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Summary. We investigate the nonautonomous periodic system of ODE's of the form 
x = v(x) + rp(t)(w(x) — v(x))> where rp(t) is a 2p-periodic function defined by rP(t) = 0 for 
t 6 (0,p), rp(t) = 1 for t G (p, 2p) and the vector fields v and w are related by an involutive 
diffeomorphism. 
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1. INTRODUCTION 

There is a rich literature on qualitative behaviour of systems governed by ODE's 

or PDE's , but so far only a little was written about systems which are governed 

alternately by two different vector fields. A natural example of such a system was 

presented in [2] where dynamical behavior of a chemical reactor with periodic flow 

reversal was studied. However, this paper considers the problem almost exclusively 

from the engineering point of view. Here we would like to provide a mathematical 

setting which suits the observed phenomena. 

The original problem is described by four nonlinear PDE's of reaction-diffusion 

type, which were spatially discretized and then solved numerically. Because PDE ' s 

are difficult to handle,we shall concentrate on the related problem of a system of 

ODE's . Basically we have two vector fields which alternately operate on some phase 

space. Generally speaking these vector fields could be totally unrelated as well as 

the periods of their "acting", but rather than study the problem in its most general 

sett ing we consider only the case when the two vector fields act for the same t ime 
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periods (usually referred to as the switching period and denoted by p) and are related 

by some difTeomorphism G\ Since simulations of various systems revealed that even 

for linear G the resulting behavior may be "wild", we decided to restrict the choice of 

G by the condition which the conjugating mapping of the original problem satisfied, 

namely G has to be an involution: G o G = Id, equivalently G = G _ 1 . 

Once we fix a switching period p, we obtain a discrete dynamical system, described 

by a composition of the flows corresponding to the vector fields. We can thus con­

sider p to be a parametr of the system and study the dependence of the asymptotic 

behavior on this parametr. Of course, the system may have some physical parame­

ters as well and so the other possibility how to study the observed phenomena is to 

fix p and look at what happens to the invariant sets as the physical parametr varies. 

Both approaches show very interesting behavior and it is worthwhile to spend 

some time on building a proper mathematical background, which would explain and 

predict the behavior of the system without numerical simulation. Even though this 

task in its full generality is rather complicated, we tried to give it a start by addressing 

the most eminent questions. 

2 . DESCR IPTION 

Let us have a sufficiently smooth vector field v on Rn, generating a global phase 

flow (p: R x R n — • Rn (that is a 1-parameter subgroup of diffeomorphisms <p*, t £ R) . 

Let us further consider a difTeomorphism G € DifT(Rrl) satisfying 

(1) G o G = I d , 

and the G-related vector field 

w = Gm{v) 

(see for instance [1] for basic notation and properties). 

We shall denote the flow of the vector field w by V>*- Then we have (see [1], p . 137, 

Exercise 4) 

(2) i/)* =Go<ploG for all t £ R. 

Let p > 0 be a period of switching. Consider a 2p-periodic function rp(t) defined 

by 

0 f o r < € ( 0 , p ) 
(3) rM) , 

' 1 foг t Є (p, 2p) 
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The purpose of this paper in this setting is to investigate the properties of the 
2p-periodic nonautonomous system of ODE's 

(4) x = / (* , 0 = v(x) + rp(t)[w(x) - v(x)]. 

(whose right hand side f(x,t) satisfies the Caratheodory conditions). 
The useful tool for the investigation of periodic solutions of (4) is the period map 

(Poincare map). 
Let us denote <^(/;0,aro) the solution of (4), satisfying the initial condition 

<P(0) = xo. 

This solution can be expressed for t £ (0,2p) in the form 

ÍV(* (x0) foг<Є(0,p) 
1 " - t - ( ^ Ы ) for<Є(p,2p) 

Let us put 

(6) P(x) = *(2p;0,ir). 

Then the mapping P: Rn —• Rn is the period map for the system (4) and P is a 

differentiable mapping. 

The relation (5) yields 

(7) P = ^oipP 

and with respect to (2) we obtain 

(8) P = Go<pToGo<pr. 

If we put 

(9) H = Go<pP, 

then 

(10) P = / / o / / = 7/2. 

R e m a r k 1. It is well-known that the system (4) has a 2p-periodic solution iff 
the period map P has a fixed point. With respect to the relation (10) the period 
map P has two kinds of fixed points: The fixed point of P is a fixed point of H, or 
the fixed point of P corresponds to a 2-periodic orbit of H. 
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Theorem 1. Let x be a fixed point of the mapping H and K the closed phase 
curve corresponding to the fixed point x. Then the curve K is G-symmetric, i.e. 
G(K) = K. 

P r o o f . We have G(<p?(x)) = x, hence ^(x) = G(x). Let us put y = G(x). 
The relation (2) yields 

( i n G(y(*)) = v-'(G(i)) = ->»(*). 

This relation proves Theorem 1. O 

Theorem 2. Let {i\, x2) be a 2~periodic orbit of the mapping H (i.e. H(x\) = it 
and H(x7) as *i . Then P(*i) = i\ and P(x7) = *2. let K and L be the closed 
phase curves corresponding to the fixeci points i\ and x2, respectively. 

Then 

(12) G(K) = L. 

P r o o f . We have 

G V ( i i ) ) = x2, y / ( i i ) = G(x2) 

and 
G V ( i 2 ) ) = i , , ^ ( f 2 ) = G(f,). 

