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JAN ČERNÝ, Jindřichův Hradec 
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Summary. The paper studies the bus-journey graphs in the case when they are piecewise 
expanding and contracting (if described by fathers-sons relations starting with the greatest 
independent set of nodes). This approach can make it possible to solve the minimization 
problem of the total service time of crews. 

Keywords: bus scheduling, crew scheduling, journey, graph, independent set, expanding 
graph, contracting graph 
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INTRODUCTION 

Let a bus time-table be given, that means, we have a set of bus journeys V with 
the elements of the form v = (ov,dv,tv,av), where ov is the original (i.e. the initial 
station of v), dv is the destination of v, tv is the time of departure of v from ov 

and av is the time of arrival of v into dv. Moreover, let mVjW be the time which is 
necessary for a bus to get ready for to start the service on the journey w in ow after 
having finished the service on the journey v in the point dv. Let us define the graph 
G -= (V, H) where (v,w) E H if and only if av + mvw ^ tw, and let us call it the 
bus-journey graph. Hence any oriented path on G represents a schedule of a bus, i.e. 
a sequence of journeys realized by the same vehicle. This implies that the minimum 
number of paths covering the vertex set V represents the minimum necessary number 
of buses. Moreover, in the case of a strong assignment of drivers to buses (which is 
usual e.g. for any Czech bus company) a path represents a drivers' piece of work, 
which implies that the minimum sum of path lengths is equivalent to the minimum 
total service time of drivers. 
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It is not a new idea to utilize independent sets of journey graphs in bus scheduling. 
We can mention e.g. [1, 4, 6, 7]. In [7] maximum independent sets were used for a 
decomposition of the problem, in [4] cardinality of a maximum independent set is 
used as an objective function and in [1] it is used in order to accelerate the algorithm. 
The purpose of this paper is to discuss the role of independent sets in the case of 
piecewise expanding and contracting multipartite graphs. This approach may be 
used in minimization of the total length of covering paths and thus in minimization 
of the total service times of crews. 

1. Preliminary. Throughout the whole paper we will suppose we are given a 
finite non-empty directed transitive graph G = (V,H) without loops and cycles. V 
is the set of nodes, H is the set of arcs. 

We note that the property of transitivity means that h\ = (w,u) G H and /12 = 
(u, v) G H implies h% = (w, v) G H. 

If M is an arbitrary set, then \M\ denotes the number of elements in M. 

2. Definition. If (w, v) G H then w is called the predecessor of v and v is called 
the successor of w. If there exists no u G V, w ^ u ^ v (w, u) G H, (u, v) G H, then 
w is called the father (or the immediate predecessor) of v, and v is called the son 

(or the immediate successor) of w. 

3. Definition. A subset W of V is called independent, if for arbitrary two nodes 
w,v G W we have (w,v) £ H. 

An independent set W is called maximum if it is not a proper subset of any 

independent set. W is called the greatest if there exists no independent set U with 

\u\ > \w\. 
4. Definition. Let W -= {VVjfc: k = 1 , . . . , n} be a partition of the node set V, 

let each Wk from W be an independent set. Then W is called an N-partition on G. 

5. Definition. Let W be independent and for v G V let us have 
(i) v is a son of some w G W, 
(ii) if v is a successor of some y G W, then v is a son of y. 

Then we say that v immediately succeeds W. We denote by b(W) the set of all 
v G V immediately succeeding W. 

If we put "precede" instead of "succeed" and "father" instead of "son", we get 
the definition of v G V immediately preceding W. The set of all v G V immediately 
succeeding W is denoted by b(W), the set of all v G V immediately preceding W is 
denoted by 6_i(JV). Moreover, we denote 

b&)(W) = W, b^(W) = b(W), b{k)(W) = 6(6<fc-1)(Wr)), 

b(-D(jV) = &-i(VV), b(-fc)(VV) = b_x (b(~k+lHW)), k=l,2,.... 
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BASIC PROPERTIES OF INDEPENDENCE 

6. Lemma. Let W be an independent node set in G. Then 

1. b(W) and b-i(W) are independent. 

2.IfW is maximum, then W is non-empty. 

P r o o f . 1. Indirectly, suppose there exist v, x € b(W), (v,x) G H. Then there 

exists w G W, (w,v) G H and hence x is a successor but not a son of w, which 

contradicts (ii) from Definition 5. The proof for b-i(W) is similar. 

2. Since G is without loops, for any v G V the set {v} is independent and thus 

any maximum independent set must be non-empty. • 

7. R e m a r k . If W is a maximum independent set, then b(W) and 6_i (W) need 

not be maximum as one can see from the graph 

w —> v 

y -> x. 

