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Summary. Recently D. Dumitrescu ([4], [5]) introduced a new kind of entropy of dy
namical systems using fuzzy partitions ([1], [6]) instead of usual partitions (see also [7], 
[11], [12]). In this article a representation theorem is proved expressing the entropy of the 
dynamical system by the entropy of a generating partition. 
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0. INTRODUCTION 

Given a probability space (Q.,y,P) and a measure preserving transformation 
T: 0 —> ft, Kolmogorov and Sinaj constructed an invariant h(T) called the en
tropy of the dynamical system (fi, y , P, T). With help of the invariant they showed 
that there exist non-isomorphic Bernoulli schemes. Namely, if ( f i i , ^ i ,P i ,T i ) and 
(ft2, -^2, -P2, T2) are two isomorphic dynamical systems, then they have the same en
tropy h(Ti) = h(T2). Hence if in some case ft(Ti) 7- h(T2), then ( f t i , ^ i , P i , T i ) , 
(fl2,y2,P2,T2) cannot be isomorphic. (For references see [12].) 

Of course, if h(T\) = /i(T2), then generally we cannot say anything about the 
isomorphism of the corresponding dynamical systems. Therefore we tried in [7] to 
construct a larger family of invariants h<g (T) by substituting set partitions by fuzzy 
set partitions, i.e., collections { / i , . . . , / n } of functions f{: ft -> (0,1) such that 
/ i + . . . + /n = l. 

The Dumitrescu approach ([4], [5] and also [12]) is a little more general. He does 
not assume the existence of a probability space and starts with a fuzzy probability 
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space which is a set & C (0, l ) n with a function m: & -» (0,1) satisfying some 
conditions. Of course, using a representation theorem from [3], we obtain 

. ( / > = / fdP 

so that the Dumitrescu theory can be reduced to the case studied in [7]. Another 
approach using fuzzy sets theory has been developed by Markechova ([8], [9], see also 
Mesiar [10]). 

Probably one of the most important results of the theory for practical purposes is 
the Kolmogorov-Sinaj theorem stating that 

ft(T) = ft(T,^), 

whenever srf is a partition generating the given cr-algebra. An analogue of this 

theorem is contained in [7]: 

ft^(T)<ft(T,^) + I^, 

where K& is a constant depending on the family <$ C (0, l)n determining h&(T). 

(Of course, if & consists of indicators \E only, then K<s = 0.) Here srf is a crisp 
partition generating the given algebra of sets. In this paper we present a variant of 
the Kolmogorov-Sinaj theorem in the form hy(T) = ft(T, &/), of course, in the case 
that srf is a fuzzy partition generating the given fuzzy cr-algebra &. 

1. DEFINITIONS 

We assume that a set & C (0, l ) x is given satisfying the following conditions: 

(i) lx e &, 

(ii) f,ge&^g-mm{f,g)e&, 
(iii) f,ge&J + g^i=>f + ge&, 
(iv) f,ge^=>f-ge^. 

We say that a family satisfying the conditions stated above is a fuzzy algebra. 
Evidently Ox £ &• It is not difficult to show that & is closed under the maximum 
and the minimum. Indeed, if / , g G «^\ then 

fSoog = min(/ + a, 1) = 1 - (1 - / - min(l - / , g)) G ^ , 

fToog = max(/ + g-l,0) = g- min(l -f,g)e &, 
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and finally 

min(/,g) = max(/ + min(o - / , 0), 0) 

= max(/ + min((l - / ) + 0,1) - 1,0) 

= fT00((l-f)S00g)e&, 

max(/,o) = 1 - min(l - / , 1 - g) G &. 

Further we assume that a function m: & -» (0, oo) is given satisfying the following 
conditions: 

(i) f,ge<?J^g=>rn(f)^rn(g), 
(ii) f,g,he&J = g + h=> m(f) = m(g) + m(h). 

As an easy consequence of (i) and (ii) we obtain 

(hi) / G ^ , fi G & (i = 1,.. • ,n), / ^ £ fi=> m(f) ^ £ m(fi). 
i=\ i=\ 

Indeed, if / , <?, ft G ̂ \ / ^ g + ft, then also / ^ min(G + ft, 1) G ̂ , hence 

™(/) ^ m(min(# + ft, 1)) = m(g) + m(mm(g + ft, 1) - g) 

= m(g) + m(min(ft, 1 — g)) ^ m(g) + m(h). 

