## Applications of Mathematics

## Ivan Hlaváček

Weight minimization of elastic plates using Reissner-Mindlin model and mixed-interpolated elements

Applications of Mathematics, Vol. 41 (1996), No. 2, 107-121
Persistent URL: http://dml.cz/dmlcz/134316

## Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

# WEIGHT MINIMIZATION OF ELASTIC PLATES USING REISSNER-MINDLIN MODEL AND MIXED-INTERPOLATED ELEMENTS 

Ivan Hlaváček, Praha

(Received July 8, 1994)

Summary. The problem to find an optimal thickness of the plate in a set of bounded Lipschitz continuous functions is considered. Mean values of the intensity of shear stresses must not exceed a given value. Using a penalty method and finite element spaces with interpolation to overcome the "locking" effect, an approximate optimization problem is proposed. We prove its solvability and present some convergence analysis.

Keywords: Reissner-Mindlin plate model, mixed-interpolated elements, weight minimization, penalty method

AMS classification: 49A22, 65N30, 73K40

## Introduction

We consider a weight minimization problem for an elastic plate, the bending of which is described by means of the Reissner-Mindlin model. The constraints are given in terms of the intensity of shear stresses. The role of design variable is played by the function of thickness, belonging to a class of Lipschitz-continuous functions.

We consider two cases of boundary conditions, namely those for (i) hard clamped or (ii) hard simply supported edges of the plate. The finite element method proposed by Brezzi, Fortin, Bathe and Stenberg (see [3] and the literature therein) was extended to plates of variable thickness in a recent paper [1]. Here we employ penalty method and some results of [1] to introduce an approximate optimal design problem, to prove its solvability and to present some convergence analysis. The existence of an optimal thickness function for the weight minimization problem is proved, as well.

## 1. Setting of the optimal design problem

Throughout the paper we consider an elastic homogeneous anisotropic plate, which occupies a domain $\Omega \times\left(-t\left(x_{1}, x_{2}\right), t\left(x_{1}, x_{2}\right)\right)$, where $\Omega$ is a bounded, simply connected domain in $\mathbb{R}^{2}$ with a polygonal boundary $\partial \Omega$ and $t$ belongs to the set

$$
\begin{aligned}
\mathscr{U}_{a d}= & \left\{t \in C^{(0), 1}(\bar{\Omega}) \text { (i.e., Lipschitz functions) } \mid\right. \\
& \left.t_{\min } \leqslant t\left(x_{1}, x_{2}\right) \leqslant t_{\max },\left|\partial t / \partial x_{i}\right| \leqslant C_{i}, i=1,2\right\} .
\end{aligned}
$$

Here $t_{\min }, t_{\max }, C_{1}, C_{2}$ are given positive constants, $t_{\min }<t_{\max }$.
Let the transverse displacement $w$ (deflection) of the midplane belong to $H_{0}^{1}(\Omega)$ and let the rotation vector $\beta$ of fibers normal to the midplane belong either (i) to $\left[H_{0}^{1}(\Omega)\right]^{2}$ for hard clamped plate or (ii) to $V=\left\{\beta \in\left[H^{1}(\Omega)\right]^{2} \mid \beta \cdot \tau=0\right.$ on $\left.\partial \Omega\right\}$ for hard simply supported plate. Here $\tau$ is the unit vector tangential to the boundary.

The components of the small strain tensor are

$$
\begin{aligned}
e_{\alpha \beta} & =-x_{3} \frac{1}{2}\left(\frac{\partial \beta_{\alpha}}{\partial x_{\beta}}+\frac{\partial \beta_{\beta}}{\partial x_{\alpha}}\right), \quad \alpha, \beta=1,2 \\
e_{\alpha 3} & =\frac{1}{2}\left(\frac{\partial w}{\partial x_{\alpha}}-\beta_{\alpha}\right), \quad \alpha=1,2, e_{33}=0 .
\end{aligned}
$$

Henceforth, we use Greek subscripts within the range $\{1,2\}$ and the summation convention for repeated subscripts.

The following stress-strain relations are considered

$$
\begin{align*}
\sigma_{\alpha \beta} & =c_{\alpha \beta \gamma \delta} e_{\gamma \delta}  \tag{1.1}\\
\sigma_{\alpha 3} & =\mathscr{E}_{\alpha \beta} e_{\beta 3}
\end{align*}
$$

where the coefficients $c_{\alpha \beta \gamma \delta}, \mathscr{E}_{\alpha \beta}$ are constant,

$$
\begin{align*}
& c_{\alpha \beta \gamma \delta}=c_{\gamma \delta \alpha \beta}=c_{\beta \alpha \gamma \delta}  \tag{1.2}\\
& c_{\alpha \beta \gamma \delta} \tau_{\alpha \beta} \tau_{\gamma \delta} \geqslant c_{0} \tau_{\alpha \beta} \tau_{\alpha \beta}
\end{align*}
$$

holds for all symmetric matrices $\left(\tau_{\alpha \beta}\right)$ with some positive $c_{0} ; \mathscr{E}$ is a diagonal matrix with positive entries.

Assume that body forces are zero and an external surface load $\boldsymbol{f}=(0,0, f)^{\mathrm{T}}$ acts on the upper surface $x_{3}=t\left(x_{1}, x_{2}\right)$.

The total potential energy is

$$
\begin{equation*}
\Pi(\beta, w)=\frac{1}{2} \tilde{a}(t ; \beta, \beta)+\frac{1}{2} t[\nabla w-\beta, \nabla w-\beta]-(f, w), \tag{1.3}
\end{equation*}
$$

where

$$
\begin{align*}
\tilde{a}(t ; \beta, \eta) & =\frac{2}{3} \int_{\Omega} t^{3} c_{\alpha \beta \gamma \delta}\left(\partial \beta_{\alpha} / \partial x_{\beta}\right)\left(\partial \eta_{\gamma} / \partial x_{\delta}\right) \mathrm{d} x  \tag{1.4}\\
t[u, v] & =\int_{\Omega} t(\mathscr{E} u)^{\mathrm{T}} v \mathrm{~d} x \\
(f, w) & =\int_{\Omega} f w \mathrm{~d} x
\end{align*}
$$

The latter brackets will be used also for vector-functions from $\left[L^{2}(\Omega)\right]^{2}$, so that ${ }_{t}[u, v] \equiv(t \mathscr{E} u, v)$.

