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For the graph theory terminology not presented here, we follow Haynes et al. [3].

All our graphs are finite and undirected with no loops or multiple edges. We denote
the vertex set and the edge set of a graph G by V (G) and E(G), respectively. The
subgraph induced by S ⊆ V (G) is denoted by 〈S, G〉. For any vertex v of G its
open neighborhood N(v, G) is {x ∈ V (G) ; vx ∈ E(G)} and its closed neighborhood
N [v, G] is N(v, G) ∪ {v}. For a set S ⊆ V (G) its open neighborhood N(S, G) is⋃
v∈S

N(v, G), its closed neighborhood N [S, G] is N(S, G) ∪ S. A subset of vertices A

in a graph G is said to be acyclic if 〈A, G〉 contains no cycles. Note that the property
of being acyclic is a hereditary property, that is, any subset of an acyclic set is itself

acyclic. A dominating set in a graph G is a set of vertices D such that every vertex
of G is either in D or is adjacent to an element of D. A dominating set D is a

minimal dominating set if no proper subset D′ ⊂ D is a dominating set. The set of
all minimal dominating sets of a graph G is denoted by MDS(G). The domination
number γ(G) of a graph G is the minimum cardinality taken over all dominating
sets of G. The literature on this subject has been surveyed and detailed in the two

books by Haynes et al. [4], [5].

A given graph invariant can often be combined with another graph theoretical

property P . Harary and Haynes [3] defined the conditional domination number
γ(G : P ) as the smallest cardinality of a dominating set S ⊆ V (G) such that the
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subgraph 〈S, G〉 induced by S has property P . One of the many possible properties

imposed on S is:

Pad: 〈S, G〉 has no cycles.
The conditional domination number γ(G : Pad) is called the acyclic domination

number and is denoted by γa(G). The concept of acyclic domination in graphs was
introduced by Hedetniemi et al. [6]. An acyclic dominating set D is a minimal acyclic

dominating set if no proper subset D′ ⊂ D is an acyclic dominating set. The upper
acyclic domination number Γa(G) is the maximum cardinality of a minimal acyclic
dominating set of G. The set of all minimal acyclic dominating sets of a graph G

is denoted by MDaS(G). For every vertex x of a graph G let MDaS(x, G) = {D ∈
MDaS(G) ; x ∈ D}.
Let us introduce the following assumption

(∗) a graph H is the union of two connected graphs H1 and H2 having exactly one

common vertex x and |V (Hi)| > 2 for i = 1, 2.

In this paper we deal with minimal acyclic dominating sets, acyclic domination
number and upper acyclic domination number in graphs having cut-vertices. Observe

that domination and some of its variations in graphs having cut-vertices has been
the topic of several studies—see for example [1, 7, 5 Chapter 16].

1. Minimal acyclic dominating sets

In this section we begin an investigation of minimal acyclic dominating sets in
graphs having cut-vertices.

The following lemma will be used in the sequel, without specific reference.

Lemma A [5, Lemma 2.1]. For any graph G, MDaS(G) ⊆ MDS(G).

Theorem 1.1. Let H1, H2 and H be graphs satisfying (∗). LetM ∈ MDaS(x, H)
and Mj = M ∩ V (Hj), j = 1, 2. Then one of the following holds:
(i) Mj ∈ MDaS(x, Hj) for j = 1, 2;
(ii) there are l and m such that {l, m} = {1, 2}, Ml ∈ MDaS(x, Hl), and Mm −{x}
is the unique subset of Mm which belongs to MDaS(Hm).

