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SPECIAL MOTIONS OF ROBOT-MANIPULATORS 

ADOLF KARGER, Praha 

(Received November 4, 1992) 

Summary. There exist many examples of closed kinematical chains which have a freedom 
of motion, but there are very few systematical results in this direction. This paper is devoted 
to the systematical treatment of 4-parametric closed kinematical chains and we show that 
the so called BenneVs mechanism is essentially the only 4-parametric closed kinematical 
chain which has the freedom of motion.According to [3] this question is connected with 
the problem of existence of asymptotic geodesic lines on robot-manipulators considered as 
submanifolds of a pseudo-Riemannian space. All computations were performed by the help 
of a formal manipulation system on a PC-computer. 
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THE THEORETICAL PART 

The motion of a p-paramet ric robot-manipulator determined by axes A' i , . . . , Ar
;, 

is described by the matrix 

flf(ui,...,up) = gi(ui) . . . gP(uP)} g{(ui) = exp(u tA\), 

where # t(u t) denotes either the revolution around the straight line determined by 

its Plucker coordinates A't or the translation in the direction determined by A't. In 

what follows se shall for simplicity consider robot-manipulators with rotational links 

only and so exp(utA't) means always the revolution around the straight line A't with 

the angle of revolution u t . 

The motion ^ ( « i , . . . , « p ) of the effector space with respect to the base space is 

expressed by the formula 

g(ux,..., up)(R) = R • g(ui,..., up), 
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where R is an orthonorrnal frame in the effector space, R is an orthonormal frame 

in the base space and we may suppose that R = 1? at the point [ 0 , . . . , 0] of the 

parameter space (in the starting position of the robot-manipulator). This condition 

yields 0 ( 0 , . . . , 0 ) = E-
The instantaneous position Y\,..., Yp of axes A ' i , . . . , Xp of a robot-manipulator is 

given by the formula 

(1) Y, = A',, Y2 = \d(9l)X2, ..., Yp = Ad(gi.. .«/„- , )*„, 

where Ad(<z)Ar denotes the induced (adjoint) action of the matrix g of a space con

gruence on a straight line determined by its Plucker coordinates X.VVe can also say 

that the induced action is the action of the group of space congruences in the space 

of screws. 

Details concerning the above introduced formalism can be found for instance in 

[1] or [2]. The proof of the formula (1) is easy: Let us consider the motion h(t) = 

g(iii,..., u*-_x,t, u^+x,..., it®), which is the revolution around V*. Then h'(t)h~l(t) = 

Ad(gi...gi-i)Xi. 

A motion g(t) = g\(u\(t)).. .gP(up(t)) of the p-parametric robot-manipulator, de

termined by functions u\(t),.. .,up(t) of one variable t determines a one-parametric 

motion of the end-effector. Such a motion g(t) of the robot-manipulator will be 

called a motion of a closed kinematical chain iff g\(ii\(t)).. gP(uP(t)) = E. The ba

sic properties of closed kinematical chains are described in [2], the definition complies 

with the intuitive meaning that during the motion of a closed kinematical chain the 

distance, angle and offset between the last and first axes of the robot-manipulator 

remain fixed. 

Let a robot-manipulator be given by axes A ' i , . . . , Ap. A position of this robot-

manipulator determined by the position Y\,...,Yp of its axes is called singular iff 

r ank (V 1 , . . . , Y'p) < p. 

T h e o r e m 1. Motions of closed kinematical chains are possible only in singular 

positions. 

P r o o f . We have g\(t).. .gP(t) = E. The derivative of this equation with respect 

to t yields g\ • g2.. .gP + • . . + g\.. .gP-\ • gp = 0. We obtain Yxv{ + . . . + Ypvp = 0, 

where Vi = u[(t) and we see that vectors Y\,..., Yp are linerly dependent. • 

T h e o r e m 2. Let gi(t).. .gP(t) = E be a motion of a closed kinematical chain. 

Then the p + 1-parametric robot-manipulator g\(u\).. .gp(up) - gp+\(up+\), where 

gp+\(up+i) = g\(up+\), satisfies the equation Y\(t) = Yp+\(t) during this motion, 

up+i(t) can be arbitrary. 
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P r o o f . We have Yp+\(t) = Ad(g\(t).. .gp(t))Xp+\ = Xp+\ = X\ = Vi, because 
gi(t)...gp(t) = E. D 

Theorem 3. Let a (p -f 1)-parametric robot-manipulator satisfy the equation 
Y\ = Yp+\ during some motion g(t) given by u, = U((t), i = 1,.. . , p+ 1. Then this 
motion is a motion of a closed kinematical chain with the last link an arbitrary screw 
motion around the last axis. 