Let a specific weight $\omega=$ const be given. Then one half of the weight of the plate is

$$
j(t)=\int_{\Omega} t \omega \mathrm{~d} x .
$$

The optimal design will be constrained as follows. We choose the second invariant of the stress tensor deviator (intensity of shear stresses)

$$
I_{2}=\sigma_{11}^{2}+\sigma_{22}^{2}-\sigma_{11} \sigma_{22}+3\left(\sigma_{12}^{2}+\sigma_{13}^{2}+\sigma_{23}^{2}\right)
$$

at the extreme fibers $\left(x_{3}= \pm t\right)$ of the plate or at the midplane $\left(x_{3}=0\right)$ to play the decisive role. Inserting the relations (1.1) and realizing that $\sigma_{\alpha 3}=0$ for $x_{3}= \pm t$ by symmetry of stress tensor and $\sigma_{\alpha \beta}=0$ for $x_{3}=0$, we obtain

$$
\begin{align*}
& I_{2}=t^{2} I_{21}(\nabla \beta) \quad \text { for } x_{3}= \pm t  \tag{1.5}\\
& I_{2}=I_{22}(\nabla w-\beta) \quad \text { for } x_{3}=0
\end{align*}
$$

where $I_{21}, I_{22}$ are homogeneous quadratic forms, namely

$$
\begin{align*}
I_{21}(\nabla \beta) & =\left(c_{11 \gamma \delta} \partial \beta_{\gamma} / \partial x_{\delta}\right)^{2}+\ldots+3\left(c_{12 \gamma \delta} \partial \beta_{\gamma} / \partial x_{\delta}\right)^{2}  \tag{1.6}\\
I_{22}(\nabla w-\beta) & =\frac{3}{4}\left\{\left(\mathscr{E}_{1 \gamma}\left(\partial w / \partial x_{\gamma}-\beta_{\gamma}\right)\right)^{2}+\left(\mathscr{E}_{2 \gamma}\left(\partial w / \partial x_{\gamma}-\beta_{\gamma}\right)\right)^{2}\right\} .
\end{align*}
$$

Let us define functions

$$
\begin{aligned}
& \psi_{K}(\beta, w)=\left(\operatorname{meas} \Delta_{K}\right)^{-1} \int_{\Delta_{K}} t^{2} I_{21}(\nabla \beta) \mathrm{d} x-\sigma_{d}^{2}, \quad K=1, \ldots, s \\
& \psi_{K}(\beta, w)=\left(\operatorname{meas} \Delta_{K}\right)^{-1} \int_{\Delta_{K}} I_{22}(\nabla w-\beta) \mathrm{d} x-\tau_{d}^{2}, \quad K=s+1, \ldots, \bar{K}<+\infty
\end{aligned}
$$

where $\Delta_{K} \subset \bar{\Omega}$ are given subdomains and $\sigma_{d}, \tau_{d}$ are given constants.

We define the constraints

$$
\begin{equation*}
\psi_{K}(\beta, w) \leqslant 0, \quad K=1, \ldots, \bar{K} \tag{1.7}
\end{equation*}
$$

and the set of statically admissible design variables

$$
S_{a d}=\left\{t \in \mathscr{U}_{a d} \mid \sum_{K=1}^{\bar{K}}\left[\psi_{K}(\beta(t), w(t))\right]^{+}=0\right\}
$$

where $\{\beta(t), w(t)\}$ is the minimizer of the potential energy $\Pi(t ; \beta, w)$ over (i) $\left[H_{0}^{1}(\Omega)\right]^{2} \times H_{0}^{1}(\Omega)$ or (ii) $V \times H_{0}^{1}(\Omega)$. We shall consider the following Optimal Design Problem:

$$
\begin{equation*}
t_{0}=\underset{t \in S_{a d}}{\arg \min } j(t) . \tag{1.8}
\end{equation*}
$$

## 2. EXISTENCE OF AN OPTIMAL THICKNESS FUNCTION

The solvability of the Optimal Design Problem (1.8) will be proved by means of a penalty method. To this end, we introduce a penalized cost functional

$$
\mathscr{J}_{\varepsilon}(t ; \beta(t), w(t))=j(t)+\varepsilon^{-1} \sum_{K=1}^{\bar{K}}\left[\psi_{K}(\beta(t), w(t))\right]^{+}
$$

where $\varepsilon>0$ is an arbitrary parameter. Then we define the following penalized optimal design problem

$$
\begin{equation*}
t_{\varepsilon}=\underset{t \in \mathscr{U}_{a d}}{\arg \min } \mathscr{J}_{\varepsilon}(t ; \beta(t), w(t)) \tag{2.1}
\end{equation*}
$$

To prove the solvability of the problem (2.1) we shall need a continuous dependence of the solution $\{\beta(t), w(t)\}$ on the function $t$. The standard norms and seminorms in $H^{k}(\Omega)$ will be denoted by $\|\cdot\|_{k}$ and $|\cdot|_{k}$, respectively, $k=1,2$.

Proposition 2.1. Let $t_{n} \rightarrow t$ in $C(\bar{\Omega})$, as $n \rightarrow \infty, t_{n} \in \mathscr{U}_{a d}$. Then

$$
\left\|\beta\left(t_{n}\right)-\beta(t)\right\|_{1}+\left|w\left(t_{n}\right)-w(t)\right|_{1} \rightarrow 0 .
$$

Proof. For brevity, let us denote $U \equiv\{\beta, w\}, Z \equiv\{\eta, \zeta\}, \beta_{n}=\beta\left(t_{n}\right), w_{n}=$ $w\left(t_{n}\right)$. Recall that [1-Lemma 1.3] positive constants $c_{1}, c_{2}, c_{3}, c_{4}$ exist such that

$$
\begin{equation*}
\frac{c_{1} t_{\min }^{3}}{c_{2}+c_{3} t_{\min }^{2}}\left(\|\beta\|_{1}^{2}+|w|_{1}^{2}\right) \leqslant t[U, U]_{A} \leqslant c_{4}\left(\|\beta\|_{1}^{2}+|w|_{1}^{2}\right) \tag{2.2}
\end{equation*}
$$

holds for all $\{\beta, w\} \in V \times H_{0}^{1}(\Omega)$ and all $t \in \mathscr{U}_{a d}$, where

$$
{ }_{t}[U, Z]_{A}=\tilde{a}(t ; \beta, \eta)+{ }_{t}[\nabla w-\beta, \nabla \zeta-\eta] .
$$

