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INTERPOLATING AND SMOOTHING BIQUADRATIC SPLINE 

RADEK KUČERA, Ostrava 

(Received October 6, 1993) 

Summary. The paper deals with the biquadratic splines and their use for the inter
polation in two variables on the rectangular mesh. The possibilities are shown how to 
interpolate function values, values of the partial derivative or values of the mixed deriva
tive. Further, the so-called smoothing biquadratic splines are defined and the algorithms 
for their computation are described. All of these biquadratic splines are derived by means 
of the tensor product of the linear spaces of the quadratic splines and their bases are given 
by the so-called fundamental splines. 
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1 . INTRODUCTION 

Let us have a closed rectangular domain Q = [a, b] x [c, d\ in the (#, y)-plane with 

a mesh given by sets of knots in each of the variables 

(1) (Asy) = (Ax) x (Ay), 

(Ax) = {xi; i € X}, (Ay) = {Vj; j € J}, 

X = { 0 , 1 , . . . , n + 1}, J = { 0 , 1 , . . . , m + 1}, 

a = xo < x\ < X2 < . •. < xn < a;n+i = 6, 

c = yo < yi < y2 < • • • < y™ < ym+i = d. 

For an interpolation on such a mesh (of cartesian product type), the tensor prod

uct technique is used which can be practically realized by means of polynomials. 

However, this possibility is not used very often because the common polynomial in

terpolation has certain bad features (nonuniform convergence, no shape preserving 
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properties). Therefore the tensor product technique and splines are combined in 
[B62], [B78], [ZKM80], [N89]. 

The main results of this paper are stated in Sections 5 and 6 where the problems 
interpolation of, respectively, partial and the mixed derivatives are solved. The bi
quadratic splines are used because they have the extremal property which makes it 
possible to define smoothing splines. Similar construction for bicubic splines (inter
polating function values) is shown in [175], [ZKM80]. For the first time, an incorrect 
form of the minimized functional was stated for the bicubic case in [ANW67]. 

The possibility to use biquadratic splines for interpolation of function values is 
discussed in Section 4. Section 2 contains the basic knowledge about quadratic 
splines from [K92], [KK93]. The last Section 6 shows some examples. 

2 . QUADRATIC SPLINE 

2.1 Definition. Continuity conditions. We consider an interval [a, b] and a 

set of knots (Ax). A function s(x) = s\(x) is called a quadratic spline on the set of 

knots (Ax) if it has the following properties: 

a) s(x) is a quadratic polynomial on every interval [xz-,x1+i], i = 0(l)n; 
b) s(x) eCl[a,b}. 

The set of all quadratic splines on the mesh (Ax) forms a linear space, we denote 
it S(Ax) = S\(Ax). It is also known that dim5(Ax) = n + 3, see [B78], [ZKM80]. 

Denote hi = Xi+\ - #;, Si = s(xi), s[ = s'(xi). The spline s(x) can be written on 

the interval [xi,o:l+i] as 

(2) s(x) = Si + s[(x - Xi) + (s' i+1 - s[)(x - Xi)2/(2hi). 

The continuity conditions at the knots #;, i = l ( l )n + 1 yield the relations between 
the parameters Si, s'{ : 

(3) ( s U + s'J/2 = (Si - Si-i)/hi-U i = l ( l )n + 1. 

2.2 F-fundamental splines. Let us have real numbers rag, ra;, i G X, and 
consider a spline s(x) G S(Ax) which interpolates the given function values: 

(4) SQ = 77lo, Si = TO*, i G X. 

The computation of the values of this spline can be done by means of the relations 
(3) and the formula (2). It is useful to express the solution of the problem (4) in the 
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form 

n+l 
(5) s(x) = m0h(x) + ^ mkhk(x), 

k=0 

where h(x), hk(x) e S(Ax), k e X, are the so-called F-fundamental quadratic splines 

which are defined by the conditions 

hk(xo) = Q, hk(xi) = Ski, ieX, 

h'(x0) = 1, h(xi) = 0, i eX. 

It is proved in [KK93] that the F-fundamental splines form a basis of the linear space 

S(Ax). 