P r o o f . Y\ = Yp+\ implies Vp+i = Ad(g\(t).. .gp(t))Xp+\ = X\. Let us write 
A"i = Ad TXp+i for some fixed congruence j . Then we have Ad(g\(t).. .gp(t))Xp+\ = 
Ad7Ar

p+i. This yields g\(t).. .gp(t) • h(t) = y, where h(t) is a screw motion around 
the axis Xp+\. Let us choose one position of the robot-manipulator determined by 
t = to. Then we have y = g\(t0).. gP(to) h(t0) and we obtain the following equation: 

g\(t).. .gp(t) • h(t) = g\(t0).. .gp(t0) • h(t0). 

This equation can be written in the form 

«/.(<)• • •ti-(Oft(0'.~I(.o)tJt7
,(.o). • </r1(<o) = £ . 

Let us denote 

M O = £i(*o)- • ^ - - ( M • M O • g?l(*o) • !/r-li(^o).. .^rl(^o), 

™(0 = </i(*o)- • <7P(<o) • h(t)h(t0)-
1 • ^ ( M - • .J/r'Co)-

Then we have 

*i(0-- .*p(0-m(0 = E 

and £,(0 is a revolution around the axis Z,- = Ad(^*o) • •<7t-i(*o))^*> w(0 is a 

screw motion around the axis Zp+\ = Ad(g\(to).. .gp(to))Xp+\. D 

Theorem 4. The motion u,- = «,-(£), i = l , . . . ,p of a p-parametric robot-
manipulator is a screw motion around some axis Xp+\ iff the robot manipulator 
determined by X\,..., Xp+i has a motion of a closed kinematical chain with the last 
link a screw motion. 

P r o o f . Let g\(t).. .gp(t) = h(t), where h(t) is a screw motion around A'p+i. 
Then we have 

g\(t)...gp(t)lr\t) = E 

and the statement follows from the previous considerations. 
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From Theorems 1, 2, 3, 4 we can deduce the following facts: If we find all solutions 

of the equation Y'i = Yp+i, we can compute the motion h(t) for each such solution 

and we have solved the following problems: 

a) For h(t) a general screw motion we have find all motions of p — 1-parametric 

robot-manipulators , which yield a screw motion of the end-effector (with rotation 

and translation as special cases). We have also obtained examples of p-f 1-parametric 

closed kinematical chains with the freedom of motion such that they have a transla

tion and rotation with the same axis. 

b) If h(t) is a rotation, we can suppose /i(/) = E by changing the representation of 

the motion as rotations around the same axis commute . We have found all closed 

kinematical chains with p links, which have a freedom of motion . D 

T h e o r e m 5, Tiie only solution of the equation \\ = V5 is the Bennet's mecha

nism. 

R e m a r k . The Bennet's mechanism is the closed kinematical chain with four 

rotational links oriented in such a way that the following relations for Denavit-

Ilartenberg parameters (see below) are satisfied: 

di: = 0, i = l , . . .4. cvi = CV3, c*2 = CY4, mi = m3 , m? = m 4 , a\S\ = a\S\. 

The trivial cases of all axes parallel and of all axes passing through one point are 

considered as special cases of the Bennet's mechanism . 

Corol lar ies o f T h e o r e m 5, 

a) The Bennet's mechanism is the only A-parametrical closed kinematical chain 

with the freedom of motion. 

b) If one of the links of the Bennet's mechanism is allowed to slide (to perform 

an arbitrary screw motion), nothing will change and the concerned link will remain 

rotational. 

c) There exists not a 3-parametrical robot-manipulator with rotational links, which 

can perform a translation or a screw motion of the end-effector appart from the 

revolutions around of its axes. 

R e m a r k . Corollaries follow from Theorems 1 to 4. The Bennet's mechanism is 

known for a long t ime already, but its uniquennes was not shown before. The ques

tion of the classification of all closed kinematical chains with freedom of movement 

for 5 links remains open. The computations below show that the solution of such 

a problem will be extremely complicated even on the assumption that the formal 

manipulat ion with equations will be done on a computer as was the case also in the 

presented paper. 
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THE COMPUTATIONAL PART 

We shall solve the equation Y\ = Yp+i for p = 4. For this purpose one has to 

compute the instantaneous position of axes of a robot-manipulator. This has been 

done in [2] for a 6-parametric robot manipulator and we shall use the result of this 

computation. 

