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Summary. The paper deals with the linear model with uncorrelated observations. The
dispersions of the values observed are linear-quadratic functions of the unknown parameters
of the mean (measurements by devices of a given class of precision). Investigated are the
locally best linear-quadratic unbiased estimators as improvements of locally best linear un-

biased estimators in the case that the design matrix has none, one or two linearly dependent
rows.
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INTRODUCTION

Let us have the linear model (Y,f{ﬂ, ¥), where the vector of observations ?n,l
has its mean value &(Y) = X3 (Xnx is a known design matrix and Bk,1 € R is the

vector of unknown parameters). The covariance matrix of the vector Y is

(a + ble; X3])2 0 .. 0
5 — 255 = o? 0 (a +ble) X)) ... 0
=0 =0 . . ,
0 (a + ble!, X 3|)2

where a, b and 02 are known positive constants, €/ is the transpose of the i-th unit
vector. We meet this model in the case of the linear model with uncorrelated mea-
surements which are performed by a measuring device whose dispersion characteristic
is linear-quadratically dependent on the measured value (see [1], [5] etc.).
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There exist some iterative algorithms for solving the problem of obtaining an
estimate of a linear functional of the unknown parameter 3 in the above mentioned
model (see e.g. [2], [3], [6] etc.) but the statistical properties of such estimators
(except some asymptotical properties) are totally unknown.

In the paper [7] the author investigated the (o-locally best linear unbiased esti-
mator (Bo-LBLUE) and the uniformly best linear unbiased estimator (UBLUE) of a
linear functional f'8 of parameters 8 in model considered.

In the paper [8] the reader can find necessary and sufficient conditions for exis-
tence of the fp-locally best linear-quadratic unbiased estimators (Bo-LBLQUE) of

the functionals 02(a + ble}Xf|)%,i =1, 2, ..., n, in the above mentioned model if
Y is normally distributed and R(X) (the rank of the matrix X)isn (< k) orn—1
(< k).

In the present paper the Sp-LBLQUE of the linear functional f'3 of parameters 3
is investigated in the cases R(X) =n <k, R(X)=n-1<kand RX)=n-2<k%k
under the assumption that Y is normally distributed.

1. PRELIMINARIES

Let us rearrange the rows of the matrix X to obtain the matrix

_ (X1 _ (Irx),r(x)
X= (xz) - ( E X1

X is a matrix of order R(X) x k, X2 = EX;, where E = XX/ (X;,X/)™! is of
order (n — R(X)) x R(X).

In the same way we rearrange the coordinates of Y and the rows of the matrix
$(8). We obtain the vector Y and its covariance matrix

) _ (B O
2=o20=0* (%5 5)
where
(a + ble| X18|)? 0 0
0 (a + blep X1 8))% ... 0
I = ) .
0 (a + blepx)X18])?
and
(a + blelEX, 8])? 0 0
0 (a+bleL,EX B])2 ... 0
L= . .
0 " (a -+ ble!,_ g x) EXi16))?
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Further, we assume that Y is normally distributed. We have obtained the model
(1.1) (Y, X3, ).

Let us denote by 2 the class of matrices B, , satisfying the following three conditions

X8 0 ... 0
. 0 les X8| ... 0
(1.2) v{BeR*} T™B| . S =0,
0 .. le’. X 3|
(1.3) TrB =0,
(1.4) X' (B + o2 ZeieiBe;eﬁ)X -0
i=1

n
(Tr B is the trace of B i.e. 21 e;Be;.)
1=

Lemma 1.1. The random variable a'Y +Y'AY is in model (1) the 3,-LBLQUE
of its mean value (in the class of linear-quadratic estimators) iff there exists a vector
z € R™ such that

(1.5) a=—(A+A)Xgb + (X’);(E(ﬂo))X'z
and
(1.6) V{D € 2} Tx(D +D'){o?S(fo)(A + A")Z(Bo)

+2XBoz' X[(X') 7, (5(80))) £(B)} =0,

where ((X’);(E(ﬁo)) is an arbitrary but fixed minimum X((8p)-norm g-inverse of
the matrix X', i.e. a matrix satisfying the relations X'(X' );(E(ﬁo))X' = X' and

(Xm0 X') (B0) = E(B0) (X )(s(50y X)-
Proof. Seein [8], Theorem 1.3. O

Lemma 1.2. The random variable a'Y + Y'AY ia an unbiased estimator of the
linear functional f'B of a parameter (3 iff

(1.7) f=X'a
and
(1.8) Ac 2.
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Proof. The random variable a'Y + Y’AY is an unbiased estimator of f'J3 iff
V{B € R} &Y +Y'AY) =f'5,
ie. iff

V{B € R} a'Xp+ X AXB+02TrAZ(fB)

=a' X8+ X' AXB+ 0%’ TrA
le1X0| 0 . 0
0 e) Xl ... 0
+ 2abo? Tr A . le2 .
0 . le;, X2

+0%0? ) efAei(e}XB)? = f'B.