2.3 Df-fundamental splines. Let us have real numbers mo, m\, i G X, and con
sider a spline s(x) e S(Ax) which interpolates the given values of the first derivative: 

(6) so = rn0, s\ = m\, i e X. 

The computation of the values of this spline can be done by means of the relations 
(3) and the formula (2)—similar as in Subsection 2.2. It is useful to express the 
solution of the problem (6) in the form 

n+l 

(7) s(x) = m0f(x) + ^T mf
kfk(x), 

k=0 

where f(x), fk(x) G 5(Arc), k G X, are the so-called Df-fundamental quadratic splines 
which are defined by the conditions 

fk(xo) = 0, fk{xi) =8ki, ieX, 

f(x) = 1 on [a,b]. 

It is proved in [KK93] that the Df-fundamental splines form a basis of the linear 
space S(Ax). 

2.4 Extremal properties. Smoothing spline. Let us have an interval [a,b] 
with a mesh (Ax) and prescribed values of the first derivative m\, i G X. Introduce 
the space of functions 

V = {feWl[a,b];f'(xi)=m\, i G 2} 
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and the functional 

(8) Mf)= f{f"{x)]2Ax. 
J a 

Theorem 1. The minimal value of J\(f) on the set V is attained for every 
quadratic spline s(x) G S(Ax) with s'i = raj, i G X. [K92] 

The spline from this theorem is not unique; we can prescribe some function value 

for the unique determination, e.g. an initial condition so = rao as in (6). 

Further we will consider real numbers a > 0 and Wi > 0, i G X, and introduce the 

functional 

(9) J2(f) = a f [f"(x)\2 dx + J2 Wi[f'(xi) - m'if. 

Theorem 2. The functional J2(f) attains its minimum on W2
2[a,6] for some 

quadratic spline sa(x) G S(Ax). [K92] 

A spline sa(x) G S(Ax) from Theorem 2 is called a smoothing quadratic spline. 

The parameters sJ = s'a(xi), i G X, of the smoothing spline can be computed from 
the system of linear equations derived in [K92] with tri-diagonal, symmetric and 
diagonally dominant matrix: 

(w0 + Po)s'o - Pos[ = wom'0, 

(10) -pi-xs'i^ + (w{ +Pi-i +Pi)Si-pis'i+1 = Wirrii, i = l ( l)n, 

-PnSn + (Wn+1 + P n K + l = ^n+im n + 1 , 

where pi = a/hi. 
The smoothing spline is not unique; we can prescribe some function value for the 

unique determination, e.g again an initial condition 5a(^o) = rao-

2.5 Sa-fundamental splines. It is possible to express the smoothing quadratic 
spline by means of a certain basis of the linear space S(Ax) where the prescribed 
values mo, raj, i G X, are used as the coefficients of the linear combination. The 
following lemma is needed for the construction of such a basis (see [KK93]), 

Lemma 1. Let us have a mesh (Ax), a > 0, Wi > 0, m\, i G X. A quadratic 
spline sa(x) G S(Ax) minimizes J2(f) on W2

2[a,b] if and only if 

(11) s'i + a[sZ(xi-)-sZ(xi+)]/wi = m'i, i G X, 

where s^(x0-) = s^(x n + i+) = 0. 

We have used the notation f(a+) = lim f(x),f(a-)= lim f(x). 
x—>a+ x—>a — 
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Definition 1. Let us have a mesh (Ax), a > 0, Wi > 0, i G X. Quadratic splines 

(p(x) = <Pot(x), <fk(x) = <Pock(x) G S(Ax), k e X, are called the Sa-fundamental 

splines if they have the following properties: 

<Pk(x0) = 0, <p'k(xi) + a[p'k(xi-) - (pk(xi+)]/wi = Ski, i G X, 

(p(x) = 1 on [a,b]. 

It is proved in [KK93] that the Sa -fundamental splines form a basis of the linear 

space S(Ax). The smoothing spline from Theorem 2 can be written for arbitrary 

values mk and m0 as 

n+l 

(12) sa(x) =m0 + ^2 m,k(Pk(x). 
fc=0 

This formula is not suitable for computations but we will use it for construction of 

biquadratic splines. Of course the derivatives s'{ = s'a(xi) of this spline are computed 

from the system of linear equations (10) and then we use the relations (3) and the 

formula (2) together with some other function value (e.g. initial condition so = win) 

for computation of the values of the smoothing spline. 