���������
. Since x ∈ M then Mj is an acyclic dominating set of Hj , j = 1, 2. Let

there be i ∈ {1, 2} such that Mi 6∈ MDaS(x, H). Suppose Mj 6∈ MDaS(x, Hj) for
j = 1, 2. Then there is a vertex u1 ∈ M1 and a vertex u2 ∈ M2 such that Mj −{uj}
is an acyclic dominating set of Hj , j = 1, 2. Hence (M1 − {u1}) ∪ (M2 − {u2}) =
M − ({u1} ∪ {u2}) is an acyclic dominating set of H—a contradiction. So, without
loss of generality let M1 6∈ MDaS(x, H1) and M2 ∈ MDaS(x, H2). Hence there is a
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vertex u ∈ M1 such that M1 −{u} is an acyclic dominating set of H1. If u 6= x then

M − {u} is an acyclic dominating set of H , which is a contradiction. Hence u = x

and M1 − {x} is an acyclic dominating set of H1. Suppose M1 − {x} 6∈ MDaS(H1).
Then there is a vertex w ∈ M1−{x} such that M1−{x, w} is an acyclic dominating
set of H1. But then M − {w} is an acyclic dominating set of H—a contradiction.
Therefore M1 − {x} ∈ MDaS(H1). Let v ∈ M1 − {x}. Suppose M1 − {v} is an
acyclic dominating set of H1. Then M − {v} is an acyclic dominating set of H—a
contradiction. �

Theorem 1.2. Let H1, H2 and H be graphs satisfying (∗). Let M ∈ MDaS(H),
x 6∈ M and Mj = M ∩ V (Hj), j = 1, 2. Then one of the following holds:
(i) Mj ∈ MDaS(Hj) for j = 1, 2;
(ii) there are l and m such that {l, m} = {1, 2}, Ml ∈ MDaS(Hl), Mm ∈

MDaS(Hm − x) and Mm is no dominating set in Hm.

���������
. Clearly, there is i ∈ {1, 2} such that Mi is an acyclic dominating set of

Hi. Without loss of generality let i = 1. Suppose M1 6∈ MDaS(H1). Then there is
u ∈ M1 such that M1 −{u} is an acyclic dominating set of H1 and then M −{u} is
an acyclic dominating set of G—a contradiction. So M1 ∈ MDaS(H1). Analogously,
if M2 is an acyclic dominating set of H2, then M2 ∈ MDaS(G2). Now, let M2 be not

an acyclic dominating set of H2. Then M2 is an acyclic dominating set of H2 − x.
SupposeM2 6∈ MDaS(H2−x). Then there is v ∈ M2 such thatM2−{v} is an acyclic
dominating set of H2 − x and hence M − {v} is an acyclic dominating set of H—a
contradiction. �

Theorem 1.3. Let H1, H2 and H be graphs satisfying (∗). Let Mj ∈ MDaS(Hj)
for j = 1, 2 and x 6∈ M1 ∪ M2. Then one of the following holds:

(i) M1 ∪ M2 ∈ MDaS(H);
(ii) there are l ∈ {1, 2} and u ∈ V (Hl) such that {u} = N(x, Hl) ∩Ml, Ml − {u} ∈

MDaS(Hl − x) and (M1 ∪ M2)− {u} ∈ MDaS(H).
���������

. LetM = M1∪M2. ThenM is an acyclic dominating set of H . Suppose

M 6∈ MDaS(H). Hence, there is a vertex u ∈ M such that M − {u} is an acyclic
dominating set of H . Without loss of generality let u ∈ V (H1). Then M1 − {u} is
no acyclic dominating set of H1 and hence M1 −{u} is an acyclic dominating set of
H1−x. Therefore {u} = N(x, H1)∩M1. SupposeM1−{u} 6∈ MDaS(H1−x). Then
there is a vertex v ∈ M1 − {u} such that M1 − {u, v} is an acyclic dominating set
of H1 − x. Hence M1 − {v} is an acyclic dominating set of H1—a contradiction. So

M1 −{u} ∈ MDaS(H1 − x). Suppose M −{u} 6∈ MDaS(H). Hence there is a vertex
w, w ∈ M − {u} that M − {u, w} is an acyclic dominating set of H . If w ∈ V (H1),
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then M1−{u, w} is an acyclic dominating set of H1−x—a contradiction. Therefore

w ∈ V (H2) and then M2 −{w} is an acyclic dominating set of H2—a contradiction.
So M − {u} ∈ MDaS(H). �

