ � +. Then 4m2 −D = t2

and thus D = 4m2− t2. Since D is positive, D = (2m− t)(2m + t) must be positive.
Since m and t are positive, 2m + t is positive. Therefore m − t must be positive.
Hence t < 2m. Thus we get D = 4m2 − t2 for 1 6 t 6 2m − 1. Conversely, let
D = 4m2 − t2. Then b =

√
4m2 −D = t ∈ � . �

From the above theorem we have the following corollary.

Corollary 2.6. For m > 1 there exist two types of positive definite integral
forms of the type Fj = [m2,−j, 1] and Gj = [m2, j, 1] with the same discriminant
∆(Fj) = ∆(Gj) = j2 − 4m2, 1 6 j 6 2m− 1 whose base points z(Fj) and z(Gj) lie
on C̃ .
( ) "+*-,/.0&

2.3. Let m = 3. Then C : x2 + y2 = 1/g and C̃ = C ∩ � . Therefore
there exist five positive definite integral forms of the types

Fj = [9,−1, 1] and G1 = [9, 1, 1] with discriminant ∆(F1) = ∆(G1) = −35,

F2 = [9,−2, 1] and G2 = [9, 2, 1] with discriminant ∆(F2) = ∆(G2) = −32,

F3 = [9,−3, 1] and G3 = [9, 3, 1] with discriminant ∆(F3) = ∆(G3) = −27,

F4 = [9,−4, 1] and G4 = [9, 4, 1] with discriminant ∆(F4) = ∆(G4) = −20,

F5 = [9,−5, 1] and G5 = [9, 5, 1] with discriminant ∆(F5) = ∆(G5) = −11

whose base points lie on C̃ .
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The transformation R(z) = −z is a reflection in the imaginary axis. So the base
points z(Gj) of Gj on the right side of the imaginary axis lie on C̃ are equivalent
to base points z(Fj) of Fj on the left side of the imaginary axis lie on C̃. We know
that two positive definite quadratic forms of the same discriminant F and G are
equivalent iff z(F ) and z(G) are in the same orbit of Π. Therefore R(z(Fj)) = z(Gj)

for R(z) = −z ∈ Π. Moreover, gjFj = Gj for gj =
(

1 − j

0 1

)
∈ Π.

Hence we have proved the following theorem.

Theorem 2.7. Fj and Gj are equivalent.

For m = 1 consider the positive definite integral forms F1 = [1,−1, 1] and G1 =
[1, 1, 1] with discriminant ∆(F1) = ∆(G1) = −3. The base point of F1 is z(F1) =
1
2 (−1 + i

√
3) in ΓΠ. Therefore F1 is reduced. The base point of G1 is z(G1) =

1
2 (1 + i

√
3 in ΓΠ. Therefore G1 is almost reduced.

For m > 1, consider the positive definite integral forms Fj = [m2,−j, 1] and
Gj = [m2, j, 1] with discriminant ∆(Fj) = ∆(Gj) = −(4m2 − j2). The base point
of Fj is z(Fj) = (−j + i

√
4m2 − j2)/2m2 /∈ ΓΠ. Similarly the base point of Gj is

z(Gj) = (j + i
√

4m2 − j2)/2m2 /∈ ΓΠ. Therefore Fj and Gj are not reduced.
Hence we have proved the following theorem.

Theorem 2.8. There exists a unique positive definite integral form of the type
(2.3) whose base point lies in ΓΠ which is F1 = [1,−1, 1] with discriminant ∆(F1) =
−3 for m = 1.

Similarly we can transform quadratic forms Fj and Gj of the type (2.3) into
reduced forms. To get this we only show that Fj can be transformed into a reduced
form, since Fj and Gj are equivalent.

Theorem 2.9. Let Fj be a quadratic form of the type (2.3). Then there exists a
g ∈ Π such that gFj = FRj .
������� �

. When j is odd, the reduced forms with discriminant −Dj are of the
type

FRj =
(

1, 1,
1 + Dj

4

)
.

The system of equations

m2r2 − jrs + s2 = 1,

2m2rt− jru− jts + 2su = 1,

m2t2 − jtu + u2 =
1 + Dj

4
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has a solution for r = 0, s = 1, t = 1 and u = 1
2 (j + 1). So gjFj = FRj for

gj =
(

0 1
1 1

2 (j + 1)

)
∈ Π.

When j is even the reduced forms with discriminant −Dj are of the type

FRj =
(

1, 0,
Dj

4

)
.

The system of equations

m2r2 − jrs + s2 = 1,

2m2rt− jru− jts + 2su = 0,

m2t2 − jtu + u2 =
Dj

4

has a solution for r = 0, s = −1, t = 1 and u = 1
2j. So gjFj = FRj for gj =(

0 − 1
1 1

2j

)
∈ Π. �

( ) "+*-,/.0&
2.4. Let m = 3, then we have the non-reduced forms

F1 = [9,−1, 1], F2 = [9,−2, 1], F3 = [9,−3, 1], F4 = [9,−4, 1], F5 = [9,−5, 1]

and reduced forms

FR1 = [1, 1, 9], FR2 = [1, 0, 8], FR3 = [1, 1, 7], FR4 = [1, 0, 5], FR5 = [1, 1, 3].

When j is odd we have

g1F1 = FR1 for g1 =
(

0 1
1 1

)
,

g3F3 = FR3 for g3 =
(

0 1
1 2

)
,

g5F5 = FR5 for g5 =
(

0 1
1 3

)

and when j is even we have

g2F2 = FR2 for g2 =
(

0 − 1
1 1

)
,

g4F4 = FR4 for g4 =
(

0 − 1
1 2

)
.
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