For W = {w,x} we have b(W) = {v}, b-X(W) = {y} but e.g. b(W) U {y} and 

&_i(JV) U {w} are independent. 

8. Lemma. Let W be a maximum independent node set in G and let m, n be 

non-negative integers, b^(W) # 0, b(n+1)(PV) = 0, b^m\W) # 0, b^m'x\W) = 0. 

Then B(W) = {b^(w): k = -m,..., n} is an N-partition ofV in G. 

P r o o f . It follows from Lemma 6 that all b^(W) are independent and the 
transitivity of G implies they are mutually disjoint. It remains to prove that their 
sum equals V. Indirectly: suppose 

vЄV- Џ b^(W). 
fc= — m 

Since W is maximum there exists w G W such that (w,v) G H of (v,w) G H 

and because of the finiteness of G there must exist k G {—m,...,n} such that 

v G bW(W), which gives a contradiction. • 

9. Definition. Let C = {ci,..., cr} be a set of chains in G such that any v G V 

belongs to at least one c G C. Then we say that C is a covering of the graph G or 

that C covers G. Denote by C(G) the class of all sets C covering G and by K(G) 

the minimum of cardinalities of the covering sets C. 

If C covers G but no C — {ck} covers G than C is called a minimum covering 
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of G. If C covers G and \C\ = K,(g) then C is called the smallest covering of G (it is 
obvious that the smallest covering is the minimum covering as well). 

A covering C of G is called an exact covering if each v G V is incident to exactly 
one c € C. 

10. R e m a r k . Since G is transitive, from every non-exact covering C of G it is 
possible to construct (at least 2) exact coverings of G in such a way that any v G V is 
left in one c E C and dropped from the others. Hence any consideration of coverings 
can be limited to exact coverings. 

11. Lemma. Let W be the greatest independent node set on G. Let G' = 
(V', H') be a bipartite subgraph ofG such that the first part ofV is W, the second 
is b(W) and (w,v) G H iff w is the father of v. Then in G' there exists a matching 

M, \M\ = \b(W)\. 

P r o o f . Obviously |VV| ^ |b(VV)|. Let M be the greatest matching on G'. Go 
ahead indirectly: let |M| < |b(VV)| which implies that there exist non-empty sets X in 
b(W) and Y in W not incident to M. Let us define a new graph G" = (V, H") where 
H" contains the arcs from M and the reversed arcs (with the opposite directions) 
from H' — M. Because M is maximum, there exists no chain from X to Y on G". 
Let x G K, let us denote by R(x) C W and S(x) C b(VV) the sets of vertices which 
are reachable from x in G". Obviously 

1. R(x) H Y — 0 (if not, M could not be maximum). 

2. S(x) fl X = 0 (the opposite contradicts the definition of X). 

3. \R{x)\ = \S(x)\. 

4. U = [W-R(x)]uS(x)U{x} is an independent set on G (if not, then there would 
exist an arc with the initial vertex in W — R(x) and the end vertex in S(x) U {x}, 
which contradicts the definitions of x and S(x)). 

5. |U| = |Vjj|-f-i5 which contradicts the maximality of W. Then proofs is complete. 
D 

12. Lemma. Let W be an independent node set on G. let G' = (V',H') be a 

bipartite graph defined similarly as in Lemma 11. Let there exist a matching M on 

G' with \M\ = |b(VV)|. Then W is the greatest independent node set on G'. 

P r o o f . Let U be an independent node set on G1', let us denote Uo = UDTV, Ui = 
U H b(W). For each u G Ui there exists w(u) G W = Uo such that (w(u), u) G M. 

Let us denote U2 = {w(u): ue Ui}. Obviously |U| = |Uo| + |Ui| = |Uo| + |^2 | ^ \W\. 

Thus W is the greatest, q.e.d. • 
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13. Theorem. Let W be an independent node set on G, let G' = (V,H') be 
a bipartite graph with the partition ofV into W and b(W) and let (w,v) E H' o> 
w e W, v e b(W), (w,v) G H. Then W is the greatest independent node set in G' 
iff (i.e. if and only if) there exists matching M on G' with \M\ = \b(W)\. 