=1

This is equivalent to the following three conditions:

(1.9) Z e;Ae; =0,
i=1
(1.10) V{BeRF} (X'a—f) +2abo? ) ejAe;le;XB| =0
i=1
and
(1.11) v{B e R} X (A +a%b? Z eie;Aeie;)Xﬂ =0.
=1

Let us analyze the condition (1.10). We see that
n

V{Be R} (X'a—f)B+2abo”)_ eiAe;le;XB| =0,
=1

but also n
(X'a - f)'(—=B) + 2abo? Z e;Ae;e;Xp| = 0.
=1
This implies
(1.12) X'a-f=0
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and also

(1.13) V{BeRF} ) ejAele;XpB| =0.

i=1

Condition (1.11) is equivalent to

(1.14) X'(A+A+20% Y erelAeie})X =0.
i=1
It is obvious that conditions (1.9), (1.12), (1.13) and (1.14) are necessary and suffi-

cient for a’Y + Y'AY to be an unbiased estimator of f'3.

Because of the equality

[
Y'BY = YB—*Z'?—Y,

which is true for every n x n matrix B, we obtain that

le} X8| 0 0
0 |etX4 ... O
a'Y + Y'AY: TrA ) ) =0 V{Be€ RF},
0 lel. X8|

TTA=0, X (A + A +20%° Ze,-e:.Ae,-e;)x =0, X'a= f}

=1

lei X8| 0 0
R 0 leaXf| k
=<b'’Y+YDY: ‘D . =0 V{BeR"},
0 lel XA

TrD =0, X(D + o2b? zn:e,-eﬁDe,-eQ)X =0, Xb= f}
=1

={bY+YDY:X'b=f, D€ 2}

(We note that here D need not be a symmetric matrix.) The lemma is proved. O

An easy consequence of Lemma 1.1 and Lemma, 1.2 is the next theorem.

Theorem 1.3. The random variable a’Y +Y'AY is in model (1) the 3,-LBLQUE
of the linear functional f' 3 of a parameter 3 if (1.5), (1.6), (1.7) and (1.8) are satisfied.

Proof is easy and therefore omitted. a
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For our further analysis we still need some other lemmas

Lemma 1.4. If V, , is a positive definite matrix and Z,, ; an arbitrary one then

(i) u(VZ) nKerZ' = {0} and

(i) R(VZ) + R(KerZ') = n, where u(C;¢) = {Cu: u € R'} and KerC = {w:
w € R* and Cw = 0}.

Proof. (i)a€ u(VZ)NKerZ = I{( € R*} a=VZfand Z'a=0= 3{€ €
R*} a=VZ¢and Z’VZE=0= {(€RF} a=VZand ZE=0= a = 0.

The reverse implication is trivial.

(ii) We have

R(Z) > R(VZ) > R(V™'VZ) = R(Z)

and that is why R(VZ) = R(Z). Now we easily obtain (ii). 0
Corollary 1.5. Let V, , be a positive definite matrix and Z, x an arbitrary one.

Then
V{z € R"}3{x € R¥} and Iy € KerZ'},

so that
VZx+y=z.

Proof. This is an easy consequence of Lemma 1.4. O

Lemma 1.6. For the linear functional f' of a parameter 3 there exists the [Bp-
locally best linear unbiased estimator (8o-LBLUE) iff f € u(X').

Proof. See Lemma 2.4 in [7]. ‘ O

Lemma 1.7. The $,-LBLUE of '8 (for f € u(X')) is f’[(X’);(E(ﬂo))]’Y, where
x’ );(E(ﬁo)) is an arbitrary but fixed minimum %(fp)-norm g-inverse of the matrix

X'. The dispersion of the Bo-LBLUE of £ for 8 = 3, is ozf'[(X’);(i(ﬂo))]'E(ﬁo) X
(X’);(E(ﬁo))f and is invariant of the choice of (X’);(E(ﬁu)).

Proof. See [7], Lemma 2.4 and its proof. O
Lemma 1.8. If X'DX = O for all D € 2 then
(1.15) {f: 38o-LBQLUE for '8} = u(X').

Further, the dispersion of the (o-LBLQUE of f'3 is the same as the dispersion of the
Bo-LBLUE of f'8 at 3 = (.
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Proof. According to Theorem 1.3 a'Y + Y'AY is the 8o-LBLQUE of f'3 iff
(1.5), (1.6), (1.7) and (1.8) hold. So we see that if X'DX = O for all D € 2 then
for every z € R™

(1.16) 2 X[(X)naoy) Y + Y'OY

is the Bo-LBLQUE of f'8 = z'X3. That is why (1.15) is true. Due to Lemma 1.7
(1.16) is also the Bo-LBLQUE of f'3 and the second assertion of the lemma is true.
The lemma is proved. O

2. R(X):ngk

Theorem 2.1. If in model (1.1) R(X) = n < k, then (1.15) is true and the
dispersion of the fo— LBLQUE of f'3 is the same as the dispersion of the 3o—LBLUE
of f'3 for B = fo.

Proof. According to Lemma 2.1 in [8] D € 2 in model (1.1) for R(X) =n < k
iffe}De; =0,i=1,2,...,,nand X'2X = 0. Now the proof is an easy consequence
of Lemma 1.8. O

3. RX)=n—-1<k
3.1. Case E = ve/.

Theorem 3.1.1. Ifin model (1.1) E = ~ve!, v #0,s € {1,2,...,n—1} then (1.15)
is true and the dispersion of the 3o-LBLQUE of £ is the same as the dispersion of
the Bo-LBLUE of f'3 at 8 = 0.

Proof. (i) If|y] # 1 then, according to Lemma 3.1in [8], D € 2 iff e.De; = O,
i=1,2,...,nand X'DX = 0.

(ii) If |v| = 1 then, according to Lemma 4.1 in [8], D € Z iff e}De; = O, i ¢ {s,n},
e’ De, + e’ De, = O and X'DX = O.