For symmetry and simplicity reasons it is convenient to choose as the reference 

frame the orthonormal frame located between axes A'3 and X4 in symmetrical po

sition (the origin is at the middle distance between Ar3 and X4, the z axis is per

pendicular to both A'3 and X4 and the direction of x and y axes is in the middle 

between A'3 and X4). 

The computation yields for Pliicker coordinates of axes Y\,...,YQ, where Yi = 

(2/«;-»): 

(2) Î/4 = 

« \ , (-*] 
, 24 = 2 a з 1 * 1 • 2/5 = 

V 0 / 

/ кC4 — (тc4S4 

' 

, (-*] 
, 24 = 2 a з 1 * 1 • 2/5 = 

V 0 / 

1 ťTC4 + KC4S4 
0/ 

, (-*] 
, 24 = 2 a з 1 * 1 • 2/5 = 

V 0 / \ S4S4 

/ -кG4 + <т//4 \ 

z5 = ( -(тGA + к//4 I , 

\ ß4 / 

where 

(3) G4 = S4la4 + -a3c4), H4 = s4S4d4 — C4[-az + a4c4\, R4 = d4c4S4 + a4s4C4, 

K = cos(^r*3), (T = sin(^r*3), and as usually C, = cosa,-, 5, = siná,, c, = cos ti,, 
Si = sin u,-. 

( -KL$ - <x(c4A/5 - s4F$)\ 
-aL5 + K(C4M$ - s4F5) J , 

s4Ms + c4F5 ) 

( K[B5 - \a3(c4M5 - s4F$)} - ťr(c4A5 - s4P5 - \a3L^\ 
(7[H5 - haz(c4AI5 - S4F$)} + K(C4A5 -S4P5— ^3-^5 J , 

S4-45 + C4P5 / 

where 

(5) A/5 = C4-S5C5 + ^4C5, L5 = 5455C5 — C4C5, F5 = ^5^5, 

£5 = -a 4 A/ 5 - a5(54C5C5 + C455) + d^SAFh, 

A5 = - a 4 L 5 + a5(C4C5cb - 5455) - F5(d4 + C4d5), 

F5 = a5C5»5 + d^S^cs + d4M$. 
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We used the Denavitt-Hartenberg parameters: 

a,- —• the angle from X% to _Y,-+i, 

a, —* the distance from A', to A',+i, 

d{ —•the offset between A r ,_i,A', and A',, Ar,+i, 

U{ —•» the angle of revolution around the axis X,. 

The formulas for Vi, Y2, V3 are obtained from formulas for YQ} Y5, Y4 by the 

following substi tution: 

(6) a —• - a 6 _ , - , a,- —> -a 6_,- , ti,- —• t i 7_, . a1, -» aV-, . 

Now we are going to solve the equation Y2 = V6. We obtain 6 equations for six 

Pliicker coordinates, from which only 4 are independent (y2 is a unit vector, y2 and 

z2 are perpendicular) . The angles of revolution u3, u4, ii5 are the unknowns, at least 

one of them must be different from a constant. This follows that in general we obtain 

two equations as solvability conditions. The equations Y2 = V'6 can be written as 

follows: 

K ( C 2 + L5) + <r(-S2c3 + M5C4 - F$s4) = 0, 

<r(-C 2 + L5) + K(-S2C3 - A/5C4 - F5S4) = 0, 

.-v S2s3 - F5C4 - M5S4 = 0, 

* ' / c [ -G 2 + B5 - \a3(M*>c4 - F554)] + <r(-H5 - \a3Lh + A5c4 - P5s4) = 0, 

c[G2 + H5 - ^a3(M5C4 - F5S4)] + « ( - H 2 + \a3L$ - A5c4 + P5S4) = 0, 
R 2 - P$- A<>s4 = 0 , 

where G2, H2l R2 are defined analogically to G4, H4, R4 using (6). 