The curves A' and L consist each of two arcs: 

A, = V ( f , ) , . € ( 0 , p ) } , 

A'2 = {V>'(G(i2)), i€(0,p)}, 

L, = {^( i 2 ) , <G(0,p)}, 

L2 = {^(G(*,)), <€(0,p)} . 

From the relation G(y'( i , ) ) = ^>'(G(i,)) we get 

G(A',) = L2 and G(A'2) = L,. 

• 
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3. FIXED POINTS OF PERIOD MAP 

a) If M is a closed positive invariant set of the flow <px, homeomorphic with the 
closed unit ball in Rn so that G(M) = M, then due to Brouwer's Fixed Point 
Theorem the mapping // = C o t / : M —• M has a fixed point for each p > 0. 

E x a m p 1 e 1. In the well-known Lorenz system (see [3], p. 196) we can take for 
the set M the ellipsoid E 

E = {rx2 + ay2 + c(z - 2r)2 ^ c}. 

If we take for the diffeomorphism G some element of the group of symmetries of the 
ellipsoid £ , then the period map P in question has a fixed point in E. 

b) In case we cannot apply the procedure described in the previous paragraph, we 
obtain a criterion for the existence of fixed points as follows: 

We set 

(13) F(l,x) = <pt(x)-G(x) 

and solve 

(14) F(t,x) = Q. 

If (p, xi) is a solution of the equation (14), then the point x\ is a fixed point of the 
mapping H. So let xo be a fixed point of the diffeomorphism G. Then (0,xo) is 
a solution of the equation (14), since F(0,xo) = <p°(zo) — G(xo) = xo — xo = 0. 
If DxF(0,xo) is a regular matrix, then according to the Implicit Function Theo­
rem, there is an e > 0 such that for every p G (—e,e) there exists x(p) satisfying 
F(p,x(p)) = 0. 

The matrix 

DxK(0,xo) = ^ ( * o ) - DxG(x0) = E-DxG(x0) 

(E — identity matrix) 

is regular if and only if 1 is not an eigenvalue of DxG(xo), which is exactly when xo 
is an isolated fixed point of G. So we have proved 

Theorem 3. Let xo be an isolated fixed point of G. Then there is e > 0 such 
that the system (4) has a 2p-periodic solution for each p € (0,e), or equivalently, the 
period map P has a fixed point. 
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R e m a r k 2. When we find a fixed point x of H (or P) for some small value 
of the switching period, we can obtain the fixed points of P for bigger values of p 
by continuation, during which changes of stability of the fixed point x(p) may occur 
and consequently various bifurcations may take place. 

(For instance, in the system investigated in [2], the fixed point x(p) of H loses 

stability and becomes a 2-periodic orbit {£1,22} of H.) 
Let us remark that the stability of fixed points of the mapping H = G o yp is 

determined by the eigenvalues of the matrix DxH(x(p)). We have 

DxH(x) = Dx(Go^)(x) = D x G(y(x) ) • ̂ ( x ) = DxG(G(x)) • Ux(p), 

where Ux(p) is a fundamental matrix of the variational equations 

dv(ip%(x)) 
y=—di—y-

4. MEASURE OF INVARIANT SETS 

T h e o r e m 4. Let G be a linear diffeomorphism and 

div v < 0 

on Rn. Then every bounded invariant set of the period map P is of zero Lebesgue 
measure. 

P r o o f . First we show that we can infer from the assumptions that 

(15) d i v / < 0 

on R x R". To achieve this we need to show that div w < 0 on Rn. 

Differentiating the defining relation for w = G+(v), i.e. w(x) = Gv(G(x))1 gives 

dw dv 
(16) _ _ ( x ) = G ' —(G(x))G, 

which shows that the matrices §7(^)1 fjK^fa)) a r e similar and hence their traces 
are equal, which means that 

div w(x) = div v(G(x)) 
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for all x £ R n . 
Thus the inequality (15) holds for the right hand side of the system (4). 
The assertion now follows from Theorem 1.9 in [4], page 77. We should note that 

Theorem 1.9 is formulated for a periodic system with a continuous right hand side, 
but it is readily verified that its proof can be repeated in the case of the system (4). 
Let us remark that the matrix 

dx 

is a continuous function of t (see [5], p. 329) and its derivative with respect to t exists 
for all t £ R \ D, where D = {kp, k £ Z}. The matrix J(t) is a fundamental matrix 
of the variational equations 

i = d / ( t \ * ( f , o , . - ) ) 

and the Liouville formula holds: 

y = — т , — y 

det J(t) = det J(t0)exp ( / Tr ( Ş ^ ) d Л . 

D 

R e m a r k 3. Let us conclude this section by one "pathological" property of the 

system (4). Let us suppose that the flow ipl has a G-invariant closed orbit 7 with a 

period q. Then the curve 7 is an invariant curve of the period map P. If XQ £ 7, 

then P(XQ) = (G o <pP o Go <PP)(XQ) £ 7, as can be easily seen. So PI7: 7 —• 7 is a 

diffeomorphism. If its rotation number is rational, then there is XQ £ 7 and k £ JV so 

that Pk(xo) = XQ and the system (4) has a periodic solution with the period k • 2p. 

If the rotation number of P is irrational and v\y = w\y, then the system (4) has 

a periodic solution with a period q which is incommensurable to the period of the 

system (4) (cf. [4], p. 74, Theorem 1.8 or [6]). 
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