In both cases the proof is an easy consequence of Lemma 1.8. O

t
3.2. Case E= ) ye,,t>2.

i=1

t
Theorem 3.2.1. Ifin model (1.1) E = Y e}, v #0, s; € {1,2,...,n— 1} for

i=1
i=1,2,...,t,t > 2 then (1.15) is true and the dispersion of the So-LBLQUE of f'3
is the same as the dispersion of the $y-LBLUE of '3 at 8 = f.
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Proof. According to Lemma 5.1 in [8] in this case D € 2 iff e!De; = 0,i =1,
2,..,,nand X'DX = O.
The proof is again an easy consequence of Lemma, 1.8. a

4. RX)=n-2<k

4.1. CaseE = (}:,;) . Relying on the previous methods we can prove the following
lemma:

Lemma 4.1.1. If in model (1.1) E = (}:}), s €{1,2,...,n — 2} where
@) Iv=1,161#1,6 #0,
(ii) W #1, v #0, (6] =1,
(iii) [v| = 6] #1, v # 0,0 #0 or
() W #1, 18] #1, 7 #6,7#0, 50 then D € 9 iff
eDe; =0, i¢{s,n—1},
e'De, +e,,_De,_1 =0
and
X'DX =0
in the case (i),
e;De; =0, i¢{s,n},
e/ De, + e, De, =0
and
X'DX =0
in the case (ii),
eDe; =0, i¢{n-1,n},
e/ _De,_; +e De,=0

and

X'DX =0
in the case (iii),
(4.1.1) ' eDe; =0, i¢{s,n—1,n},
(4.1.2) e De, + 1o = I’Yle'nDen =0,

1=

11|

4.1.3 e,_De,_1 + e, De, =0
(4.1 1Dt Ty
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and
(4.1.4) X'DX + a2b%(|y| - |6))(1 — |6]) X e €. Xe!, De, = O

in the case (iv).

Thus, we have also obtained the proof of the next theorem:

Theorem 4.1.2. If in model (1.1) E = (;’:,':), s€{L,2,...,n— 1} where

@) Ivl=1,101#1,6 #0,

) ) #1,7#1, 18] =1, or

(iii) |v] = 18] # 1, v # 0, 6 # 0 then (1.15) is true and the dispersion of the
Bo-LBLQUE of f'3 is the same as the dispersion of the (,-LBLUE of f'3 for 8 = (.

The case with |y| #1, |6| #1, v #, v #0, § # 0 is rather different and needs a
deeper analysis.

If we denote by ® the symbol for the Kronecker product (see e.g. [4], p. 11), and
if
/

vecAn,m = ((111,(121,. «eyQn1,012,0225...3Qn2y..+,A1myA2my .« - ,anm)

denotes the vector formed by columns of the matrix A, then using the formulas
Tr AB = (vecB’)' vecA
and
vecABC = (C'® A) vecB
we obtain that (4.1.1)—(4.1.4) are equivalent to
(4.1.5) Y.vecD = O,
where Y, is a (k% + n — 1) x n? matrix of the form

( e ®e \

’ ’
es—16® €s—1
' ! —(ar /
e,@e, + L=ll(el vel)

—_ ’ /
Y* - €st+1 ® €s+1

e, 1®e;_,
k (€h_1 ® €hy) + 11} (e} ® €,)
(X' © X) (I+0262(7] — 13]) (1 — [6]) (ese, ® ese)) /
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A consequence of Lemma 4.1.1, case (iv) is
(4.1.6) De?2&Y.veeD=0 & vecD € KerY,.
Now let us analyze condition (1.6). We have

V{D € 2} Tr(D+D'){o>Z(Bo)(A + A")Z(fo)
+ 2X,30z'X[(X');(E(ﬁo))]'ﬂ(ﬂo)} =0
(4.1.7) & 3{6 € RF*+-1}
(E(60) ® £(80)) vec(A + A") — 26%(] — 16])(1 — |8]
x e, X [Boel X[(X' ;(E(ﬁo))]'Z(ﬁo)z(en ®en) =YL4.

According to Corollary 1.5 and (4.1.6) for every z € R™ there exist 1) € RE*+n-1
and C; € 2 such that

(4.1.8) (Z(Bo) ® Z(Bo)) vec Cz — 2b*(|y| — [8])(1 — |4])
X e;Xﬂoe’sX[(X');(z(BO»]’E(ﬁo)z(en ®e,) =Y.y,

If we denote by I* the n? x n? matrix for which the assertion
V{A, .} vecA'=T"vecA

is valid then (4.1.1)—(4.1.4) are equivalent to

(4.1.9) Y.I* veeD = O.
We have
(4.1.10) De?2 & Y.I"veeD =0 & vec? € Ker Y, I".