Theorem 1.4. Let H1, H2 and H be graphs satisfying (∗). Let Mj ∈ MDaS
(x, Hj) for j = 1, 2. Then M1 ∪ M2 ∈ MDaS(x, H).
���������

. Let M = M1 ∪ M2. Obviously M is an acyclic dominating set of

H . Suppose M 6∈ MDaS(H). Then there is a vertex u ∈ M such that M − {u}
is an acyclic dominating set of H . First, let u 6= x and without loss of generality

let u ∈ V (H1) − {x} . Then M1 − {u} is an acyclic dominating set of H1—a
contradiction. Secondly, let u = x. Now, there is i ∈ {1, 2} such that Mi −{x} is an
acyclic dominating set of Hi, which is a contradiction. So M ∈ MDaS(H) and since
x ∈ M we have M ∈ MDaS(x, H). �

Theorem 1.5. Let H1, H2 and H be graphs satisfying (∗). Let M1 ∈ MDaS
(x, H1), M2 ∈ MDaS(H2), x 6∈ M2 and M = M1 ∪ M2. Then one of the following

holds:

(i) M ∈ MDaS(H);
(ii) M1 − {x} ∈ MDaS(H1 − x) and M − {x} ∈ MDaS(H);
(iii) there is U ⊆ M2 such that (M2−U)∪{x} ∈ MDaS(H2) andM−U ∈ MDaS(H);
(iv) no subset of M is an acyclic dominating set of H .
���������

. Let M 6∈ MDaS(H) and let there exist M3 ⊂ M such that M3 ∈
MDaS(H). First, let x 6∈ M3. Then M1−{x} is an acyclic dominating set of H1−x.
Suppose M1 − {x} 6∈ MDaS(H1 − x). Now, there is a vertex v ∈ M1 − {x} that
M1 − {x, v} is an acyclic dominating set of H1 − x. Hence M1 − {v} is an acyclic
dominating set of H1—a contradiction. So, M1−{x} ∈ MDaS(H1−x) andM −{x}
is an acyclic dominating set of H . Now, suppose M − {x} 6∈ MDaS(H). Then there
is a vertex w ∈ M −{x} such that M − {x, w} is an acyclic dominating set of H . If
w ∈ V (H1) thenM1−{x, w} is an acyclic dominating set of H1−x—a contradiction.
If w ∈ V (H2), thenM2−{w} is an acyclic dominating set of H2—a contradiction. So

M−{x} ∈ MDaS(H). Secondly, let x ∈ M3. Let U = M−M3. If there is u ∈ U∩M1,
then M1−{u} is an acyclic dominating set of H1—a contradiction. Hence, U ⊆ M2.

Then (M2 − U) ∪ {x} = M3 ∩ V (H2) is an acyclic dominating set of H2. Since M

is no minimal acyclic dominating set of H we have U 6= ∅ and hence M2 − U is no

dominating set of H2. If there is v ∈ M2 − U such that (M2 − (U ∪ {v}) ∪ {x} is
an acyclic dominating set of H2 then M3 −{v} is an acyclic dominating set of H—a
contradiction. Hence (M2 −U)∪ {x} is a minimal acyclic dominating set of H2. �
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2. Γa-sets and γa-sets

In this section we present some results concerning the acyclic domination number

and the upper acyclic domination number of graphs having cut-vertices.
Let µ(G) be a numerical invariant of a graph G defined in such a way that it is the

minimum or maximum number of vertices of a set S ⊆ V (G) with a given property
P . A set with the property P and with µ(G) vertices in G is called a µ-set of G.

Fricke et al. [2] define a vertex v of a graph G to be
(i) µ-good, if v belongs to some µ-set of G and

(ii) µ-bad, if v belongs to no µ-set of G.