3. BIQUADRATIC SPLINE 

3.1 Definition. Representation on rectangle. Let us have a closed rectan

gular domain ft = [a, b] x [c, d] with a set of knots (Axy) (see (1)) and let us denote 

the subrectangles Qij = [xi,Xi+\] x [2/7,2/7+1]. A function s(x,y) = s^(x,y) is called 

a biquadratic spline on the set of knots (Axy) if it has the following properties: 

a) s(x,y) is a biquadratic polynomial on every fJt-j, i = 0(l)n, j = 0(l)ra; 

b) s(x,y) G Cn(ft) (continuous the first derivatives | ^ , | ^ and consequently the 

mixed derivative ^ f c ) . 

On each of the rectangles flij we may use for s(x,y) the piecewise polynomial 
2 2 

representation s(x,y) = _2 S akjXkyl with nine coefficients akj, k,l = 0(1)2, which 
fc=0 z=o 

are generally different on different H tj. In [K87] another representations of s(x,y) 

on a rectangle flij were studied. 

Denote 

)ki f(„ в Л _ дk+ fм в Л okl _ n k l c 

дxkдyl (13) Dklf(x,y) = -^j(x,y), s* = Dkls{xuyj) 
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where f(x,y) is a function and s(x,y) is a biquadratic spline. We will represent the 

biquadratic spline s(x,y) on ft^ by means of parameters _0 0, s 1 0, s°j, s}J, 5 0 1

+ 1 , 
5 ! j+i> s 1 0 i . j , 5 l+i, j . S;|i,j+i (see Figure 1). So we must know four parameters at 

each knot (xi,yj) (except some boundary knots). This representation is suitable for 

us because the one-dimensional algorithm based on the formula (2) can be used and 

because algorithms in the next sections will give parameters for this representation. 

„01 л i 
5 ѓ, j + l Ч i + i 

s 0 1 

c.00 

Figure 1. 

л i 
Ч + l . j + 1 

„ и 
Ь г+l , j 
„10 
S i + l , j 

(Ay) 
(Ax) hj(y) ш fЛv) 

ҺІ(X) f
00 

f
01 s

01 

h(x) flO f l l 
8
lly 

<PІ(X) s
10 

s
llx s

11 

Table 1. 

3.2 Tensor p r o d u c t . Denote by S(Axy) = S\\(Axy) the linear space of all 

biquadratic splines on the set of knots (Axy). We can obtain it as the tensor product 

of the quadratic splines spaces in one variable S(Ax), S(Ay): 

(14) 

S(Axy) = S(Ax)®S(Ay), 

dimS(Axy) = dimS(Ax)dimS(Ay) = (n + 3 ) ( m + 3). 

Similar and still more general tensor product constructions are done in [B78], 

[ZKM80], [N89], [EMM89]. Since we constructed three various bases of the linear 

space of the quadratic splines in the previous sections we obtain nine various tensor 

product bases of the space S(Axy). Each of them is suitable for the solution of some 

problems (notation from Table 1 is used): 

f00 

£•10 

f u 

s10 

s11 

= l l x 

00 _ „ ,00 . interpolation of the given function values s00 = m1 

interpolation of the given values of the partial derivative s10 = m10; 
1 1 . - interpolation of the given values of the mixed derivative s\J = m 

- smoothing spline for the given values of the partial derivative _10 = m10; 

- smoothing spline for the given values of the mixed derivative s\J = m11; 

- smoothing spline for the given values of the mixed derivative s\J = m\J, 

where the smoothing is done in the x-variable; 

the cases f01, s01, s l l y are analogous. 
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We have to prescribe further n + m + 5 parameters for the solution of each such 

problem because dimS(Axy) is greater than the number of the knots (xi,yj) (see 

(14)). 