According to (4.1.6) and (4.1.10)
KerY, =KerY.I"
and that is why

(4.1.11) n(Y3) = p((T)'YL) = p(IY5).
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From (4.1.8) we have that for every z € R™ there exist 1) € R¥"*"~1 C, € 2 and
¢ € R¥+n=1 such that

(4.1.12) I*(Z(Bo) ® T(Bo)) vec Cy — I*26%(|v] — |4])(1 — |6])
x e;Xﬂoe;X[(X');(E(ﬂo))]'z(ﬁo)z(en ®e,) =I'Y.,9=Y.,p.
That is why (by virtue of (4.1.8) and (4.1.12)) for every z € R™ there exist Az =
S e 9, Ly € R¥+71 and 1y € R¥*+7-1 (ie. § = (3 + ) such that

(41.13) (Z(Bo) ® £(Bo)) vec(As + Ay;) — 26*(1v| — [6])(1 ~ |4])
X e;Xﬂoe;X[(X');(z(ﬂo))]'E(ﬂo)z(en ® en)

= Yis(@+¢) =Yl
We have obtained that V{z € R"} 3{A; € 2} such that

(4.1.14) V{D e 2} Tr(D+D'){c?Z(6o)(A: + AL)Z(Bo)
+ ZXﬂoz’X[(x’);(E(po))]’E(ﬂo)} =0.

Let us return to find the Syo-LBLQUE of f’8 in the investigated case |y| # 1,
6] #1,v# 4, v # 0 and § # 0. According to Theorem 1.3 a'Y + Y'AY is the
Bo-LBLQUE of f'g iff (1.5), (1.6), (1.7) and (1.8) hold. We have proved that (1.6)
is equivalent to (4.1.7) and that (4.1.14) is true. So

(4.1.15) & = {f: 36,-LBLQUE for '3}
= {X’a: a= —(A + A’)Xﬂo + (X');(Ewo))
A € 2 satisfies (4.1.14), z € R"}.

X'z,

Theorem 4.1.3. If in model (1.1) E = (}:,') where s € {1,2,...,n =2}, |7| #1,
6] #1, v #0, v # 6 and § # v then F = u(X'), ie. (1.15) is true. Further,
the dispersion of the B,-LBLQUE of f'3 is not greater than the dispersion of the

Bo-LBLUE of '3 at 8 = .
Proof. As (4.1.13) is true, from (4.1.4) we obtain
n—2
(4.1.16) X'a=-X'(A+A)XB+X'z=) zX'e;
i
+[o?b?(17] — 81)(1 — |d])e, XBoer, (A + A')en
+ 25 + YzZn—1 + 02,]Xe,.
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If we denote by A, the matrix correspondingtoz =e;, i =1,2,...,n,in (4.1.14)
then

Aoy + AL =7(Ae, +AL), A +A, =06(Ae, +AL)

€n—1

and n

A+A =) z(A +AL).

=1
From (4.1.16) we have
n—2
(41.17) X'a= E ziX'e;
=1
i#s
n—2
+ 0221l — I3D(1 ~ 16D Xfo 3, zi¢h(Ae + AL JenX'e,
i=1
i#s

+ (1+a?0% (17 - 16])(1 — [8])e, X Boe), (Ae, + AL, )en)
X (25 + Y2Zn—1 + 02,) Xe,.

As s
wX') = { Y &X'ei:&€R,i=1,2,...,n —2},
i=1

F =puX') iff
(4.1.18) 1+ a%6%(|7] = [6])(1 — |8])es X Boer, (Ae, + AL, )en # 0.

If
(4.1.19) 14 a26%(|y| = 16])(1 — |6])e, X Boel, (Ae, + AL, )en =0
then

26% (7| — 16)) (1 — |6])e, X Boe, X[(X') . (zson))
x S(Bo)eseh(Ae, + AL )en = ~ 5L X[(X )7 (0] E(Bo)es

and

0 < [vec(Ae, + Ay, (2(Bo) ® £(Bo)) vec(Ae, + Ag,)
= _%e'sx[(x')r_n(rwo))]'E(ﬂO)es <0
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(because of the semidefiniteness of the matrix X[(X’);(E(ﬂo»]' 2(Bo)). So Ae, +
A, = O and this contradicts (4.1.19). That is why (4.1.18) is true and & = u(X’).

Let us now calculate the dispersion of the So-LBLQUE of the functional f’g3 (for
f € u(X')) at 8 = Bo. After a short computation we obtain

(4.1.20) Dg,(a'Y + Y'AY) = 0*((A + A") XS + a') 'T(fo)a.

On the other hand, the dispersion of the Go-LBLUE of this functional (according to
Lemma 1.6 and Lemma 1.7) at 8 = [ is

Dpg, (f,[(x’);.():(ao))]'Y)
= 2B5X (A + A)XI(X )7 0] EB0) (X)X (A + AV X g
- 028X (A + A)Z(Bo) (X')s(s0) X2 + 02 (A + A)XBo + 2) 'T(Bo)a.
So we have after a straightforward simplification
D, (f'[(X") o (s(a0))]'Y) — Dso(2'Y + Y'AY)
=a’fX'(A+ A)X[(X) (580 Z(Bo) (X! m(s(a0) X (A + A")X o
+ 2 Te(A + A")S(B0) (A + A)Z(B) > O
The theorem is proved. O
How to obtain the So-LBLQUE of f'S for f € u(X')? If v € u(X’) then

n n—2

f= ZaiX'e,- = Z a;X'e; + (as + Yan_1 + dan)X'e,.
i=1 .
' 2

Let Ae,, Ae,, ..., Ae,_, be matrices satisfying (4.1.14) forz = e;,i =1, 2, ...,
n—2If
zi=a; t=12,...,s—1,s+1,...,n—2,

(@ + Yan-1 +an) — a2b%(|7] — |8])(1 — |8])e,XBo =77 i€l (Ae; + AL en
— i£s
* 1+ 02627 — [8)(1 — [8])e; X Boe (e, + AL en
n—2
then for the vector z = (z1,22,...,2n-2,0,0)', A = Y z;Ae; € 2 is a matrix

=1
satisfying (4.1.14). Further,

b

X'[-(A+A)XSB + (X,);.(z(po))x,z]
n—2
= Z a;X'e; + (as + yan—10a,)X'e, = f.

i=1

i#s
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That is why
(- (A+ANXBo + (X'); 550 X'2) Y + YAY

is the Bo-LBLQUE of f'S.
The last question is how to obtain Ae;,? =1, 2,...,n—21in (4.1.14). The answer
is given in the next lemma and remark.