For any $U_{n} \equiv\left\{\beta_{n}, w_{n}\right\}$ we have (cf. [1-(19), (20)])

$$
\begin{equation*}
t_{n}\left[U_{n}, Z\right]_{A}=(f, \zeta) \quad \forall Z \in V \times H_{0}^{1}(\Omega)\left(\left[H_{0}^{1}(\Omega)\right]^{2} \times H_{0}^{1}(\Omega), \text { resp. }\right) \tag{2.3}
\end{equation*}
$$

Inserting $Z=U_{n}$ and using (2.2) we obtain

$$
\left\|\beta_{n}\right\|_{1}^{2}+\left|w_{n}\right|_{1}^{2} \leqslant C\|f\|_{0}\left\|w_{n}\right\|_{0} \leqslant \frac{C}{2 \varepsilon_{1}}\|f\|_{0}+\frac{1}{2} C C_{F} \varepsilon_{1}\left|w_{n}\right|_{1}^{2}
$$

where the Friedrichs inequality

$$
\left\|w_{n}\right\|_{0}^{2} \leqslant C_{F}\left|w_{n}\right|_{1}^{2}
$$

has been employed. Choosing $\varepsilon_{1}=\left(C C_{F}\right)^{-1}$,

$$
\begin{equation*}
\left\|U_{n}\right\|_{1}^{2} \equiv\left\|\beta_{n}\right\|_{1}^{2}+\left|w_{n}\right|_{1}^{2} \leqslant \tilde{C}\|f\|_{0}^{2} \tag{2.4}
\end{equation*}
$$

follows for all $n$. Consequently, a subsequence $\left\{U_{k}\right\} \subset\left\{U_{n}\right\}$ and a function $U \in$ $V \times H_{0}^{1}(\Omega),\left(\left[H_{0}^{1}(\Omega)\right]^{2} \times H_{0}^{1}(\Omega)\right.$, resp.) exist such that $U_{k} \rightharpoonup U$ (weakly) in the corresponding space.

We show that $U=U(t)$, i.e., $U$ solves the problem for the limit $t$.
First we prove that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} t_{k}\left[U_{k}, Z\right]_{A}={ }_{t}[U, Z]_{A} \tag{2.5}
\end{equation*}
$$

holds for any $Z$. In fact, we may write

$$
\begin{align*}
\left|\tilde{a}\left(t_{k} ; \beta_{k}, \eta\right)-\tilde{a}(t ; \beta, \eta)\right| & \leqslant\left|\tilde{a}\left(t_{k} ; \beta_{k}, \eta\right)-\tilde{a}\left(t ; \beta_{k}, \eta\right)\right|+\left|\tilde{a}\left(t ; \beta_{k}-\beta, \eta\right)\right|  \tag{2.6}\\
& =\mathscr{K}_{1}+\mathscr{K}_{2} \rightarrow 0
\end{align*}
$$

since

$$
\mathscr{K}_{1} \leqslant C\left\|t_{k}^{3}-t^{3}\right\|_{\infty}\left\|\beta_{k}\right\|_{1}\|\eta\|_{1} \rightarrow 0
$$

due to (2.4) and

$$
\lim _{k \rightarrow \infty} \mathscr{K}_{2}=0
$$

by virtue of the weak convergence of $\beta_{k}$.

An analogous argument yields that

$$
\begin{equation*}
\left|\left(t_{k} \mathscr{E}\left(\nabla w_{k}-\beta_{k}\right), \delta\right)-(t \mathscr{E}(\nabla w-\beta), \delta)\right| \rightarrow 0 \quad \forall \delta \in\left[L^{2}(\Omega)\right]^{2} \tag{2.7}
\end{equation*}
$$

Combining (2.6) and (2.7), we arrive at (2.5).
By (2.3),

$$
t_{k}\left[U_{k}, Z\right]_{A}=(f, \zeta) \quad \forall Z=(\eta, \zeta)
$$

Passing to the limit with $k \rightarrow \infty$ and using (2.5), we arrive at

$$
{ }_{t}[U, Z]_{A}=(f, \zeta)
$$

Since the solution of our boundary value problem is unique for any $t \in \mathscr{U}_{a d}$, $U=U(t)$ and the whole sequence $\left\{U_{n}\right\}$ tends weakly to $U(t)$.

It remains to prove strong convergence. First of all, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n}\left[U_{n}, U_{n}\right]_{A}=\lim _{n \rightarrow \infty}\left(f, w_{n}\right)=(f, w)={ }_{t}[U, U]_{A} . \tag{2.8}
\end{equation*}
$$

Second, we can show that

$$
\begin{equation*}
\left|t_{n}\left[U_{n}, U_{n}\right]_{A}-{ }_{t}\left[U_{n}, U_{n}\right]_{A}\right| \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{2.9}
\end{equation*}
$$

Indeed, by virtue of (2.4), we may write

$$
\left|\tilde{a}\left(t_{n} ; \beta_{n}, \beta_{n}\right)-\tilde{a}\left(t ; \beta_{n}, \beta_{n}\right)\right| \leqslant C\left\|t_{n}^{3}-t^{3}\right\|_{\infty}\left\|\beta_{n}\right\|_{1}^{2} \rightarrow 0
$$

and

$$
\left|\left(\left(t_{n}-t\right) \mathscr{E}\left(\nabla w_{n}-\beta_{n}\right), \nabla w_{n}-\beta_{n}\right)\right| \leqslant\left\|t_{n}-t\right\|_{\infty} C\left\|\nabla w_{n}-\beta_{n}\right\|_{0}^{2} \rightarrow 0
$$

so that (2.9) follows.
Then we have

$$
\lim _{n \rightarrow \infty} t\left[U_{n}, U_{n}\right]_{A}={ }_{t}[U, U]_{A},
$$

since

$$
\begin{aligned}
\left|t\left[U_{n}, U_{n}\right]_{A}-{ }_{t}[U, U]_{A}\right| \leqslant & \left|t_{t}\left[U_{n}, U_{n}\right]_{A}-t_{n}\left[U_{n}, U_{n}\right]_{A}\right| \\
& +\left|t_{t_{n}}\left[U_{n}, U_{n}\right]_{A}-{ }_{t}[U, U]_{A}\right| \rightarrow 0 .
\end{aligned}
$$

follows from (2.9) and (2.8).
By virtue of (2.2) and the weak convergence of $\left\{U_{n}\right\}$ we obtain

$$
C\left\|U_{n}-U\right\|_{1}^{2} \leqslant t\left[U_{n}-U, U_{n}-U\right]_{A}={ }_{t}\left[U_{n}, U_{n}\right]_{A}-2_{t}\left[U_{n}, U\right]_{A}+{ }_{t}[U, U]_{A} \rightarrow 0
$$