The third part of our assumptions is concerned with a mapping U: & —> & satisfying 

the following conditions: 

(i) f,g,h£#,f = g + h^ U(f) = U(g) + U(h), 

(ii) U(lx) = lx, 

(iii) / 6 ^ => m(U(f)) = m(f). 

As a special case of the previous definition one can consider a mapping U: & -> ^ 

induced by a transformation T: X -> X by the formula Uf(x) = f(T(x)). In fact, 

this is the classical case. 

As we have mentioned, a fuzzy partition is a finite collection srf = {/i,..., fn} of 
n 

members of & such that J2 fi(x) — 1 f° r a ^ £ G K. If srf = {/i,..., fn} is a fuzzy 
i= i 

partition, then we define Usrf = {U / i , . . . , Ufn}. Evidently Usrf is a fuzzy partition, 

too. If srf = {/-_,..., / n } , ^ = {Gi,..., Gn} are two partitions, then we put 

srf V @ = {fi • g5 ; i = 1 , . . . , n, j = 1 , . . . , m}. 

Also ^/ V /^ is a partition. The entropy of the partition srf is defined by the formula 

Л(*0 = 5>(m(/ť)), 
ѓ = l 
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where 

<p(x) = - x logx , if x > 0,</?(0) = 0. 

The entropy of the dynamical system (X, ^",ra, U) is defined as follows. If ^ is a 
partition, then 

h(U,s/)= lim - ^ V W V . . . V C / ( n " V ) . 
n-*oo Tl 

(The existence of the limit follows by the subadditivity property ( a n + m ^ an + am) of 
the sequence (a n ) n , where an = 17(^V[/^V...V[/n-V).) Finally, if 0 7- Sf C ^ , 
then 

Hy(U) = sup {/i(U, srf); srf C&,£/ is a partition} . 

2. THEOREM 

In order to be able to formulate the main result of the article we need the following 

notation. If / ,g : X -» (0,1), then 

fAg = f(l-g)+g(l-f). 

(Of course, if f,g are indicators, / = XA,g = XB, then / A g = XAAB-) 

Theorem. Iftf C *S is a generator (i.e., such a partition that for every A > 0 and 
oo 

every f G Sf there is p G |J U*^ such that m(f A g) < X), then 

h<s(U) = h(U,tf). 

3. PROOF 

The main idea of the proof can be found in [2]. We shall divide it into a sequence 
of lemmas. Denote by s(srf) the fuzzy algebra generated by srf. 

Lemma 1. For a given partition srf = {/i,..., fn} and every S > 0 there exists 

X > 0 such that for every family 38 = {g i , . . . ,gn} with m(fi A gi) < X (i = 

1,2,. . . ,n) there is a partition {/u,..., hn) C s(&) such that m(fi A hi) < S (i = 

l , 2 , . . . , n ) . 
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Proof. Put 

fti = g i , 

hi = min ( gi, 1 - E fti ) ' * = 2 ' ' * ">n ~ l' 
^ i=i ' 

n - l 

ftn = 1 - E f t i * 
i= i 

Evidently {fti,..., ftn} is a partition included in s(«^). Let 1 < i < n. Then 

; - i 

(*) m(/i A hi) ^ E m ( f t i A /i) + m(fi&9i)-
3=1 

Indeed, if fti(x) = gi(:r), then 

hiAfi(x) = fi Ag{(x). 

If fti(x) = 1 - Y2)Z\ hj(x) < Pt'Wi t h e n 

fti(a;)(l - /<(*)) < #(x)(l - fi(x)) ^ fiA9i(x), 
i-l t - l i - l 

/.(z)(l - /*(*)) = fi{x)^hj(x) < £ ( 1 - fiWW*) < E f t i A / i W 
.7 = 1 j = l j = l 

so that 
t - i 

/ l i A / i ^ / i j A / j i / i A t / i , 

i= i 

which implies (*). Now let i = n. Then 
n—1 n—1 n—1 

(1 - K(x))fn(x) = J ] hj(x)fn(x) ^ Yl M^X 1 - /i(*)) ^ E fti A /i(*)> 
J = l .7 = 1 .7=1 

n—1 n—1 n—1 

(1 " fn(x))hn(x) = E fj(^)hn(x) ^ E / i ^ X 1 ~ fti(*)) < E /i A fti(*)> 
i = i j = i .7=1 

hence 
n - l 

(**) m(/n A ftn)< E m(fti A / , ) . 
i=i 

Since m(/j A ^ ) < A, we obtain by (*) and (**) that 

m(hiAfi) <2{~lX (z = l ,2 , . . . ,n) . 