P r o o f is an immediate consequence of Lemmas 11 and 12. • 

EXPANSION AND CONTRADICTION 

14. Definition. Let n > 1 and let W = {Wk: k = 1 , . . . ,n} be a sequence 
of mutually disjoint subsets of the node set V of G. For each k = 1, . . . , n let 
Gk = (Vk,Hk) be a bipartite graphs for which Vk = Wk U Wk+i, Hk = {(w,v)H: 

w G Wk, v G VVM-i} holds. If {Wk: k = 1 , . . . ,n} is not increasing and if for each 
k = 1, . . . , n there exists a matching Mk on Gk such that \Mk\ = \b(Wk+i)\ then we 
say that W is a contracting sequence. 

If W ' = {Wn-k+i: k = 1 , . . . ,n} is a contracting sequence, then the sequence 
W = {Wk: k = l , . . . , n } is called an expanding sequence. 

15. Lemma. In the graph G let there exist an independent node set W and 
n 

an integer n > 0 such that V = IJ b^(W) and the sequence W = {b^(W): 
k=0 

k = 0 , . . . , n} is contracting. Then W is the greatest independent node set in G. 

P r o o f . Let U be an independent node set in G. Let us denote Uk = Unb^ (W), 
k = 0, . . . , n. Further, for each k = 1, . . . , n and each subset Y of bk(W) let us 
denote 

ak(Y) = {x G tik-l\W): ex. y G Y,(x,y) G Mk-i} 

where Mk-i is a matching in the bipartite subgraph Gk-i, |M/c-i| = |6^(VV)| (their 
existence follows from the properties of contradiction). Now, let us denote Q0 = 
U, Qi = ai(Ui), Q2 = ai(a2(U2)), •.., Qn = a1(a2(.. .an(Un)...)). Obviously 
Qk n Qj = 0 for i + j (otherwise U would not be independent), \Qk\ = |U/c|, k = 0, 
..., n and thus 

£\Uk\ = £\Qk\^\W\. 
k=0 k=0 

Since U was arbitrary, W is the greatest, q.e.d. D 

16. Lemma. In a graph G let there exist an independent node set W and an 
integer n > 0 fulfilling the conditions of Lemma 15. Let Gk be the corresponding 
bipartite graphs (Def. 14) and let Mk be the maximum matching on Gk, k = 0, . . . , 
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n - 1. Let k G {1, . . . , n} , v G b(fc)(VV). Then we denote by ak(v) that element of 
b(*-i)(VV) for which (ak(v),v) G Mk-i. Let C be a set containing the following 
chains on G: 

n) (a1(...an(v).. .),a2(.. .an(v)...),..., an(v),v) for each v G 6(n)(VV), 
n - 1) ( a i ( . . . a n _ i ( v ) . . . ) , a 2 ( . . . a n _ i ( t ; ) . . . ) , . . . , a n _ i ( i ; ) , v ) V v G b(n-1)(w) -

an(6(n)(VV)), 

1) (ai(v),v) for each v G 6(VV) - a2(6
(2)(VV) - a2(a3(b (3 )(lV))) - . . . -

a2(...an(b^(W)...))), 
0) (v)V*;G W - a ^ b O V J - a ^ 

Then C is the smallest covering ofG. 

P r o o f . It follows from the construction that C is an exact covering of G, 
|C| = |VV|. Since an independent set W cannot be covered by a smaller number of 
chains that |VV| the proof is complete. • 

17. R e m a r k . By virtue of the symmetric relation between contracting and 
expanding sequences (Def. 14), Lemma 15 and 16 remain valid if we replace "6(fc)" by 
"6 (_ fc )", "contracting" by "expanding" and the definition of C is properly adjusted. 

This procedure of covering can be easily extended to graphs G with the node set 

n 

V= (J bW(W) 
k=—m 

where W is an independent set, {6(fc) (VV): k = 0 , . . . , n} is contracting and {6(fc) (W): 
k = — m , . . . , 0} is expanding (the chains "to the left" are concatenated with those 
"to the right"). 

18. R e m a r k . The case when {6(fc): k = - m , . . . , 0} is contracting and 
{b(fc)(VV): k = 0 , . . . ,n} is expanding is much more complicated. The main reason 
is the following: If we apply the construction of C (from Lemma 16) to {6(fc)(VV): 
k = - m , . . . , n} which is contracting and afterwards to the expanding part {6(fc)(VV): 
k = 0 , . . . , n } , the concatenation is easy only in the case of chains terminating and 
starting in W = b(0)(VV). We cannot be sure we can connect chains, terminating in 
some b(fc)(JV), k < 0 with another one starting in 6(/c)(VV), k > 0, e.g. in the graph 

i 1 ~yi 

wi • U i , • y2 

I 
w2 1 

I *~u2 * - 1 / 3 

w3  
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We can see that W = {^i,u2}, b^~^(W) = {^1^2 ,^3} , b(W) = {2/1,2/2,2/3} 
{b(~V(W),W} is contracting, {VV,b(TV)} is expanding. Both the "left" and "right" 
parts can be covered by 3 chains—e.g. 