Lemma 2.1. Let $t_{n} \rightarrow t$ in $C(\bar{\Omega})$ as $n \rightarrow \infty, t_{n} \in \mathscr{U}_{a d}$. Then

$$
\lim _{n \rightarrow \infty}\left[\psi_{K}\left(\beta\left(t_{n}\right), w\left(t_{n}\right)\right)\right]^{+}=\left[\psi_{K}(\beta(t), w(t))\right]^{+}, \quad K=1, \ldots, \bar{K} .
$$

Proof. We may write

$$
\begin{aligned}
&\left|\left[\psi_{K}\left(\beta\left(t_{n}\right), w\left(t_{n}\right)\right)\right]^{+}-\left[\psi_{K}(\beta(t), w(t))\right]^{+}\right| \\
& \leqslant\left|\psi_{K}\left(\beta\left(t_{n}\right), w\left(t_{n}\right)\right)-\psi_{K}(\beta(t), w(t))\right| \\
& \leqslant\left(\text { meas } \Delta_{K}\right)^{-1} \int_{\Delta_{K}} \mid t_{n}^{2} I_{21}\left(\nabla \beta_{n}\right)-t^{2} I_{21}(\nabla \beta)+ \\
& \quad+I_{22}\left(\nabla w_{n}-\beta_{n}\right)-I_{22}(\nabla w-\beta) \mid \mathrm{d} x \\
& \leqslant\left(\text { meas } \Delta_{K}\right)^{-1} \int_{\Delta_{K}}\left(t_{\max }^{2}\left|I_{21}\left(\nabla \beta_{n}\right)-I_{21}(\nabla \beta)\right|\right. \\
&\left.\quad+\left|t_{n}^{2}-t^{2}\right|\left|I_{21}(\nabla \beta)\right|+\left|I_{22}\left(\nabla w_{n}-\beta_{n}\right)-I_{22}(\nabla w-\beta)\right|\right) \mathrm{d} x
\end{aligned}
$$

Since $I_{21}$ and $I_{22}$ are homogeneous quadratic functions, the integral has a following upper bound

$$
\begin{aligned}
& C\left\{\left\|\beta_{n}-\beta\right\|_{1}\left(\left\|\beta_{n}\right\|_{1}+\|\beta\|_{1}\right)+\left\|t_{n}^{2}-t^{2}\right\|_{\infty}\right. \\
& \left.\quad+\left(\|\nabla w-\beta\|_{0}+\left\|\nabla w_{n}-\beta_{n}\right\|_{0}\right)\left(\left\|\nabla\left(w_{n}-w\right)\right\|_{0}+\left\|\beta_{n}-\beta\right\|_{0}\right)\right\}
\end{aligned}
$$

which tends to zero due to Proposition 2.1.
Proposition 2.2. The penalized problem (2.1) has a solution for any $\varepsilon>0$.
Proof. The functionals $j(t)$ and $\left[\psi_{K}(\beta(t), w(t))\right]^{+}$are continuous in $\mathscr{U}_{a d}$ by virtue of Lemma 2.1. The set $\mathscr{U}_{a d}$ is compact in $C(\bar{\Omega})$. Hence a minimizer $t_{\varepsilon} \in \mathscr{U}_{a d}$ exists.

Theorem 2.1. Assume that $S_{a d} \neq \emptyset$. Let $\{\varepsilon\}, \varepsilon \rightarrow 0_{+}$, be a sequence and let $\left\{t_{\varepsilon}\right\}$ be a sequence of solutions to the penalized optimal design problem (2.1), $\left\{\beta\left(t_{\varepsilon}\right), w\left(t_{\varepsilon}\right)\right\}$ the sequence of corresponding rotation and deflection fields.

Then there exist a subsequence $\{\tilde{\varepsilon}\} \subset\{\varepsilon\}$ and $t_{0} \in S_{a d}$ such that

$$
\begin{gathered}
t_{\bar{\varepsilon}} \rightarrow t_{0} \quad \text { in } C(\Omega) \\
\left\|\beta\left(t_{\tilde{\varepsilon}}\right)-\beta\left(t_{0}\right)\right\|_{1}+\left|w\left(t_{\tilde{\varepsilon}}\right)-w\left(t_{0}\right)\right|_{1} \rightarrow 0
\end{gathered}
$$

where $t_{0}$ is a solution of the Optimal Design Problem (1.8).
Proof follows from Proposition 2.1, Lemma 2.1 and the compactness of the set $\mathscr{U}_{a d}$. For the details, see an analogous proof of Theorem 2.1 in [2].

Corollary 2.2. If $S_{a d} \neq \emptyset$, there exists at least one solution of the optimal design problem (1.8).

Proof. An immediate consequence of Proposition 2.2 and Theorem 2.1.

## 3. Approximate optimal design problem

We are going to define an approximate problem, combining the penalty method with a finite element discretization, by means of mixed-interpolated elements [3]. In contrast with [3], however, we need a more general method, which includes plates of variable thickness. Such a generalization was given by the author in [1] together with an error analysis, concerning a particular choice of piecewise polynomial finite element spaces. Here we employ the same finite elements and exploit some results of the above-mentioned paper.

Let us consider a regular family $\left\{\mathscr{T}_{h}\right\}, h \rightarrow 0_{+}$, of triangulations of the domain $\Omega$.
We denote by $\mathscr{L}_{s}^{k}$ the space of piecewise polynomials on $\mathscr{T}_{h}$ of degree $\leqslant s$, which belong to $H^{k}(\Omega)$. Let $B_{3}$ be the space of "bubble functions" on $\mathscr{T}_{h}$ of the third degree, i.e.,

$$
B_{3}=\left\{v|v|_{K} \in P_{3}(K) \cap H_{0}^{1}(K) \quad \text { for all triangles } K \in \mathscr{T}_{h}\right\}
$$

Let $H_{h}$ be the intersection of $\left(\mathscr{L}_{2}^{1} \oplus B_{3}\right)^{2}$ with $\left[H_{0}^{1}(\Omega)\right]^{2}$ or $V$, respectively, (CrouzeixRaviart elements), $W_{h}=\mathscr{L}_{2}^{1} \cap H_{0}^{1}(\Omega)$.