Theorem 2.1. Let H1, H2 and H be graphs satisfying (∗).
1. Let x be a Γa-good vertex of a graph H . Then Γa(H) 6 Γa(H1) + Γa(H2). If

Γa(H) = Γa(H1) + Γa(H2), M is a Γa-set of H and x ∈ M , then there are l and m

such that {l, m} = {1, 2}, M ∩ V (Hl) is a Γa-set of Hl and M ∩ V (Hm) − {x} is a
Γa-set of Hm.

2. Let x be a Γa-good vertex of graphs H1 and H2. Then Γa(H1) + Γa(H2)− 1 6
Γa(H). If Γa(H1) + Γa(H2) − 1 = Γa(H), Mj is a Γa-set of Hj , j = 1, 2 and
{x} = M1 ∩ M2 then M1 ∪ M2 is a Γa-set of H .

3. Let x be a Γa-bad vertex of a H1 and H2. Then Γa(H) > Γa(H1) + Γa(H2)− 1.
If Γa(H) = Γa(H1) + Γa(H2) − 1 and Mj is a Γa-set of Hj , j = 1, 2 then there are
l ∈ {1, 2} and u ∈ V (Hl) such that {u} = N(x, Hl) ∩ Ml and M1 ∪ M2 − {u} is a
Γa-set of H .

4. Let x be a Γa-bad vertex of H . Then Γa(H) 6 max{Γa(H1) + Γa(H2), Γa(H1 −
x) + Γa(H2), Γa(H1) + Γa(H2 − x)}.
���������

. 1. Let M be a Γa-set of H , x ∈ M and M ∩ V (Hj) = Mj , j = 1, 2.
�������

Mj ∈ MDaS(x, Hj), j = 1, 2: Then Γa(H) = |M | = |M1| + |M2| − 1 6
Γa(H1) + Γa(H2) − 1.
�������

there are l, m such that {l, m} = {1, 2},Ml ∈ MDaS(x, Hl) andMm−{x} ∈
MDaS(Hm): We have Γa(H) = |M | = |Ml| + |Mm − {x}| 6 Γa(Hl) + Γa(Hm). If
Γa(H) = Γa(H1) + Γa(H2), then |Ml| = Γa(Hl) and |Mm − {x}| = Γa(Hm). Hence
Ml is a Γa-set of Hl and Mm − {x} is a Γa-set of Hm.
There are no other possibilities because of Theorem 1.1.

2. Let Mj be a Γa-set of Hj , j = 1, 2 and {x} = M1 ∩ M2. It follows from
Theorem 1.4 thatM1∪M2 ∈ MDaS(x, H). Hence Γa(H) > |M1∪M2| = |M1|+|M2|−
1 = Γa(H1)+Γa(H2)−1. If Γa(H) = Γa(H1)+Γa(H2)−1 then |M1∪M2| = Γa(H).
Hence M1 ∪ M2 is a Γa-set of H .

3. Let Mj be a Γa-set of Hj , j = 1, 2 and M = M1 ∪ M2. If M ∈ MDaS(H)
then Γa(H) > |M | = |M1| + |M2| = Γa(H1) + Γa(H2). Otherwise it follows from
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Theorem 1.3 that there are l ∈ {1, 2} and u ∈ V (Hl) such that {u} = N(x, Hl)∩Ml

and M − {u} ∈ MDaS(H). Hence Γa(H) > |M − {u}| = |M1| + |M2| − 1 =
Γa(H1) + Γa(H2) − 1. If Γa(H) = Γa(H1) + Γa(H2) − 1 then |M − {u}| = Γa(H).
Hence M − {u} is a Γa-set of H .

4. Let M be a Γa-set of H and Mj = M ∩ V (Hj), j = 1, 2. If Mj ∈ MDaS(Hj),
j = 1, 2 then Γa(H) = |M | = |M1| + |M2| 6 Γa(H1) + Γa(H2). Otherwise it follows
from Theorem 1.2 thatMl ∈ MDaS(Hl) andMm ∈ MDaS(Hm−x) for some l, m such
that {l, m} = {1, 2}. Hence Γa(H) = |M | = |Ml|+ |Mm| 6 Γa(Hl)+Γa(Hm−x). �

Theorem 2.2. Let G be a graph of order at least two. Then for each vertex

v ∈ V (G) we have γa(G)−1 6 γa(G− v) 6 |V (G)|−1. If v ∈ V (G) and γa(G)−1 =
γa(G − v) then
(i) v is a γa-good vertex of the graph G;

(ii) if v is not isolated and u ∈ N(v, G) then u is a γa-bad vertex of the graph G−v.