Therefore we can put A = ^- r - D 
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For any partitions stf = {/x,..., / n } , 38 = {Or, . . . , Om} we define the conditional 
entropy 

m(hj)>0 

Lemma 2. For every e > 0 there exists 6 > 0 such that H(^|«^) < e for any 

partitions srf = {/i,..., / n } , £$ = {hi,..., b,n} satisfying the condition m(/z- A b,,) < 
6* (i = l , . . . , n ) . 

P r o o f . First choose So G (0,1) such that <p(t) < J for every t £ (So, 1 - o"0) and 
put 

S = min I y m ( / » ) ; m(/t-) > 0 , 

Then 

™(/i) < rn(fi A ft,-) + m(hi) <5 + m(h{) < So—^ + m(/i»), 

— — < m(/z) - d0 < m(hi), 

m(n,) - m(fihi) ^ m(ft, A fi) ^ S ^ S0m(hi). 

If we consider such an i that m(hi) > 0, then 

hence 

m(fihj) 
——— > 1 - d o , 
m(tii) 

'rn(fihj)\ ^ є_ 

m(hi) ) n ' 

я<*i.ч-şŞя.(«,(да<şş™<«ï-Ęi-.. 

Lemma 3 . h(U, srf) ^ h(U, %?) + H(s/\(if) for any partitions JZ?, V. 

P r o o f . Since h(® V 9) = H(SS) + H(9\0S) (see [5], [6]), we have 

< n—1 \ /n—1 n—1 

( n— i \ sn — i n — x \ 

y Uw) ^H( v Í/WV v U^v 
i=0 ' \ t=0 j=0 ' 

( n— 1 v / n — 1 i n — 1 v 

\/ î VJ +II( V ^ V ^ M -
j=0 ' ^ i=0 ' i=0 ' 

D 
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Further H{$> V g\9S) < H{9\38) + H{g\38), H{®\S8 V S) < H(9\3B) (see [5], [6]), 
hence 

j=0 ' i=0 

n - 1 

i=0 

( n—L i n — i v n — i • i n—J. \ 

V trW V UJV) ̂ í í í /W V Uic€ 
i—n I i—n 7 i = o ^ ' j = 0 ' 

n - 1 

Y^ H(U{srf\Uic€) = nH(s^\cď). 

Therefore 

lim -H( V UW) <J lim -H( \f Uj<A + H(s/\V). 
n—>oo 72 V v / n - * o o 72 V v / 

\ ,*—n ' x i = n ' 
n—>oo 72 , .-

i = 0 7 ч j = 0 

k 

Lemma 4. h(U,<g) = h(u, V ^ j < ^) for e v e i T A; E N and any partition ̂ . 
v j = o ' 

Proof. We immediately obtain 

lim -( \/ U'fX/ulv)) = lim - t f ( V ^ 
n-+oo 72 V V V V / / n-»oo 72 V v / 

^ i = 0 X j = 0 ' ' V t=0 ' 

1 / P _ 1 \ 
= lim —5— . -Hi V U^ ) = h(U,V). 

P-+oop-k P \tl0 ) 

D 

P r o o f of T h e o r e m . Let e be an arbitrary positive number. Choose 8 > 0 
by Lemma 2 and A > 0 by Lemma 1. Now let s/ = {/i,...,/n} C Sf be any 
partition. For every i there are ti e N and gi e UtiC^ such that m(fi A ^) < A 

(i = 1, 2,..., 72). For sufficiently large k we have {Gi,..., gn} C |J UJ(^. By Lemma 
j=o 

k 
1 there is a partition 38 = {hi,..., hn} such that /i; G IJ U-7^ and ra(/i A hi) < 6 

3=0 

(i = 1,..., 72). By Lemma 2 we obtain H(srf\3$) < e, by Lemma 4 we have 

h(u, \JUj<A =H(U,^). 
3=0 
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Therefore by Lemma 3 we conclude 

h{U, £?) ^ h{U, 38) + H{^\@) < h(U, @)+e 

^ h(u, (j UjcA +e = h(U,tf) + e, 
j=o 

Hy(U) = sup{Я(U ,^); sf C &} ^ Һ(U,^). 

D 
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