Moreover, we use the space $R T_{1}$ of Raviart-Thomas elements of the first degree. Recall that (see [3])

$$
R T_{1}(K)=\left(P_{1}(K)\right)^{2}+\underline{x} P_{1}(K) \quad \forall K \in \mathscr{T}_{h}
$$

and $R T_{1} \subset H(\operatorname{div} ; \Omega)$, i.e., the degrees of freedom are chosen in order to ensure continuity of the flux at interelement boundaries. Let $\left(R T_{1}\right)^{\perp}$ denote the rotation of vector-functions from $R T_{1}$ by $\pi / 2$, defined by $\underline{a}^{\perp}=\left(-a_{2}, a_{1}\right)^{\mathrm{T}}$. We define the interpolation $\Pi_{h}: H_{h} \rightarrow\left(R T_{1}\right)^{\perp}$ by means of

$$
\int_{e}\left(\eta_{h}-\Pi_{h} \eta_{h}\right) \cdot \tau \mu \mathrm{d} s=0 \quad \forall \mu \in P_{1}(e)
$$

for all sides $e \in \partial K \in \mathscr{T}_{h}$, and

$$
\int_{K}\left(\eta_{h}-\Pi_{h} \eta_{h}\right) \mathrm{d} x=0 \quad \forall K \in \mathscr{T}_{h}
$$

Here $P_{1}(e)$ denotes the space of linear polynomials on the side $e$.
Instead of $\mathscr{U}_{a d}$ we introduce an internal approximation

$$
\mathscr{U}_{a d}^{h}=\mathscr{U}_{a d} \cap \mathscr{L}_{1}^{1} .
$$

We define the Approximate Optimal Design Problem

$$
\begin{equation*}
t_{h}^{\varepsilon}=\underset{t_{h} \in \mathscr{U}_{a d}^{h}}{\arg \min } \mathscr{J}_{\varepsilon}\left(t_{h} ; \beta_{h}\left(t_{h}\right), w_{h}\left(t_{h}\right)\right), \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
\left\{\beta_{h}\left(t_{h}\right), w_{h}\left(t_{h}\right)\right\}= & \underset{\left\{\eta_{h}, \zeta_{h}\right\} \in H_{h} \times W_{h}}{\arg \min }\left\{\frac{1}{2} \tilde{a}\left(t_{h} ; \eta_{h}, \eta_{h}\right)\right.  \tag{3.2}\\
& \left.+\frac{1}{2}\left(t_{h} \mathscr{E}\left(\nabla \zeta_{h}-\Pi_{h} \eta_{h}\right), \nabla \zeta_{h}-\Pi_{h} \eta_{h}\right)-\left(f, \zeta_{h}\right)\right\} .
\end{align*}
$$

Next, let us prove the solvability of the problem (3.1). To this end we first establish

Lemma 3.1. Let $\mathscr{T}_{h}$ be fixed and let $t_{h}^{n} \in \mathscr{U}_{a d}^{h}, n=1,2 \ldots$,

$$
t_{h}^{n} \rightarrow t_{h}, \quad \text { as } n \rightarrow \infty
$$

Then

$$
\begin{aligned}
& \beta_{h}\left(t_{h}^{n}\right) \rightarrow \beta_{h}\left(t_{h}\right), \\
& w_{h}\left(t_{h}^{n}\right) \rightarrow w_{h}\left(t_{h}\right) .
\end{aligned}
$$

Proof. We shall drop out the subscript " $h$ ", in what follows. Let us denote $\beta_{n}=\beta\left(t^{n}\right), w_{n}=w\left(t^{n}\right), \beta=\beta(t), w=w(t), U^{n}=\left\{\beta_{n}, w_{n}\right\}, U=\{\beta, w\}, Z=$ $\{\eta, \zeta\}$,

$$
\begin{equation*}
{ }_{t}[U, Z]_{A}^{h}=\tilde{a}(t ; \beta, \eta)+(t \mathscr{E}(\nabla w-\Pi \beta), \nabla \zeta-\Pi \eta) . \tag{3.3}
\end{equation*}
$$

The definition (3.2) implies that

$$
\begin{equation*}
t^{n}\left[U^{n}, Z\right]_{A}^{h}=(f, \zeta) \quad \forall Z \in H_{h} \times W_{h} \tag{3.4}
\end{equation*}
$$

Let us denote

$$
\begin{aligned}
\|U\| & =\left(\|\beta\|_{1}^{2}+|w|_{1}^{2}\right)^{1 / 2} \\
\Delta_{n} & =U^{n}-U=\left\{\beta_{n}-\beta, w_{n}-w\right\} .
\end{aligned}
$$

Using some results of $[1-(16),(27)]$, we can prove that the form ${ }_{t}[U, Z]_{A}^{h}$ is uniformly elliptic, i.e.,

$$
\begin{equation*}
{ }_{t}[U, U]_{A}^{h} \geqslant c\|U\|^{2} \tag{3.5}
\end{equation*}
$$

holds for all $U \in H_{h} \times W_{h}, h \in(0,1]$ and $t \in \mathscr{U}_{a d}$, where $c>0$ is independent of $U$, $h, t$. (The proof is parallel to that of [1—Lemma 1.3]).

Since $\mathscr{U}_{a d}^{h}$ is closed, $t \in \mathscr{U}_{a d}^{h}$. By definition, we have

$$
\begin{equation*}
{ }_{t}[U, Z]_{A}^{h}=(f, \zeta) \quad \forall Z \in H_{h} \times W_{h} \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.4) we get

$$
c\left\|U^{n}\right\|^{2} \leqslant t^{n}\left[U^{n}, U^{n}\right]_{A}^{h}=\left(f, w_{n}\right) \leqslant C\|f\|_{0}\left\|U^{n}\right\|
$$

so that the sequence $\left\{\left\|U^{n}\right\|\right\}$ is bounded.
It is readily seen that

$$
\begin{align*}
&\left.\right|_{t^{n}}\left[U, \Delta_{n}\right]_{A}^{h}-{ }_{t}\left[U, \Delta_{n}\right]_{A}^{h} \mid  \tag{3.7}\\
& \leqslant \\
& \quad\left|\tilde{a}\left(t^{n}, \beta, \beta_{n}-\beta\right)-\tilde{a}\left(t ; \beta, \beta_{n}-\beta\right)\right| \\
& \quad \quad+\left|\left(\left(t^{n}-t\right) \mathscr{E}(\nabla w-\Pi \beta), \nabla\left(w_{n}-w\right)-\Pi\left(\beta_{n}-\beta\right)\right)\right| \\
& \leqslant C\left\{\left\|\left(t^{n}\right)^{3}-t^{3}\right\|_{\infty}\|\beta\|_{1}\left\|\beta_{n}-\beta\right\|_{1}\right. \\
&\left.\quad+\left\|t^{n}-t\right\|_{\infty}\left(|w|_{1}+\|\Pi \beta\|_{0}\right)\left(\left|w_{n}-w\right|_{1}+\left\|\Pi\left(\beta_{n}-\beta\right)\right\|_{0}\right)\right\} \\
& \leqslant C\left(\left\|\left(t^{n}\right)^{3}-t^{3}\right\|_{\infty}+\left\|t^{n}-t\right\|_{\infty}\right)\|U\|\left\|\Delta_{n}\right\| \rightarrow 0,
\end{align*}
$$