4 . INTERPOLATION OF THE GIVEN FUNCTION VALUES 

Let us have values m°°, i e X, j e J. We search for a spline s(x,y) e S(Axy) 
such that 

(15) s% = m™ i e i , j e j . 

For uniqueness we must prescribe other n + m + 5 parameters, e.g. 

(16) sll = mil so? = <°v *ffl = m>o» J € .7, t G Z. 

Theorem 3. There exists a unique solution s(x, y) e S(Axy) of the problem (15), 
(16). 

P r o o f . The linear space S(Axy) has the tensor product basis f00: 

h(x)h(y), h(x)hj(y), h{(x)h(y), h{(x)hj(y), ieX, j e j , 

where h(x), hi(x) (or h(y), hj(y)) are the F-fundamental splines on the mesh (Ax) 
(or (Ay), respectively). It follows from their construction that the spline 

n + l 

s(x,y) =mЦh(x)h(y) + Y^m°^hi(x)h(y) 
ѓ=0 

m+1 n+1 m+1 

+ J2 mlЏixЏ^y) + J2J2 rn ЫWҺiІy) 
j=0 

solves the problem (15), (16). 

From the last formula we have 

І = O j=o 

D 

(17) 

7П + 1 

S(XІ,У) = m01h(y) + Ym^h^y), i Є X, 
j=0 

n + l 

s{x,y3) = m$h(x) + J2m<ijhi(x)> J € ^ ' 
t = 0 

n + l 

D01s(x,y0) = mllh(x) + Y^m^h^x), 
ѓ=0 

m+1 
D10S(XІ,У) = 8$h(y) + Ys^h^y), i Є X. 

3=0 

345 



The first formula (17) shows for fixed i G X that s(xi,y) is the quadratic spline 
which interpolates the function values Sj = m00, j G J, on the mesh (Ay) and 
complies with the initial condition s0 = m°0 (compare with (5)). Therefore we can 
use the relations (3) for the computation of the values s°j = s'j, j G J—this is the 
first step of the following algorithm. A similar consideration for the other formulas 
(17) gives the other steps of the algorithm. 

Algorithm 1. 
1° Compute s°j, j G J, from the values mPio

l, m°°, j G J, on the vertical lines 
X — Xi, 2 t _L, 

2° compute s*°, i G X, from the values mj°, m00, i G X, on the horizontal lines 

y = yj, j G J; 
3° compute s\0, i G X, from the values m00, m°i0, i G X, on the horizontal line y = yo\ 
4° compute s}j, j G J, from the values s}0, s}j, j G ̂ 7, on the vertical lines x = Xi, 

i ex. 
We know the values s00, sj°, s°j, sjj at all knots (xi,yj) after using this algorithm. 

5 . INTERPOLATION AND SMOOTHING OF THE PARTIAL DERIVATIVES 

5.1 Formulation and solution of the problem. Let us have values mjj \ i G X, 

j G J. We search for a spline s(x,y) G S(Axy) such that 

(is)- s\f = mil iei,jeJ. 

For uniqueness we must prescribe other n + m + 5 parameters, e.g. 

(19) s°00 = m°0l 5$ = m g , sJo1 = m!o, J e J , i e I . 

Theorem 4. There exists a unique solution s(x, y) G S(Axy) of the problem (18). 
(19). 

P r o o f . The linear space S(Axy) has the tensor product basis f10: 

f(x)h(y), f(x)hj(y), fi(x)h(y), fi(x)hj(y), ieX,jeJ, 

where f(x), fi(x) are the Df-fundamental splines on the mesh (Ax) and h(y), hj(y) 
are the F-fundamental splines on the mesh (Ay). It follows from their construction 
that the spline 

n-f-l 

s(x,y) = mgjh(y) + ^ m\$fi(x)h(y) 
i=0 

m+1 n+1 m-f 1 

+ E mo? (̂y) + E E <7i(*)My) 
j=0 i=0 j=0 
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solves the problem (18), (19). 