"left": (wi,ui), (iu2), (i/I3, u2), 

"right": (ui,2/i), (3/2), (^2,2/3), 
but for the covering of the whole graph G we need at least 4 chains. Naturally, 

the greatest independent node set is not {^1,^2,^3}, but {^2,^3,2/1,2/2}-
If we add the arcs (w2,u\), (w2,yi) and (w2,y2) to the previous graph, we obtain 

another example: The "left" covering (w\,u\), (w2,u2), (W3) can not be concate
nated with the "right" one (^i,2/2), (^2,2/3), (Vi)- On the another hand, "left" 
(iDi,ui), (w2), (w3,^2) with the "right" (^1,2/1), (2/2), (^2,2/3) can be concatenated 
t o (tDi, 1x1,2/1), (^2,2/2), (^3,^2,2/3)-

Hence the method of "contracting-expanding concatenation" is only heuristic (in 

contrast to the "expanding-contracting" case, when it is exact), which is, of course, 

much faster than the exact solution. Thus it is possible first to try the heuristic 

approach; if \C\ = max{|6(tV)|: k = —m, . . . , n}, the result C is optimal. 
If it is not true, one can use the general exact method. All these considerations lead 

to the case when V possesses a piecewise contracting and expanding decomposition. 
It is based on the following lemma. 

19. Lemma. Let W be a maximum independent node set in G. Then there exist 

integers m ^ 0, n ^ 0 such that 

V= (J b^(W). 
k= — m 

P r o o f . First, let us define 

V0= (J b^(W). 
k= — oo 

If v e V - Vo, then W U {v} is independent, which contradicts the maximality of W. 
Hence V = Vo. Since G is finite, m and n must exist, q.e.d. • 

20. Construction of a minimum exact covering of G. 
1st phase: Find the greatest independent node set in G. (This is a well-known 

problem, described e.g. in [6].) 
2nd phase: Find the numbers m, n from Lemma 19. 
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3rd phase: Divide the index set {—m,..., n} into the parts 

-™> = i o , . . . ? I i ; i i , . . . , J 2 ; . . . ; j 2 r - i , . . . , J 2 r = n 

such that for i - 1 , . . . , r, VV2;_i = {6(/c)(VV): k = J2(i—I)J • • • ,J2i-i} is expanding and 

TV2i = {6* (TV): k == J2t-i, • • •, J2i} is contracting. The existence of such numbers is 

a consequence of Lemma 11. (One can start with the greatest independent node set 

W and proceed to the left till it is expanding and to the right till it is contracting. 

Afterwards one can remove the just "elaborated" part of G and in the remainder 

find again the greatest independent node set, etc.) 

4th phase: For the subgraphs defined by the node sets 

Vi= [ J &<*>(W0, i = l , . . . , r 
k=J2(.-l) 

find exact coverings (following Lemma 16). 

5th phase: For the subgraphs defined by the node sets 

J2. + 1 

Vi>= ( J 6<*>(W), . = l , . . . . r - l 
fc=J2.-l 

find a minimum covering by concatenating the parts of chains constructed in the 4th 

phase, incident with Vi (The solution is reached by the maximum matching of the 

bipartite graph constructed from the ends of chains from the left and the starts of 

chains to the right). 

If all subgraphs possess a covering C{ with |C7*| > |VV|, proceed to the 6th phase. 

6th phase: Kill the parts of chains incident with Vi and solve the covering d of 

Vi> exactly (as described e.g. in [6]). We certainly obtain \d\ ^ \W\ (as proved e.g. 

in [6]). 

7th phase: Write down the resulting chains for the whole G by concatenating 

the previous results. 

21. R e m a r k . One can say (right by) that the general exact method, used (if 

necessary) in the 6th phase could be used immediately at the beginning and thus 

the method 20 may seem inutile. It may seem so but it is not! 
The first merit of the method is in the fact that it solves not only the "global" 

problem of the minimum covering (i.e. of the minimum number of buses), but also 
the problem of local minima (i.e. the minimum number of buses in some time period 
which makes it possible to minimize the service times for crews). 

Moreover, the method prefers connecting fathers with sons in chains, which makes 
the structure of G more lucid (and in practice the pieces of work more effective). 
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