since $\left\|\Delta_{n}\right\|$ are bounded and

$$
\|\Pi \eta\|_{0} \leqslant\|\eta\|_{1} \quad \forall \eta \in H_{h}
$$

(see [1-(27)]).
Finally, we may write

$$
\begin{aligned}
c\left\|\Delta_{n}\right\|^{2} & \leqslant t^{n}\left[U^{n}, \Delta_{n}\right]_{A}^{h}-t^{n}\left[U, \Delta_{n}\right]_{A}^{h} \\
& =\left(t^{n}\left[U^{n}, \Delta_{n}\right]_{A}^{h}-t_{t}\left[U, \Delta_{n}\right]_{A}^{h}\right)+\left({ }_{t}\left[U, \Delta_{n}\right]_{A}^{h}-t^{n}\left[U, \Delta_{n}\right]_{A}^{h}\right) .
\end{aligned}
$$

Form (3.4) and (3.6) we see that the first term vanishes. The second term tends to zero by virtue of (3.7).

Theorem 3.1. The Approximate Optimal Design Problem has at least one solution for any (fixed) triangulation $\mathscr{T}_{h}$ and any positive $\varepsilon$.

Proof. Making use of Lemma 3.1, we prove that the functions

$$
t_{h} \rightarrow\left[\psi_{K}\left(t_{h} ; \beta_{h}\left(t_{h}\right), w_{h}\left(t_{h}\right)\right)\right]^{+}
$$

are continuous in $\mathscr{U}_{a d}^{h}$ (cf. the analogous proof of Lemma 2.1). Consequently, the function $t_{h} \rightarrow \mathscr{J}_{\varepsilon}\left(t_{h} ; \beta_{h}\left(t_{h}\right), w_{h}\left(t_{h}\right)\right)$ in (3.1) is continuous, as well.

Obviously, we have

$$
t_{h} \in \mathscr{U}_{a d}^{h} \Longleftrightarrow\left\{t_{h}\left(Q_{i}\right)\right\}_{i=1}^{r_{l}} \in \mathscr{A}_{h} \subset \mathbb{R}^{r_{h}},
$$

where $Q_{i}$ are vertices of $\mathscr{T}_{h}$. The set $\mathscr{A}_{h}$ is compact, being bounded and closed. Hence the functional $\mathscr{J}_{\varepsilon}$ attains its minimum in $\mathscr{U}_{a d}^{h}$.

## 4. Finite element analysis

A natural question arises, what happens if we keep the parameter $\varepsilon$ fixed and refine the mesh size $h$. We can prove, that a subsequence of solutions $\left\{t_{h}^{\varepsilon}\right\}, h \rightarrow 0_{+}$, exists, which converges to a solution $t_{\varepsilon}$ of the penalized optimal design problem.

Lemma 4.1. Let us assume that the solution $\{\beta(t), w(t)\}$ is regular, so that

$$
\begin{equation*}
\beta(t) \in\left[H^{2}(\Omega)\right]^{2}, \quad w(t) \in H^{2}(\Omega) \quad \forall t \in \mathscr{U}_{a d}, \tag{A1}
\end{equation*}
$$

and there exists a constant $\bar{C}>0$ such that

$$
\|\beta(t)\|_{2}+\|w(t)\|_{2} \leqslant \bar{C} \quad \forall t \in \mathscr{U}_{a d} .
$$

Then

$$
\left\|\beta(t)-\beta_{h}(t)\right\|_{1}+\left|w(t)-w_{h}(t)\right|_{1} \leqslant C h \quad \forall t \in \mathscr{U}_{a d}, \forall h \in(0,1]
$$

holds, where the constant $C$ is independent of $t$ and $h$.

$$
\begin{aligned}
\text { Proof. Denote again } U & =\{\beta, w\}, \mathscr{Z}=(\eta, \zeta), \\
{ }_{t}[U, \mathscr{Z}]_{A} & =\tilde{a}(t ; \beta, \eta)+{ }_{t}[\nabla w-\beta, \nabla \eta-\zeta] .
\end{aligned}
$$

The solution $U \equiv U(t)$ satisfies the condition

$$
\begin{equation*}
{ }_{t}[U, \mathscr{Z}]_{A}=(f, \zeta) \quad \forall \mathscr{Z} \in\left[H_{0}^{1}(\Omega)\right]^{2} \times H_{0}^{1}(\Omega) \quad\left(\text { or } V \times H_{0}^{1}(\Omega)\right) \tag{4.1}
\end{equation*}
$$

The approximate solution $U_{h} \equiv U_{h}(t)=\left\{\beta_{h}(t), w_{h}(t)\right\}$ satisfies the analogous condition

$$
\begin{equation*}
{ }_{t}\left[U_{h}, \mathscr{Z}_{h}\right]_{A}^{h}=\left(f, \zeta_{h}\right) \quad \forall \mathscr{Z}_{h} \in H_{h} \times W_{h} \tag{4.2}
\end{equation*}
$$

(cf. (3.2) and (3.3)).
Subtracting, we obtain

$$
\begin{equation*}
{ }_{t}\left[U, \mathscr{Z}_{h}\right]_{A}-{ }_{t}\left[U_{h}, \mathscr{Z}_{h}\right]_{A}^{h}=0 \quad \forall \mathscr{Z}_{h} \in H_{h} \times W_{h} . \tag{4.3}
\end{equation*}
$$