From the last formula we have 

D 

(20) 

П+1 

s(x,Vj) = m°0°j + £ m # . / * ( * ) ' ^ej, 
i=0 

m + l 

D10s(xi,y) = m$h(y) + ^ m ^ / i ^ u ) , i e X, 
j=0 

m + l 

s(x0,y) = mllh(y) + ^2m0
)0

jhj(y), 
i=o 

n + l 

D01s(x,Vj) = s°j + £ > } / / . ( * ) , 3 € J -

Prom the formulas (20), we obtain the following algorithm for the computation of 

the parameters 5 ^ , s®j, s\j, i e X, j e J, by means of a similar argument as we 

have obtained Algorithm 1. 

Algorithm 2. 

1° Compute s°j, i e X, from the values m ^ , m\j, i e X, on the horizontal lines 

y = yj,j € J\ 

2° compute s\j, j e J, from the values m\0, m\j, j e J", on the vertical lines x = Xi, 

ieX; 

3° compute sgj, j e J, from the values m00, mgj, j e J, on the vertical line x = x0; 

4° compute s^j, i e X, from the values SQ] > 5 ; J , i E Z, on the horizontal lines y = yj, 
j e j . 

5.2 Extremal properties. On the rectangle f£ = [a, b] x [c, d\ let us have a mesh 

(Axy) and prescribed values of the partial derivative with respect to the x-variable 

m\f, i eX, j e J. Introduce the set of functions 

Vi = {fe w?(n); D10f(xi,yj) = m\f,i e x,j e J} 

and the functional 
m + l „6 

• I 3 ( / ) = £ / [Dwf{x,yj)]
2dx. 

.•_n J a 

Theorem 5. The minimal value of J$(}) on the set V\ is attained for every 

biquadratic spline s(x,y) G S(Axy) with s\j = mj?, i eX, j e J. 
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P r o o f . Let us have / G V\, s G V\ D S(Axy), then 

m + l 

Mf-s) = Ą(f)-Ą(s)-2j2lj> 
3=0 

where 

(21) 

Ij= f [D™f(x,Vj) - Dms(x,yj))D20s(x,yj)<ix 
J a 

= J2 r+1[D20f(x,yj)-D20s(x,yj)]D20s(x,yj)dx. 
i=o Jx< 

Using integration by parts and the identity D30s(x,'yj) = 0 on [.ri,:ri+i] we obtain 

f'+ 1 [D20f(x,Vj) - D20s(x,yj)]D™s(x,yj)dx 
J Xi 

= [Dl0f(xi+\,yj) - Dl0s(xi+\,yj)}D20s(xi+l-,yj)-

- [Dl0f(xi,Vj) - Dlos(xi,yj))D20s(xi+,Vj) = 0. 

Therefore 0 ^ J 3 ( / - 5) = J 3 (/) - J3(s), which implies J3(s) ^ J 3 ( / ) . D 

The spline from this theorem is not unique; we must prescribe other parameters 
for its unique determination, for example (19). 

5.3 Smoothing spline. We will use the notation from Subsection 5.2. Further 
let us have a > 0 and Vi > 0, i G I . Denote 

n + l m+1 

Mf) = ctMf) + E E vi[Dl0f(xi,yj) - mj?]2. 
i=0 j=0 

L e m m a 2. The spline s(x,y) G S(Axy) minimizes J±(f) on W22 (Q.) if and only 

if 

(22) s1

if + adij/vi = ml

i?, i e l , j e j , 

where d{j = D20s(xi-,yj) - D20s(xi+,yj) and D20s(xQ-,yj) = D20s(xn+\+,yj) = 
0. 

P r o o f , a) First let us prove that the conditions (22) are necessary. Let us 
consider a biquadratic spline s(x, y) G S(Axy) which minimizes the functional Ji(/)-
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Introduce for t £ R the spline si(x,y) = s(x,y) + tfk(x)hi(y), where fk(%) or hi(y) 
is a Df-fundamental or an F-fundamental spline, respectively. Then 

J4(si) - J4(s) = t2aki + 2tbki 

with 

ciki=a[ [f'k'(x)]2dx + vk>0, 
J a 

hi = a f fk\x)D20s(x,yi) dx + vk[D10s(xk,yi) - m10}. 
J a 

If bki 7-= 0 then we have a contradiction because the real number t can be chosen such 
that \t\ < 2\bki\/(iki, sgn(£) = sgn(bki) and we obtain J4.(si) < J4(s). Therefore 