���������
. Clearly γa(G−v) 6 |V (G−v)| = |V (G)|−1. Assume γa(G−v) < γa(G).

Then for an arbitrary γa-set M of the graph G− v we have N [M, G] = V (G) − {v}
and then N(v, G)∩M = ∅. HenceM∪{v} is an acyclic dominating set of G and then
γa(G) 6 |M∪{v}| = |M |+1 = γa(G−v)+1 6 γa(G). Therefore γa(G)−1 = γa(G−v)
andM∪{v} is a γa-set of G. Hence v is a γa-good vertex of G. Since N(v, G)∩M = ∅
we conclude that each vertex belonging to N(v, G) is a γa-bad vertex of G− v. �

Theorem 2.3. Let H1, H2 and H be graphs satisfying (∗). Then
1. γa(H) > γa(H1) + γa(H2)− 1.
2. Let x be a γa-bad vertex of the graph H , γa(H) = γa(H1) + γa(H2)− 1 and let

M be a γa-set of H . Then there are l, m such that {l, m} = {1, 2}, M ∩ V (Hl) is a
γa-set of Hl, M ∩ V (Hm) is a γa-set of Hm − x and γa(Hm − x) = γa(Hm) − 1.

3. Let x be a γa-good vertex of H , γa(H) = γa(H1)+γa(H2)−1, letM be a γa-set

of H and x ∈ M . Then M ∩ V (Hj) is a γa-set of Hj , j = 1, 2.
4. Let x be a γa-good vertex of graphs H1 and H2. Then γa(H) = γa(H1) +

γa(H2)− 1. If Mj is a γa-set of Hj , j = 1, 2 and {x} = M1 ∩M2 then M1 ∪M2 is a

γa-set of the graph H .

5. Let x be a γa-bad vertex of graphs H1 and H2. Then γa(H) = γa(H1)+γa(H2).
If Mj is a γa-set of Hj , j = 1, 2 then M1 ∪ M2 is a γa-set of H .

���������
. 1: Let M be a γa-set of H and Mi = M ∩ V (Hi), i = 1, 2.

�������
x 6∈ M : If Mj ∈ MDaS(Hj) for j = 1, 2 then γa(H) = |M | = |M1| +

|M2| > γa(H1) + γa(H2). Otherwise it follows by Theorem 1.2 that there are l, m

such that {l, m} = {1, 2}, Ml ∈ MDaS(Hl) and Mm ∈ MDaS(Hm − x). Hence
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γa(H) = |M | = |Ml| + |Mm| > γa(Hl) + γa(Hm − x). Now, Theorem 2.2 yields
γa(H) > γa(H1) + γa(H2)− 1.
�������

x ∈ M and Mj ∈ MDaS(Hj), j = 1, 2: It follows that γa(H) = |M | =
|M1|+ |M2| − 1 > γa(H1) + γa(H2) − 1.
�������

x ∈ M and there are l, m such that {l, m} = {1, 2}, Ml ∈ MDaS(Hl)
and Mm − {x} ∈ MDaS(Hm): We have γa(H) = |M | = |Ml| + |Mm − {x}| >
γa(Hl) + γa(Hm).
There are no other possibilities because of Theorem 1.1.