After making suitable linear combinations in (7) we obtain for 53 7- 0: 

(8) 

n = -C3M5C4 + F5C3s4 + L 5 5 3 - S2c3 = 0 

r 2 = 5 3 M 5 c 4 - FbS3s4 + C 2 + C3L5 = 0 

r 3 = -F5C4 - M5S4 + 52B3 = 0 

r4 = -.A5C3C4 + C3F5S4 - # s 5 3 - C 2 a 2 c 3 + S2d3s3 = 0 

r5 = A5S3c4 - S3P5s4 - H5C3 - S2a2 - S2a3c3 = 0 

r6 = -P5C4 - A$s4 + 52c3a ,
3 + C2a2s3 = 0 

Let 52 ^ 0. From n and r3 we obtain 

(9) c3 = ^-(-C3M5c4 + F5C3S4 + US3), s3 = —{F5c4 + M5s4). 
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Substitution and combination with r2 yields: 

(10) r4 = (Fbd3 - ^5C3)5253C4 -f (C3P<> + Mbd3)S2S3s4 - B 5 5 2 5 | 

— C2C3a2 — C2L$a2 — C2S2S3a3 = 0, 

rs = A$S3c4 — P$S3s4 — B$C3S3 — S2S3a2 — C2C3a3 — L5G.3 = 0, 

r6 = (-P5S2 -f C2K5a2)53C4 + (--4552 + C ^ I s ^ ) ^ + C2C3S2d3 

+ LhS2d3 = 0. 

We consider equations r2, rs and r6 as linear equations in c4 and 54. They can have 
common solution only if their determinant is equal to zero;we shall write 

(11) de t | r 2 , r 5 , r 6 | = 0. 

Similarly we have 

(12) de t | r 2 ) r 4 , r 5 | - =0 . 

R e m a r k . Let 

(13) a\ cos^>+ 61 sin <p + c\ = 0, a2cos<p + 62sinv?-f c2 = 0, 

be two equations for unknown angle ip. Equations (13) have a common solution iff 

(14) d e t f j 1 C l Y + c le t ( f l l C l t - d e t f a i * ' Y = 0. 
\h c2) \a2 c2) \a2 b2) 

Equations (11), (12) and (14) for r2 and rs are algebraic in cos 1/5 and sin 1/5. (We 
have to take into account the identity cos2 W5 + sin2 1/5 = V we can change (11), 
(12) and (14) in such a way that there are linear in cos 1/5.)lf M5 is constant, we can 
leave out the axis Y5 and we obtain a solution of the equation V2 = Y5. It is easy 
to see from the expression for Y$ in (2) that the equation Y2 = Y& has no nontrivial 
solutions. Therefore we can suppose that (11), (12) and (14) must be satisfied on 
some interval and so they must be identically zero. 

The expanded form of (11) and (14) is very long and complicated, (11) has 197 
terms, (14) has 304 terms and therefore we shall not write this equations here in 
full. We shall solve these equations step by step by choosing suitable coefficients at 
various powers of cos W5 and sin 1/5. 

During the computations we shall use also the following simple fact: 
To each solution of the equation Y2 = Y6 we obtain a new solution of this equation 

by the substitution Y2 —> y6, Y3 —• ys, y5 —• V3, y6 —> Y2i Y4 remains. 
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Now we are ready to solve equations (11) and (14). The coefficients at the highest 

power in (14) yield: At c5si?: 

(15) -2S$S\Sia4d4 = 0, 

(16) SlS\St(S\al - Sla\ + SlS\d\) = 0. 

A) Let 5 5 = 0. At s\ in (14) we obtain 54 = 0, this yields A/5 = F5 = 0. From r2 

and r5 we compute c4 and c5 and substitute into (9). We obtain S3 = 0 and therefore 
there is no solution in this case. If r2 and r5 are linearly dependent, we obtain C3 = 0 
from r\. 

B) Let 5 5 ^ 0, 5 4 = 0. The coefficient at s\ in (14) and (11) leads to C3 = C5 = 0. 
The substitution into (9) yields C3 = 0 and we have again no solution. 

C) Let S^S4 7- 0. Then from (15) and (16) we obtain c/4 = 0, a4 = a3?/i5453
 l , 

2 1 ?7r = 1. 

Ci) Let a3 = 0. Then (14) at c5s5 yields d5(-C2S^a2 -f C^S2a^) = 0. 
C\a). Let c/5 = O.At c5s5 in (11) we obtain a^d3 = 0. 
ao) Let a5 ̂  0. Then d3 = 0. From s\ in (13) we obtain 

a\ = -2C2C552"1S^ la2a5 - a2 + a\S^2 + a255"2. 

Substitution into the coefficient at s\ in (11) yields C$S2a2 = C2S^a^. The coefficient 
at c5s5 in (12) yields C255a2 = C552a5 . This yields 5 2 = 5 | , a? = a\. Similarly we 
obtain C3S2a2 = C455a5 which yields a solution. 

cvoo) Let a5 = 0. From the coefficient at s\ in (14) we obtain a2 = 0, from the 
equation r2 we obtain 0*3 = 0, we obtain a trivial solution with all axes passing 
through one point. 