(23) 0 = bki =aJ2 [X+1 ffk(x)D20s(x,yl)dx + Vk[D10s(xk,yi)-mk°]. 
t = 0 Jxi 

Using integration by parts and the identity D30s(x,yi) = 0 on [#i,£;+i] for the 
integrals in formula (23) we obtain 

i t / X ^ fk{x)D20s(x,yi)dx = D20s(xk-,yi) - D20s(xk+,yi). 
t = 0 Jxi 

Substituting this result into (23) we obtain (22). 

b) We shall prove that the conditions (22) are sufficient. Let us have f(x,y) € 

W22(Sl) and let the spline s(x,y) G S(Axy) comply with (22). Denote 

n + l m+1 

J 4 ( / - s) = aJ3(f - 5) + £ £ Vi[D10f(xi,yj) - D10s(xi,yj)]
2 2 0. 

t=0 j = 0 

This functional can be rewritten also as 

(
m + l v 

a^/.+Mj, 
where Ij are defined by (21) and 

n + l m+1 
M = E E ^ 1 0 / ( * i , 2 / ; ) " D10s(xi,yj)}[D10s(xi,yj) - mjf}. 

i=0 j=0 

By the same computation as in the proof of Theorem 5 and using conditions (22) we 
now obtain 

m+1 
£ Ij = -M/a. 
i=o 

So it follows that J4(/) - J4(s) = J4(/ - s) ^ 0, which proves the lemma. • 
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Theorem 6. The functional J±(f) attains its minimum on VV2
22(fi) for some bi

quadratic spline sa(x,y) G S(Axy). Its derivatives s\°, i G 1, j G J, are defined 

uniquely. 

P r o o f , a) The linear space S(Axy) has the tensor product basis s10: 

(p(x)h(y), (f(x)hj(y), ^>i(x)h(y), <pi(x)hj(y), iel,j G J, 

where h(y), hj(y) are the F-fundamental splines on the mesh (Ay) and (p(x), (fi(x) 

are the Sa-fundamental splines on the mesh (Ax) with the parameters Wi = Ui. It 

is easy to verify that the spline 

n+ l 

(24) sa(x,y) = m01h(y) + ^ m11ifi(x)h(y) + 
i=0 

m-\-l n + l m+1 

+ E <hi (y) + E E <<Pi(x)hj (y) 
j=0 i=0 j=0 

fulfils the conditions (22) for arbitrary values moo, mid> moj ^ R-

b) Suppose that in addition to the spline (24) there exists another biquadratic 

spline s(x,y) G S(Axy) with D10si(xk,yi) ?- D10sa(xk,yi) for certain indices k, I 

which minimizes J±(f). It can be also expressed in terms of the basis s10 with some 

coefficients n°o, n1^, n0,0, n\° as 

n + l m+1 n + l m+1 

s(x,y) = n^hiy) + E n\^i(x)h(y) + E "%}hj(y) + E E «« V . ^ n ^ y ) . 
i=0 j=0 i=0 j=0 

For certain indices p, q, n10 ^ m10 and we obtain a contradiction because the 

condition (22) cannot be fulfilled for the spline s(x,y) at the knot (xp,yq). • 

A spline sa(x,y) G S(Axy) from the last theorem is called a smoothing biquadratic 

spline for the partial derivatives with respect to the x-variable. 

From (24) we obtain 

n+ l 

Ð10вв(a;,УJ) = E m ť ° . И . J Є J . 
i=0 

This formula shows how to compute the values s\° of the smoothing spline because for 

a fixed j the expression on the right-hand side is the derivative of a one-dimensional 

smoothing spline on the mesh (Ax) which smoothes the first derivatives mf

{ = m 1 0 , 

i G X. Compare with (12). 
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Algorithm 3. 
1° Compute s\j = s[, i G X, from the system of linear equations (10) where Wi = Vi, 

m'i = m\j and pi = a/(xi+i — Xi), i G X, on each horizontal line y = yj, j G J. 