Lemma 4.1.4. If we denote
(Z(B0) ® B(Bo)) - YSY,) = A

and
AA' + Y'Y, =8B
then B is a positive definite matrix and
(41.21)  vecCy = 26%(Iy| - 61)(1 — |61)€} X Boe, X[(X' )7 a0y ) E(Bo)z
x (£71(6o) ® T7(80))A(A'B~'A)"A'B™ (e, ® €n)
is a solution to (4.1.8) for z € R™.

Proof is an easy consequence of Lemma 5.3.3 in [4] and Complement 1, p. 118
in [4].

Remark 4.1.5. If vecC, is given in (4.1.21) then vec A, = 1 vec(C; + C}) is a
solution to (4.1.14) for z € R™. (See (4.1.8) and considerations below.)

Example 4.1.6. Let in model (1.1) the design matrix X be

1 2
2 4],
3 6

the coefficients being @ = 1, b = 1 and 0? = 1. We want to estimate the linear

functional 3; + 203: locally at 8y = (Zg;) = (}) by the locally best linear and linear-

quadratic estimators and compare their dispersions.

According to Remark 2.5 in [7] the Bo-LBLUE is

(12) 0.053389 0.034866 0.025626
0.106777 0.069732 0.051253
= 0.266943Y; + 0.174330Y; + 0.128132Y3.

Its dispersion is 4.271083.
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The Bo-LBLQUE is

0.264335Y; + 0.206709Y; + 0.107409Y3

—0.000702 —0.004974 0.000337
—0.000516 —0.000337 0.002487

0.002487 —0.000702 —0.000516
+Y’ Y

and its dispersion is 4.207355.
We see that the dispersion of the 3o-LBLQUE in the investigated case can be less
than the dispersion of the 3o-LBLUE (at 8 = fo).

4.2. CaseE = (}::) . Asin Section 4.1 we give the basic results. Some of them are
(]

without proofs which are again based on the previous methods and considerations.

Lemma 4.2.1. If in model (1.1) E = (}:%), se{l,2,...,n-2}, le{L,2,...,

n — 2}, s # 1, where
@ Ivl=1,16/#1,6#0,
(ll) I’Y' 7/: 1,v#0, |6| =1,
(i) |v] = 18] = 1 or
(v) IV #1L,v#0,[6| #1,6 #0
then D € 9 iff

e;De; =0, i¢{s,n—1},
e.De; +e,_;De,_1 =0
and
X'DX =0

in the case (i),

e:De; =0, i¢{l,n},
eDe; + e, De, = O

and
X'DX =0
in the case (ii),
e;De; =0, i¢{sl,n—1,n},
e.De;, +e,_De,_; =0
e;De; + e/, De, =0




and

X'DX =0
in the case (iii),
(4.2.1) eDe; =0, i¢{s,l,n—1,n},
1-14|
4.2.2) e.De, = e/ De,,
(4.2.3) e;De; = —|d|e},De,,
11|
424 e,_De,; =- e, De,
424 wDen1 ==
and
(4.2.5) X'DX + a?b*(1 - |8]){|7|X'es€.X — |6|X'e;e;X }e!, De, = O

in the case (iv).

Theorem 4.2.2. If in model (1.1) & = (}%), s € {1,2,....n -2}, i €
{1,2,...,n—2}, s # where

@) Ivl=1,161#1,6 #0,

(ii) I'YI #1,7#0, I‘Sl =1, or

(iii) |v| = 16| =1,

then (1.15) is true and the dispersion of the 3o-LBLQUE of '3 is the same as the
dispersion of theBy-LBLUE of '3 at 8 = fo.

The case with |y| # 1, |0] # 1, v # 0, d # 0 is again different and needs a deeper
analysis.
As in Section 4.1 we obtain that conditions (4.2.1)—(4.2.5) are equivalent to

(4.2.6) Y..vecD =0,

where Y., is (k% + n — 1) x n? matrix of the form

( e ®ef \
e ®e, — l’ylf—:-’%(e'n ®ey)

Y.. = e ®e) + |<5|(e£l ®e;)

en_s ée;-z

(€1 ® €y + 1ot (e, @ €h)
k(x' & X'|{I+ 02t2(1 — [6) [1l(eseh @ esel) — [6](erey ® eret)]} /
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A consequence of Lemma 4.2.1, case (iv) is that

DeZ2&Y..vecD=0 & vecD € KerY,..
Following the considerations in Section 4.1 below the relation (4.1.6) we obtain that

V{D € 2} Tx(D+D'){o*Z(6o)(A + A")Z(fo)
+2X oz X[(X'), 5(5,))) Z(B0)} = 0
& 36 € RF+™1}  (Z(Bo) @ T(fo)) vec(A + A')
— 26%(1 — |81){Ivle} X Boz'S(Bo) (X' )7 (5o X €5
— |81€fX Boz’ S(Bo) (X' )7 g0y X €1} (€n @ €0) = Y..,6.