For the time being, let $\mathscr{V}_{h} \in H_{h} \times W_{h}$ be arbitrary. From the uniform elipticity (3.5) of the second bilinear form and (4.3) we obtain
(4.4)c\|U $U_{h}-\mathscr{V}_{h} \|^{2} \leqslant t\left[U_{h}-\mathscr{V}_{h}, U_{h}-\mathscr{V}_{h}\right]_{A}^{h}$

$$
\begin{aligned}
& ={ }_{t}\left[U_{h}-\mathscr{V}_{h}, U_{h}-\mathscr{V}_{h}\right]_{A}+{ }_{t}\left[\mathscr{V}_{h}, U_{h}-\mathscr{V}_{h}\right]_{A}-{ }_{t}\left[\mathscr{V}_{h}, U_{h}-\mathscr{V}_{h}\right]_{A}^{h} \\
& \leqslant C\left\|U-\mathscr{V}_{h}\right\|\left\|U_{h}-\mathscr{V}_{h}\right\|+{ }_{t}\left[\mathscr{V}_{h}, U_{h}-\mathscr{V}_{h}\right]_{A}-{ }_{t}\left[\mathscr{V}_{h}, U_{h}-\mathscr{V}_{h}\right]_{A}^{h} .
\end{aligned}
$$

We use the triangle inequality and (4.4) to derive that
(4.5) $\left\|U-U_{h}\right\| \leqslant C \inf _{\mathscr{V}_{h} \in H_{h} \times W_{h}}\left\{\left\|U-\mathscr{V}_{h}\right\|+\sup _{\mathscr{F}_{h} \in H_{h} \times W_{h}} \frac{{ }^{\left[\mathscr{V}_{h}, \mathscr{Z}_{h}\right]_{A}-{ }_{t}\left[\mathscr{V}_{h}, \mathscr{Z}_{h}\right]_{A}^{h}}}{\left\|\mathscr{Z}_{h}\right\|}\right\}$,
(which is a consequence of the First Strang Lemma-cf. [5—Th. 26.1, p. 192]).
Let us substitute $\mathscr{V}_{h}:=\bar{U}_{h}$, i.e. the projection of $U$ into $H_{h} \times W_{h}$ with respect to the inner product

$$
\left(U_{h}, \mathscr{Z}_{h}\right)_{10}=\left(\beta_{h}, \eta_{h}\right)_{1}+\left(\nabla w_{h}, \nabla \zeta_{h}\right)_{0}
$$

Thus we arrive at

$$
\begin{equation*}
\left\|U-U_{h}\right\| \leqslant C\left\{\left\|U-\bar{U}_{h}\right\|+\sup _{\mathscr{Z}_{h}}\left(t\left[\bar{U}_{h}, \mathscr{Z}_{h}\right]_{A}-{ }_{t}\left[\bar{U}_{h}, \mathscr{Z}_{h}\right]_{A}^{h}\right) /\left\|\mathscr{Z}_{h}\right\|\right\} . \tag{4.6}
\end{equation*}
$$

The classical approximation theory yields
(4.7) $\left\|U-\bar{U}_{h}\right\| \leqslant \inf _{\left\{\eta_{h}, \zeta_{h}\right\} \in H_{h} \times W_{h}}\left\{\left\|\beta-\eta_{h}\right\|_{1}+\left|w-\zeta_{h}\right|_{1}\right\} \leqslant C h\left(|\beta(t)|_{2}+|w(t)|_{2}\right)$

Next, we may write

$$
\begin{aligned}
& { }_{t}\left[\bar{U}_{h}, \mathscr{Z}_{h}\right]_{A}-{ }_{t}\left[\bar{U}_{h}, \mathscr{Z}_{h}\right]_{A}^{h}=\left[\nabla \bar{w}_{h}-\bar{\beta}_{h}, \nabla \zeta_{h}-\eta_{h}\right]-\left[\nabla \bar{w}_{h}-\Pi_{h} \bar{\beta}_{h}, \nabla \zeta_{h}-\Pi_{h} \eta_{h}\right] \\
& =\left[-\bar{\beta}_{h}+\Pi_{h} \bar{\beta}_{h}, \nabla \zeta_{h}\right]+\left[\nabla \bar{w}_{h},-\eta_{h}+\Pi_{h} \eta_{h}\right]+\left[\bar{\beta}_{h}, \eta_{h}\right]-\left[\Pi_{h} \bar{\beta}_{h}, \Pi_{h}, \eta_{h}\right] \pm\left[\Pi_{h} \bar{\beta}_{h}, \eta_{h}\right] \\
& \leqslant C\left\{\left(\left|\zeta_{h}\right|_{1}+\left\|\beta_{h}\right\|_{0}\right)\left\|\Pi_{h} \bar{\beta}_{h}-\bar{\beta}_{h}\right\|_{0}+\left(\left|\bar{w}_{h}\right|_{1}+\left\|\Pi_{h} \bar{\beta}_{h}\right\|_{0}\right)\left\|\Pi_{h} \eta_{h}-\eta_{h}\right\|_{0}\right\} .
\end{aligned}
$$

Making use of the estimates

$$
\left\|\Pi_{h} \bar{\beta}_{h}-\bar{\beta}_{h}\right\|_{0} \leqslant C h\left\|\bar{\beta}_{h}\right\|_{1}, \quad\left\|\Pi_{h} \eta_{h}-\eta_{h}\right\|_{0} \leqslant C h\left\|\eta_{h}\right\|_{1}
$$

and [1-(27)], we obtain

$$
\begin{equation*}
\left(\left[U_{h}, \mathscr{Z}_{h}\right]_{A}-\left[\bar{U}_{h}, \mathscr{Z}_{h}\right]_{A}^{h}\right) /\left\|\mathscr{Z}_{h}\right\| \leqslant C h\left(\left\|\bar{\beta}_{h}\right\|_{1}+\left|\bar{w}_{h}\right|_{1}\right) . \tag{4.8}
\end{equation*}
$$

Since $\left\|\bar{U}_{h}\right\| \leqslant\|U\|$ follows by definition, we have

$$
\begin{equation*}
\left\|\bar{\beta}_{h}\right\|_{1}+\left|\bar{w}_{h}\right|_{1} \leqslant \sqrt{2}\left\|\bar{U}_{h}\right\| \leqslant \sqrt{2}\left(\|\beta(t)\|_{1}+|w(t)|_{1}\right) \tag{4.9}
\end{equation*}
$$

Inserting (4.7), (4.8) and (4.9) into (4.6), we arrive at

$$
\begin{equation*}
\left\|U-U_{h}\right\| \leqslant C h\left(\|\beta(t)\|_{2}+\|w(t)\|_{2}\right) \tag{4.10}
\end{equation*}
$$

Consequently, Lemma 4.1 follows from (4.10) and (A1).