The values s\®, i G X, j G J, do not determine the smoothing spline uniquely, 
therefore we must give other n + m + 5 suitable parameters. If we prescribe the 
values (19) we can use Algorithm 2 for the subsequent computation. 

6 . INTERPOLATION AND SMOOTHING OF THE MIXED DERIVATIVES 

6.1 Formulation and solution of the problem. Let us have values m\j, i G X, 
j G J. We search for a spline s(x,y) G S(Axy) such that 

(25) s}}=m%,i€lj€j. 

For uniqueness we must prescribe other n + m + 5 parameters, for example 

(26) s°£=mZ s}° = m™, s°0
1
j=m°0

1
j, i€l,j€j. 

Theorem 7. There exists a unique solution s(x, y) G S(Axy) of the problem (25), 
(26). 

The proof is analogous to that of Theorem 4 or Theorem 3. The spline which 
solves the problem (25), (26) can be written by means of the tensor product basis 
f11 as 

n + l m + 1 n+1 m+1 

s(x,y) = m°° + 5>ib°/.í>) + £ mgj/^y) + ̂  E <Mx)fM 
j=0 i=0 j=0 i=0 

where fi(x) and fj(y) are the Df-fundamental splines on the mesh (Ax) and (Ay), 
respectively. From this formula we have 

(27) 

m + 1 

Dl0s(xi,y) = m\Q
d+Y™ljfj(y), i e l , 

n + l 

D01s(x,yj)=mSL
j + ÝrnijMxh J^J, 

i=0 
n + l 

s(x,y0) = mgg + ^mj0°fi(:r), 
i=0 

m+1 

s(xi,y) = 5?o°+Es°i/i(žl)' i G l -
3=0 
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Prom the formulas (27) we obtain the following algorithm for the computation of 
the values s^, s\f, s^j, i G X, j G J, by means of similar argument as Algorithm 1 
was obtained. 

Algorithm 4. 
1° Compute s\f, j G J, from the values m\§, m\j, j e J, on the vertical lines 

X — X{, 2 c X ) 

2° compute s®}, i G X, from the values ra^], m\j, i e X, on the horizontal lines 

y = yjj $J\ 
3° compute s^,i G X, from the values moo, m\o >z € ^ » o n ^ e horizontal line y = yo; 
4° compute s°°, j € J, from the values S?Q, 5?j » J" € 3-> o n ^ e vertical lines x = x{, 

i ex. 

6.2 Extremal properties. Let us have rectangle ft, = [a, b] x [c, d] with a mesh 
(Axy), prescribed values of the mixed derivative m\j and parameters U{ > 0, Vj > 0, 
i eX, j e J, a > 0. Introduce the set of functions 

V2 = {/ e W f t f t ) ; ! ) 1 1 / ^ ) = mj/.i € l,j € j } 

and the functional 

Mf)= í Í [£>22/(a;,г/)]2d2/dx 
Ja J c 

1 ґ n"^"i f ^ m ~ H /»Ь N 

+ І 1 I > / [Dl2f(xuy)ľdy+ £ > / [-521/(*,Уi)]2dxL 
t = 0 " c j = 0 

The parameter a could be included into the parameters U{, Vj at the integrals. 
We write it separately because it is suitable for the construction of the smoothing 
spline. 

Theorem 8. The minimal value of Js(/) on the set V2 is attained for every 
biquadratic spline s(x,y) G S(Axy) with s\j = m\j, i eX, j G J. 

The proof is analogous to that of Theorem 5, only some adjustments must be 
done in both variables. The spline from this theorem is again not unique; we must 
prescribe other parameters for its unique determination, for example (26). 

6.3 Smoothing spline. This section is analogous to Section 5.3, similar con
structions are also done for bicubic splines in [ZKM80], [EMM89]. Now we are using 
notation from Section 6.2 and further denote 

n + l m-fl 

Mf) = a2J5(f) + Y, E Wj[Dnf{xi,Vj) ~ m\]\2. 
t=0 j-0 
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Lemma 3 . The spline s(x,y) G S(Axy) minimizes Je(f) on W| 2 (^ ) # a n d only 

if 

(28) s\] + oPdijKmVj) = m\], i el, j € J, 

where 

dij = [[D22s(x,y)]^]y
y
j- + ±{ui[D12s(xi,y)]y

y>- + vj[D*18{x,yj)]*x\+} 

and D12(xi,y0-) = D12(xi,ym+i+) = D2ls(x0-,yj) = D21s(xn+1,yj) = 0. 