We also obtain that V{z € R"} 3{A, € 2} such that

(4.2.7) V{D € 2} Tr(D +D'){0*Z(Bo)(As + AL)Z(Bo)
+ 2XB0z'X[(X');(E(Bo))]'ﬁ(ﬂo)} =0.

Now let us find the 8o-LBLQUE of f'3 in the investigated case |v| # 1, |6] # 1,
v #0, 0 # 0. According to Theorem 1.3 a'Y + Y'AY is the 8o-LBLQUE of f'3 iff
(1.5), (1.6), (1.7) and (1.8) hold. We know that (4.2.7) is true. That is why

(4.2.8) & = {f: 36o-LBLQUE for '8}
={X'ata=—-(A+A")Xf + (X');(E(ﬂo))X'z,
A € 2 satisfies (4.2.7), z € R"}.

Theorem 4.2.3. If in model (1.1) E = (}e;), s € {1,2,...,n-2}, 1 €
e )

{1,2,....n=2}, s # L W #1L,v#0,0 #1,6 # 0 then 9 = pu(X'), ie.
(1.15) is true. Further, the dispersion of the So-LBLQUE of f'3 is not greater than
the dispersion of the 3o-LBLUE of '8 at 3 = ;.

Proof. From (4.2.5) we obtain
(429) X'a=-X'(A+A)XAH+Xz= Y zX'e
ig{s,l,n—1,n}
+ (25 + 1201+ 0%0* (1 — |8))|7]e, X Boel, (A + A')en) X'e,
+ (21 + 6zn — 0?6 (1 — |0])|6]€]X Boel, (A + A')e,) X'e,.

If we denote by Ae; the matrix in (4.2.7) corresponding to z = ei, i = 1, 2,
then

A, + A’e,._l = v(Ae, + A;.,), A, + A;,. =6(Ae, + A;,)
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and .
A+A' =) z(A., +AL).

i=1
From (4.9.2) we conclude
(42.10) X'a= Y zX'e
i¢{s,l,n—1,n}
+ {02b2(1 — 8D Ivles X Bo Z ziel, (Ae; + Ay, )en
i¢{s,l,n—1,n}

+ (1+0%0°(1 - |6])|7le; X Boer (Ae, + Ag, )en) (2 +V2n-1)

+0%5%(1 = [8))l1leiXBoer, (Ae, + Al )en (2 + 620) } X',

+ { — R - |O)SleXB S ziel(Ae +AL)en
i¢{sl,n—1,n}

+ (- o22(1 - [8))13]e}XBoe,(Ae, + AL, )en) (20 +12n-1)

+ (1= 0262(1 — |6])|6]€} X Boel, (A, + AL Jen) (2t + Jz,,)}x'e,.

In the investigated case

n—2

u(x’):{Zg.-x'e,-: &€ R,i:1,2,...,n—2}.

i=1

By virtue of (4.2.10) it means that ¢ = pu(X') iff

[1+026%(1 — [6])|v]es X Boe), (Ae, + Ag,)en]
x [1 = 02b%(1 - |8])]6]e; X Boer,(Ae, + Ag,)en)
+0b?(1 — |6])|v]e; X Boer (Ae, + Ag,)
x e,02b%(1 — |6])|6]e; X Boel, (Ae, + AL, )en #0,

or, equivalently, iff

(4.2.11) 1+ 0?b%(1 — |8])|v|e, X Boel, (Ae, + Ay, )en
— a3 (1 - [8])I51e}X Bocy (Ae, + AL, )Jen # 0.
If we suppose that (4.2.11) is not true, in the analyzed cases
(i) e,Xfo = e{Xfo = 0

(i) esXpBo = 0, e;Xfo # O,
(iii) e, XS0 # 0, e/XBo =0,
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and

(iv) e;Xﬂo ;é 0, e;Xﬂo ?5 0
we obtain a contradiction and so we prove the first part of the theorem. The second
part of the theorem about dispersion of the So-LBLQUE can be proved again in the
same way as in Theorem 4.1.3 and the proof is omitted. a

How to obtain the Bo-LBLQUE of f'8 for f € u(X') if |y| # 1, v # 0, [8] # 1,
6 #07?
If f € u(X’) then

n—2

n
f= Z a;X'e; = Z a;X'e; + (as + yan—1)X'es + (a + dan) X'ey.
i=1 i—
' gt}
Let Ae,, Ae,, -, Ae,_, be the matrices satisfying (4.2.7) forz =e;,1 =1, 2, ...,
n—-21If

zi=a;, 1=12,...,s—1,s+1,...,l-11+1,...,n-2,

20 = {1+ 0%(1 = |8))[vle\ Xfoer (Ae, + AL, )en
— |8leiX Boe (A, + Al )enl}H{[1 = 0?62(1 - |6)IlelX foe,(Ae, + Av,Jen]

x [a, + Yan_1 — a2b%(1 — |6])|v]e, X Bo Z a;e) (Ae; + Ag‘,)eﬂ]
X i¢{s,l,n—1,n}
= [0 (1 — |8))[|v]e, X Boer (Ae, + Al Jen]
x [a, +8an + 2P (1— 0)I5e}XB0 Y. cieh(Ae + A;‘.)en] }