Cxf3) From (12) at c5s5 we obtain Chdh -f C2d3 = 0. 
a) Let C5 ^ 0. Then from (11) at s\ we obtain 5 | = 5 | and (12) yields s4 = 0 

and we have no solution in this case. 
b) Let C5 = 0. From the coefficient at s\ in (11) we obtain C2 = 0, remaining 

coefficients in (11) lead to s4 = 0 and we have no solution. 
C2) Let a3 -̂  0. The coefficient at s% in (11) yields S3a4d3 -f 54a3d5 = 0, so 

a*5 = —d3m. The coefficient at sf in (14) yields a3d3(C2 — C5??i) = 0. 
a) Let C2 - C5ro 7- 0. Then d3 = 0. 
From coefficients at c$s\ in (11) and (14) we obtain 

a5 = a3S5S^(Cb - C2m)-}(C2C4Cs -f C3S] - C4m), 

a2 = - a 3 5 2 5 3
 J(C5 - C2m)~l (C2C3Cb -f C4Sl - C3m). 
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aa). Let C5 = —C2m. Then from coefficients at s\ in (11) and (14) we obtain 
S | = S2 , S2 = S3, the coefficient at c5 in (11) yields C4 = —C3m and we have a 
solution. 

aft) Let S2 ^ S | . We compute the coefficient at s\ in (11) and we obtain an 
equation of the type 

AC3C4 + B = 0, where .4 = - ( S 2 + 5 2 ) ( C 5 - C 2 m ) , B = (C5 - C 2 m ) ( S 2 - 2 S 5 -
2S2 + Si) - (S32 + Sl){C2Sl - C,S2m). 

From it we obtain the equation A2(l — S|)(l — 52) — H2 = 0 , which is of the type 
/CC2C5 + L = 0, where K and L are polynomials in Sf, S j , S2 , Sf. 

The coefficient at s\ in (14) is an equation of the type PC3C4+Q = 0. Substitution 
from previous equations leads to the equation 

(sl-sl)(slsl-s\s\) = o, 

which yields Sf = SfSfS^ 2 . Substitution into the equation AC3C4 + D = 0 yields 
( S | - 5 | ) ( S 2 - S j ) 4 = 0. Because S2 = S2 leads to Sf = Sf, we must have S2 = Sf, 
c-2 _ c-2 / 3 5 — O 3 . 

The coefficient at s\ in (13) now yields 

(Sl - \){Sl - \)(SJ - Sl)(CACf> - C2C3) = 0. 

S2 = S3 leads to 5 2 , which is impossible. The only possibility is C4G5 = C2C3 as 
the other possibilities are special cases of this one. We obtain a solution. 

b) Let C5 = C2ro. The coefficient at c5.s
2 in (14) yields a2S2 = S^a^m, the 

coefficient at c 5 s | in (11) yields C4 = C3rn. Now we solve equations r2 and r5 for 
C4 and s4 and we obtain s4 = 0. In the case that equations r2 and r5 are linearly 
dependent, we obtain the trivial case with all axes passing through one point. This 
shows that in this case we also have no solution. 

D) Let 52 = 0, S3 ^ 0. We obtain equations 

(17) F.5C4 + A/.5S4 = 0, -C3M.5C4 + F.5C3S4 + £s5 3 = 0. 

Let at first 5 5 = 0. Then M5 = S4G5 = 0, and therefore 54 = 0. We must have 
L5 = C4G5 = 0, which is impossible. Therefore we must have S5 / 0. If S4 ^ 0, 
we have one of the previous cases for the inverse motion. Therefore we can suppose 
S4 = 0. (17) implies C2C3 = C4G3. We compute C3 and S3 from equations r4 and 
t*e in (8) and consider the equation C3 + S3 = 1. This equation yields a4 = 0 which 
is impossible and there is no solution in this case. 

E) Let 5 2 = S3 = 0. Then C2 + C3L5 = 0, so C2 = C3C4C5 and 5 , = S5 = 0, a 
solution.AU axes are parallel and we have a trivial solution. 
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F ) Let .?2 ^ 0, S3 = 0. If 54 / 0, we obtain one of the previous cases by taking 

the inverse motion . So we can suppose S4 = 0 . We obtain C2 4- L5 = 0 , which yields 

C 2 = C4C5. Therefore S5 ^ 0 . From equations -£tt3(A/5C4 — F5S4) + #5 — G2 = 0 

and M5C4 — F5S4 -f S2C3 = 0 we obtain CZ4C4S5 = 0, which is impossible and we have 

no solution in this case. 
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