This lemma can be used to prove the following theorem. 

Theorem 9. The functional J&(f) attains its minimum on W22(fl) for some bi

quadratic spline sa(x,y) G S(Axy). Its mixed derivatives s}j, i G X, j G J, are 

defined uniquely. 

A spline from Theorem 9 is called a smoothing spline for the mixed derivatives 

and can be expressed in terms of the tensor product basis s11 as 

n+l m+1 n+1 m+1 

sa(x,y) = mgg + ^ m\oVi(x) + ^ m^1
j(pj(y) + ^ ] C mijVi(z)</>j(y) 

t=o j=o t=o j=o 

with arbitrary m ^ m ^ r a o } G R where <fi(x) and <Pj(y) are the Sa-fundamental 
splines on the mesh (Ax) with parameters Wi = m and on the mesh (Ay) with the 
parameters Wj = Vj, respectively . This formula gives 

n + l m+1 

i?11*a(.5,l/) = £ £ m } i V . ( * ) v J ( v ) . 
t=0 j = 0 

If we denote 
n+ l 

(29) s'j(x) = Y,™\]v'i(x), JEJ, 
t=0 

then the mixed derivatives of the spline sa(x, y) on the lines x = Xi can be rewritten 
in the form 

m+1 

(30) Dnsa(xi,y) = Y, sfaiWjiy), % € X. 
3=0 

The formula (29) can be interpreted for fixed j as the derivative of a one-dimensional 
smoothing quadratic spline which smoothes the first derivatives m\ = m\j, i G X on 
the mesh (Ax), see (12). Similarly, the formula (30) can be interpreted for fixed i as 
the derivative of a quadratic spline which smoothes the first derivatives m'j = sfj(xi), 
j G J, on the mesh (Ay). 
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Algorithm 5. 

1° Compute Sj(xi) = s'{, i G X, from the system of linear equations (10) where 

Wi = Ui, m'{ = m\j and pi = a/(xi+\ - Xi), i G X, on each horizontal line y = t/j, 

3 e J; 

2° compute s\j = s'-, j G J, from the system of linear equations (10) where Wj = Vj, 
m'j = s'j(xi) and pj = a/(yj+i - yj), j G J, on each horizontal line x = Xi, i G X. 

The values s\j, i G X, j G J, do not determine the smoothing spline uniquely, 

therefore we must give other m + n + 5 suitable parameters. If we prescribe the 

parameters (26) we can use Algorithm 4 for the subsequent computation. 

7. EXAMPLES 

We interpolate the function 

f(x,y)=esinxsiny on ft = [0,5] x [0,5] 

with the mesh of equidistant knots (Axy) = {(5i/7,5j/7), i = 0(1)7, j = 0(1)7}. All 
parameters for the computations are taken exactly from the function or its derivatives 
except for the example drawn in Figure 5. In this figure the biquadratic spline is 
constructed by means of Algorithm 4 but the necessary derivatives were computed 
by formulas for the numerical derivative from the function values. 

Figure 2 - graph of the function f{x,y); 

1 2 3 4 5 

Figure 3 - isolines of the function f(x, y); 
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Figure 4 - interpolation of the function 
values (Alg. 1); 

Figure 5- - interpolation of the values of 
the mixed derivative (Alg. 4) given by 
formulas of the numerical derivative from 
the function values; 

Figure 6 - interpolation of the values of 
the partial derivative with respect to the 
x-variable (Alg. 2); 

Figure 7 - smoothing spline for the values 
of the partial derivative (Alg. 3), V{ = 1, 
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Figure 8 - interpolation of the values of 
the mixed derivative (Alg. 4); 

v- = 1, a = 0.2. 

Figure 9 - smoothing spline for the val
ues of the mixed derivative (Alg. 5), U{ = 

Differences between the isolines are 0.2. 
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