ig{s,l,n—1,n}

and

z = {1+ 0°b°(1 — |8))[|7]e, X Boey (Ae, + AL, )en
- |5|efXﬂoe:,(Ae, + A'e,)en]}_l
x {[1 +0?62(1 = |é])lvle, X foe (Ae, + A, )es]
x [ou+ban + 0?2 (1— 6)ISleXBo Y aieh(Ae + Al)en]
i¢{s,l,n—1,n}
+ [0?6%(1 - |0]) 6]e; X Boel, (Ae, + AL, Jen]

x [ +10n1 — 0?1 - 18DVl XB D auel(Ae, + AL )en| )
i¢{s,l,n—1,n}
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n—2

then we can show that for the vector z = (21, 22,...,2n-2,0,0)', A= ) 2;Ae, € 9
=1

is a matrix satisfying (4.2.7) and X'[-(A + A")X [, + (X’);(Ewo))x’z] =f. That is
why
—_ !
(= (A+ANXfo+ (X') (550 X2) Y + Y'AY

is the Bo-LBLQUE of f'S.
We only remark that one can solve (4.2.7) according to Lemma 4.1.4 and Remark
4.1.5 with Y,, instead of Y, and

vec Cy = 26%(1 — [8]){ 1€} X oz’ (Bo) (X' )70y X s
- I‘sle;XIBOZIz(ﬂo)(xl);(g(go))x'el}
x (Z71(Bo) ® 271(Bo))A(A'B~A)"A'B (e, ® €)
instead of (4.1.21).
Example 4.24. Let in model (1.1) the design matrix X be

W N =
O© B W N

the coefficients being a = 1, b = 1 and 62 = 1. We want to estimate the linear

functional B; + 2.508; locally at By = (gg;) = (}) by the locally best linear and
linear-quadratic estimators and compare their dispersions.

According to Remark 2.5 in [7] the §o-LBLUE is

(1 2.5) 1.300855 —0.857868 0.849558 —0.380711
’ —0.433628 0.428934 —0.283186 0.190355
= 0.216785Y; + 0.214467Y2 + 0.141593Y3 + 0.0951765Y.

Its dispersion is 4.415351.
The Go-LBLQUE is

0.215472Y; + 0.270347Y> + 0.165375Y3 + 0.092210Y;
0.005214  0.000000 —0.001303 0.000000

0.000000 —0.003910 0.000000 —0.003910
—0.001303 0.000000 —0.002607 0.000000
0.000000 —0.003910 0.000000  0.001303

+Y'

and its dispersion is 3.025641.
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We see that the dispersion of the 8o-LBLQUE in the investigated case is essentially
lower than the dispersion of the Go-LBLUE (at 8 = o).

/

e,
t
Zj:l 6’1' e:S,J.
results without proofs.

4.3. Case E = ( ) As in the previous sections we give the main

U
Lemma 4.3.1. If in model (1.1) E = ( : e , ), s € {1,2,..., n — 2},
Zj:l ‘Sljes,,.
l;€{1,2,...,n—2},d; #0,j=1,2,...,t,t > 2, where
(@) yl=1or
(i) |y| #1,7#0 then D € 2 iff

e.De; =0, i¢{s,n—1},
e.De, +e,_De,_; =0
and
X'DX=0
in the case (i),
eDe;=0, i=1,2,...,n

and
X'DX =0

in the case (ii).

t ’
4.4. Case E = ( Z"_t‘_l s s )
k Zi=1 Vs; e;.-

. t 1]
Ei:l Vs €,

Lemma 4.4.1. If in model (1.1) E = , 8 € {1,2,...,n — 2},
1) (k Z::l Vs; e;.-) { " J

Vs; #0,1=1,2,..., ¢, t > 2, where
(i) k #0, [kl # 1 or
(ii) |k| = 1 then D € 2 iff

eDe;=0, i=12,...,n

and
X'DX=0
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in the case (i) and

e;De; =0, i¢{s,n—1},
e, _,De,_; +e,De, =0
and
X'DX =0

in the case (ii).

t ’

4.5. Case E = Lim1 Vs, .
IR
j=191; €y,

Zt. Ys; €

Lemma 4.5.1. If in model (1.1) E = s ) s e {1,2,...,n =2},
6 /
2i=1 1;€;.

Yo 20,i=1,2, .., t,t22,;€{1,2,...,n =2}, 8, 20,/ =1,2, ..., u, u > 2,
t u

kY vs.€,, # 3 0ie), forall k € R then
i=1 j=1

> e/BeilelXp| =0 V{8 € R*}

i=1
iff
eBe;=0 i=1,2,...,n.

Proof. Let us denote

ﬂ:{sl,52,...,81} C{1,2,‘..,n—2},
;@={ll,lg,...,lu}c {1,2,...,71—2}.

We have

(4.5.1))_e{Be;leXp| =0 V{8 € R*}

i=1
& Z e;Be;|u;| + Z e;Be;|u;|
i€{{1,2,....,n—2}={AURB)}} ie{of—B}

t
+ Z e;Be;|u;| + Z e;Be;|u;| +e,_;Be,_; l Z'ysi Us;
ic{o— B} ie{o/Nn2} i=1

u
Z 0w
j=1

+ e, Be, =0 Y{u=(uj,uz,...,un—z) € R*2}.
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(i) Let there be two (say s; and s2) or more indices in & — %&.
Because of u > 2, there are also two (say /; and l2) or more other indices belonging
to 8. For {u € R"2: u; =0 for i # s1} we have from (4.5.1) that

(45.2) e, Be,, +e,_;Ben_1|7,| =0,

and for {u € R*~2: u; =0 for i # sz} again

(4.5.3) e,,Be,, +e,_Be,_1]|v,,| =0.