Proposition 4.1. Let the assumption (A1) of Lemma 4.1 be fulfilled and let $\left\{t_{h}\right\}$, $h \rightarrow 0_{+}$be a sequence of $t_{h} \in \mathscr{U}_{a d}^{h}$, such that

$$
t_{h} \rightarrow t \quad \text { in } C(\bar{\Omega})
$$

Then

$$
\left\|\beta_{h}\left(t_{h}\right)-\beta(t)\right\|_{1}+\left|w_{h}\left(t_{h}\right)-w(t)\right|_{1} \rightarrow 0 \quad \text { as } h \rightarrow 0_{+} .
$$

Proof. By triangle inequality, Lemma 4.1 and Proposition 2.1 we have

$$
\begin{aligned}
\left\|U_{h}\left(t_{h}\right)-U(t)\right\| & \leqslant\left\|U_{h}\left(t_{h}\right)-U\left(t_{h}\right)\right\|+\left\|U\left(t_{h}\right)-U(t)\right\| \\
& \leqslant C h+\left\|U\left(t_{h}\right)-U(t)\right\| \rightarrow 0 .
\end{aligned}
$$

Proposition 4.2. Let the assumptions of Proposition 4.1 be fulfilled. Then

$$
\mathscr{J}_{\varepsilon}\left(t_{h} ; \beta_{h}\left(t_{h}\right), w_{h}(t)\right) \rightarrow \mathscr{J}_{\varepsilon}(t ; \beta(t), w(t)), \quad \text { as } h \rightarrow 0_{+} .
$$

Proof is analogous to that of Lemma 2.1.

Lemma 4.2. Let each triangle $K \in \mathscr{T}_{h} \in\left\{\mathscr{T}_{h}\right\}, h \rightarrow 0_{+}$, have two sides parallel with the coordinate axes. Then for any $t \in \mathscr{U}_{\text {ad }}$ there exists a sequence $\left\{t_{h}\right\}, h \rightarrow 0_{+}$, such that $t_{h} \in \mathscr{U}_{a d}^{h}$ and

$$
t_{h} \rightarrow t \quad \text { in } C(\bar{\Omega})
$$

For the Proof-see [2-Lemma 4.2].

Theorem 4.1. Let the regular family of triangulations $\left\{\mathscr{T}_{h}\right\}, h \rightarrow 0_{+}$, satisfy the assumption of Lemma 4.2. Let the solutions $\{\beta(t), w(t)\}$ satisfy the assumption (A1) of Lemma 4.1.

Assume that $\left\{t_{h}^{\varepsilon}\right\}, h \rightarrow 0_{+}$, is a sequence of solutions of the Approximate Optimal Design Problems (3.1).

Then there exists a subsequence $\left\{t_{\hat{h}}^{\varepsilon}\right\} \subset\left\{t_{h}^{\varepsilon}\right\}$ and an element $t_{\varepsilon} \in \mathscr{U}_{\text {ad }}$ such that

$$
\begin{gather*}
t_{\hat{h}}^{\varepsilon} \rightarrow t_{\varepsilon} \quad \text { in } C(\bar{\Omega})  \tag{4.11}\\
\left\|\beta_{\hat{h}}\left(t_{\hat{h}}^{\varepsilon}\right)-\beta\left(t_{\varepsilon}\right)\right\|_{1}+\left|w_{\hat{h}}\left(t_{\hat{h}}^{\varepsilon}\right)-w\left(t_{\varepsilon}\right)\right|_{1} \rightarrow 0 \tag{4.12}
\end{gather*}
$$

where $t_{\varepsilon}$ is a solution of the penalized optimal design problem (2.1).
Each uniformly convergent subsequence of $\left\{t_{h}^{\varepsilon}\right\}$ tends to a solution of the problem (2.1).

Proof. Since $\mathscr{U}_{a d}^{h} \subset \mathscr{U}_{a d}$ and $\mathscr{U}_{a d}$ is compact in $C(\bar{\Omega})$, a subsequence of $\left\{t_{h}^{\varepsilon}\right\}$ exists such that (4.11) holds with $t_{\varepsilon} \in \mathscr{U}_{a d}$. Then (4.12) follows from Proposition 4.1.

Consider any $t \in \mathscr{U}_{a d}$. By Lemma 4.2, there exists a sequence $\left\{\tau_{\hat{h}}\right\}, \tau_{\hat{h}} \in \mathscr{U}_{a d}^{\hat{h}}$, such that $\tau_{\hat{h}} \rightarrow t$ in $C(\bar{\Omega})$. By definition of the problem (3.1)

$$
\mathscr{J}_{\varepsilon}\left(t_{\hat{h}}^{\varepsilon} ; \beta_{\hat{h}}\left(t_{\hat{h}}^{\varepsilon}\right), w_{\hat{h}}\left(t_{\hat{h}}^{\varepsilon}\right)\right) \leqslant \mathscr{J}_{\varepsilon}\left(\tau_{\hat{h}} ; \beta_{\hat{h}}\left(\tau_{\hat{h}}\right), w_{\hat{h}}\left(\tau_{\hat{h}}\right)\right) .
$$

Passing to the limit with $\hat{h} \rightarrow 0_{+}$and using Proposition 4.2 on both sides, we obtain

$$
\mathscr{J}_{\varepsilon}\left(t_{\varepsilon} ; \beta\left(t_{\varepsilon}\right), w\left(t_{\varepsilon}\right)\right) \leqslant \mathscr{J}(t ; \beta(t), w(t)) .
$$

Consequently, $t_{\varepsilon}$ is a solution of the problem (2.1). The rest of the theorem is obvious.

Acknowledgement. This work was supported by Grant 201/94/1067 of the Grant Agency of the Czech Republic.

## References

[1] Hlaváček, I.: Reissner-Mindlin model for plates of variable thickness. Solution by mixed-interpolated elements. Appl. Math. 41 (1996), 57-78.
[2] Hlaváček, I.: Weight minimization of an elastic plate with a unilateral inner obstacle by a mixed finite element method. Appl. Math. 39 (1994), 375-394.
[3] Brezzi, F. - Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, Berlin, 1991.
[4] Brezzi, F. - Fortin, M. - Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math. Models and Meth. in Appl. Sci. 1 (1991), 125-151.
[5] Ciarlet, P.G.: Basic error estimates for elliptic problems. Handbook of Numer. Analysis, ed. by P. G. Ciarlet and J. L. Lions. vol. II, North-Holland, Amsterdam, 1991, pp. 17-352.

Author's address: Ivan Hlaváček, Matematický ústav AV ČR, Žitná 25, 11567 Praha 1, Czech Republic.