2: Let M ∩ V (Hi) = Mi, i = 1, 2. From the proof of 1 we have that there are l, m

such that {l, m} = {1, 2}, Ml ∈ MDaS(Hl), Mm ∈ MDaS(Hm − x), |Ml| = γa(Hl)
and |Mm| = γa(Hm − x) = γa(Hm) − 1. Hence the result follows.
3: It follows from the proof of 1 that M ∩V (Hi) ∈ MDaS(Hi) and |M ∩V (Hi)| =

γa(Hi) for i = 1, 2. Hence M ∩ V (Hi) is a γa-set of Hi, i = 1, 2.
4: Let Mj be a γa-set of Hj , j = 1, 2 and {x} = M1 ∩ M2. It follows from

Theorem 1.4 that M1∪M2 ∈ MDaS(H). Hence γa(H) 6 |M1 ∪M2| = |M1|+ |M2|−
1 = γa(H1) + γa(H2) − 1. Now from 1 we have that γa(H) = γa(H1) + γa(H2) − 1.
Then |M1 ∪ M2| = γa(H). Therefore M1 ∪M2 is a γa-set of H .

5: Suppose γa(H) = γa(H1) + γa(H2) − 1. If x is a γa-bad vertex of H then by 2
there exists m ∈ {1, 2} such that γa(Hm − x) = γa(Hm)− 1. Hence by Theorem 2.2
x is a γa-good vertex of Hm—a contradiction. If x is a γa-good vertex of H , M is
a γa-set of H and x ∈ M then by 3 we have M ∩ V (Hs) is a γa-set of Hs, s = 1, 2.
But then x is a γa-good vertex of Hs, s = 1, 2, which is a contradiction.
Hence γa(H) > γa(H1) + γa(H2).
Let Mj be a γa-set of Hj , j = 1, 2 and M = M1 ∪ M2.
�������

there are l ∈ {1, 2} and u ∈ V (Hl) such that {u} = N(x, Hl) ∩ Ml,
Ml−{u} ∈ MDaS(Hl−x) andM −{u} ∈ MDaS(H): Let {m} = {1, 2}−{l}. Hence
γa(H) 6 |M −{u}| = |Ml −{u}|+ |Mm| = |Ml| − 1 + |Mm| = γa(H1) + γa(H2)− 1,
which is a contradiction.
�������

M ∈ MDaS(H): Then γa(H1) + γa(H2) 6 γa(H) 6 |M | = |M1| + |M2| =
γa(H1)+γa(H2). Hence γa(H) = γa(H1)+γa(H2) and then |M | = γa(H). Therefore
M is a γa-set of H .

The result now follows because of Theorem 1.3. �
 �"!#� ��$

2.4. In [1] Brigham, Chinn and Dutton obtained that, in the above
notation, γ(H1) + γ(H2) > γ(H) > γ(H1) + γ(H2) − 1.

Observe that if m is a positive integer then there exists a graph H (in the above
notation) such that m = γa(H) − γa(H1) − γa(H2). Indeed, let n and p be inte-

gers, m + 1 6 n 6 p, V (H) = {x, y, z; a1, . . . , am+1; b1, . . . , bn; c1, . . . , cp}, E(H) =
{xy, xz, yz; xa1, . . . , xam+1; yb1, . . . , ybn; zc1, . . . , zcp}, H1 = 〈{x; a1, . . . , am+1}, H〉
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and H2 = 〈{x, y, z; b1, . . . , bn; c1, . . . , cp}, H〉. Then γa(H) = 3 + m, γa(H1) = 1 and
γa(H2) = 2. Hence m = γa(H) − γa(H1) − γa(H2).

Theorem 2.5. Let G be a connected graph with blocks G1, G2, . . . , Gn. Then

γa(G) >
n∑

i=1

γa(Gi)− n + 1.

���������
. We proceed by induction on the number of blocks n. The statement is

immediate if n = 1. Let the blocks of G be G1, G2, . . . , Gn, Gn+1 and without loss

of generality let Gn+1 contain only one cut-vertex of G. Hence Theorem 2.3 implies

that γa(G) > γa(Gn+1) + γa(Q) − 1 where Q =
〈 n⋃

i=1

V (Gi), G
〉
. The result now

follows from the inductive hypothesis. �
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