So for {u € R*2: u; = 0fori ¢ {s1,52}} we have the relation

(4.54) e Be, |u,, |+ €}, Beg,|u,,| + €, _1Ben_1|7s,Us, + Vsytsy| =0
V{u,, € Ri=1,2}.

Substituting (4.5.2) and (4.5.3) into (4.5.4) we have

eno1Ben—1[~[Vs1s s, | = [V Usa| + Vs, Usy + VssUsy[] =0 V{u,, €Ri=1,2},
which is satisfied iff
(4.5.5) e,_;Be,_; =0.

Now taking into account (4.5.5), for {u € R"~2: u; = 0 for i # I, } we obtain from
(4.5.1) that

(4.5.6) e}, Be;, + ¢}, Be,|d;,| =0

and similarly

(4.5.7) e, Be, + €, Be,|d;,| = 0.

For {u € R"2: u; =0 for i # {l;,l2}} we obtain from (4.5.1)

(4.5.8) e}, Bey, |uy,|+ej,Bey,|ui,|+e,Be, |6, ui, +6,u,| =0 V{u, € Ri=1,2}.
Substituting (4.5.6) and (4.5.7) into (4.5.8) we have the condition

(4.5.9) e/ Be, = 0.

Considering (4.5.5) and (4.5.9) we easily obtain from (4.5.1) that also e‘Be; = 0 for
i=1,2,...,n—2.

In the cases

(ii) there is only one index (say s;) in & — % and

(iii) & — % = @ we continue similarly and also obtain e/Be; =0fori=1, 2, ...,
n. The lemma is proved. O
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t '

Lemma 4.5.2. If in model (1.1) E = (fol 'ys,.ef'.)’ si € {1,2,...,n — 2},
Zj:l 5’;"1,

Yo #0,8=1,2, .., ¢t,t>2,1;€{1,2,...,n=2},0, #0,j=1,2, ..., u,u > 2,

t u
kY vs.€,, # Y &,e) forallk € R then D € 2 iff
i=1 j=1 7

eDe; =0, i=1,2,...,n

and
X'DX =O.

Proof follows from (1.2)-(1.4) and Lemma, 4.5.1 is omitted.
A consequence of the considerations in Sections 4.3, 4.4 and 4.5 is the next theorem:

Theorem 4.5.3. If in model (1.1)

0%= (g

se{l,2,....n—2},;€{1,2,....n—2},6; #0,5=1,2,...,t,t > 2, v#0 or
t e
(ll) ( E‘l:l 73- 8 )’
k21—1735 CH
s€{1,2,.. —2h 95, #0,i=1,2,...,t, t >2, k#0 or

t e
(iii) E = (Z‘;“ T ,)
21—16[ el,
si€{1,2,...,n—2},'ys‘.#0,1’:1,2,..., >2,1;€{1,2,...,n =2}, & #0,

i=12..,u,u>2, kz'ys, e, Z&le, for all k € R then (1.15) is true

j=
and the dispersion of the ﬂo-LBLQUE of fﬂ is the same as the dispersion of the
Bo-LBLUE of {3 at 8 = f,.

CONCLUDING REMARKS

We have investigated the (;-LBLQUE of a linear functional of a parameter 3
in model (1.1) in all possible situations with none, one or two additional linear
dependent measurements, i.e. if

() RX)=n<k
t
(i) RX)=n—-1<kand E=~e,,v#0,s€{1,2,...,n—1}or E =} yel,
i=1
v #0,8.€{1,2,...,n=1}fori=1,2,...,t,t >2or
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(i) RX) =n—-2< kand E = (&), s € {L,2,...,n =2}, h] # 0, 8 # 0,
orE=(3),s€{1,2..,n-2}1€{,2,...,n—2}, s L /| #0,6 #0, or
vel,

E=
<Z;=1 615 e;j

t22,7y’:0,orE=<

),se{1,2,...,n—2},l€{1,2,...,n-—2}, 0; #0,7=1,2,...,¢,

E:=1 Vsi €%
kzzzl ’Ysielsi
Z:=1 ’ysie.’S‘ .
t>2,k#0,0or E= (Zu 5 e")’ s€{l,2,....,n—=2}, v, #0, 7 = 1,2,...,t,

=1 9 €1;
t>22,0;e€{1,2,....n-2},6,; #0,j=1,2,...,u, u > 2, kft_:l'ys,.e’s', # zu:ldl,.e;j
for all k € R. ’

It was shown that only in two cases with special replicated observations: (a) E =
(%), s€{l,2,...,n—=2} W #1, 18] #1,v#6, 6 # 7 and

B E(J), s€{1,2,...,n—2}, 1€ {L,2,..,n=2}, s L, Y| #L, 7 #0, 6 #1,
& # 0 the Bo-LBLQUE of '8 may have lower dispersion that the So-LBLUE of '/
at B = Bo. The class of linear functionals having Bo-LBLQUE is in all investigated
cases the same as the class of linear functionals having fo-LBLUE (Theorem 4.1.3

and Theorem 4.2.3). In the paper the problem of obtaining the o-LBLQUE of the
linear functional of a parameter 3 is also solved.

), s€{1,2,...,n =2} 75 £0,i=1,2,...,¢,
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