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41 (1996) APPLICATIONS OF MATHEMATICS No. 4, 241-267 

HOW T O R E C O V E R THE G R A D I E N T O F LINEAR ELEMENTS 

ON N O N U N I F O R M TRIANGULATIONS 

IVAN HLAVÁČEK, MICHAL KŘÍŽEK, VLADISLAV PIŠTORA, Praha 

(Received January 26, 1995) 

Summary. We propose and examine a simple averaging formula for the gradient of linear 
finite elements in R whose interpolation order in the L9-norm is 0(h ) for d < 2q and 
nonuniform triangulations. For elliptic problems in R we derive an interior superconver-
gence for the averaged gradient over quasiuniform triangulations. A numerical example is 
presented. 

Keywords: weighted averaged gradient, linear elements, nonuniform triangulations, su
per approximation , superconvergence 

A MS classification: 65N30 

1. MOTIVATION 

Finite element or difference schemes of higher order are developed to reach quickly 
highly accurate approximate solutions. This fact can be rigorously proved usually 
when the true solution is sufficiently smooth. Nevertheless, in practice the use of 
higher order schemes yields also quite good results even when the true solution has 
not theoretically required smoothness (see e.g. [18, p. 232]). 

The theoretical optimal rate of approximation of linear finite elements in the L2-
norm is of order &(h2) whereas for their gradient it is only @(h) for regular families of 
triangulations. This paper can be regarded as a continuation of the article [17], where 
Kfizek and Neittaanmaki analyzed a simple postprocessing which yields locally the 
&(h2)-accuracy in the L2-norm of the so-called averaged gradient applied to solving 
the Poisson equation in special plane domains. The averaged gradient is defined 
over uniform triangulations as a piece wise linear continuous vector field, the value of 
which at any nodal point is the average of gradients of linear elements surrounding 
the nodal point. Similar postprocessing techniques were later generalized by many 
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authors in many directions, in particular, to tetrahedral elements [15], to quadratic 
elements [10], to global estimates [18], to elliptic systems [9, 12] and nonlinear elliptic 
problems [14], to parabolic problems [25], to L°°-norm error estimates [18], to locally 
symmetric triangulations with respect to a point [27], to piecewise uniform [22] and 
quasiuniform triangulations [20]. 

Note that some superconvergence results on nonuniform rectangular meshes were 
obtained by [21, 29]. Also in [2, 23], the authors introduced higher order approxima
tions of the gradient by integral smoothing operators over some nonuniform meshes. 
However, their use for practical calculations is complicated. We introduce a sim
pler averaging operator (see (2.2)). Our concern in Section 3 is with interpolation 
(superapproximation) properties of a weighted averaged gradient of linear elements 
on nonuniform meshes, especially in two- and three-dimensional space. The piece-
wise constant gradient of linear elements will be replaced by a continuous piecewise 
linear recovered gradient defined via appropriate weights. In contrast to piecewise 
constant gradients, we prove the ^(/i2)-accuracy of the weighted averaged gradient 
in the L9-norm (see Theorem 3.8). In Theorem 4.1, we prove the 0(h)-accuracy of 
the averaged gradient in the VV^-norm provided a family of triangulations is strongly 
regular. Thus we can approximate the second derivatives of a smooth function the 
values of which are given only in a finite number of nodes. 

In Section 5, we apply the results of previous sections to the finite element solution 
of an elliptic boundary value problem. Here, however, more severe restrictions on the 
triangulation are required. Recall that finite element schemes often produce some 
superconvergence phenomena on uniform meshes (see e.g. [6, 19, 26, 27]). We derive 
an interior superconvergence error estimate for the proposed averaged gradient over 
quasiuniform triangulations. Note that our averaging technique differs from that 
presented in [20], where also different norms (discrete L2-norms) were used. Section 
6 is devoted to numerical tests. 

The proposed technique enables us to obtain not only good a priori error estimates 
but also efficient a posteriori error estimates using recovery based estimators like in 
[1, 8, 30]. Moreover, the knowledge of the recovered gradient is a useful tool in 
magnetic field computations, in sensitivity analysis of optimization problems (see 
[11]), in adaptive mesh refinements, in calculation of the boundary flux and many 
other problems. These problems need not have any connection with the Galerkin 
method. For instance, suppose that some data (measurement of a potential, etc) 
were obtained in nodes of a given nonuniform triangulation. The gradient of their 
piecewise linear interpolation can be recovered by the averaging method of Sections 
2 and 3. 
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2 . WEIGHTED AVERAGED GRADIENT 

Throughout the paper H C Rd (d = 1,2,3) will be a bounded domain with a 

polyhedral Lipschitz boundary Let & = {Th}h->o be a family of decompositions 

(triangulations) of Vt into closed simplexes in the standard sense (cf. [7]). As usual, 

the discretization parameter h is the maximum diameter of all elements K G Th. We 

define 

vh = {vheC(n)\vh\KeP1(K) VKeTh}, 

where P\(K) is the space of linear polynomials over K. Let Nh be the set of all 

nodal points associated to Th, i.e., the set of all vertices of all K G T/i. For Z G Nh 

denote by £; = U(Z) that straight line passing through Z which is parallel to the 

axis Xi, i G { 1 , . . , d}. Set 

U = U(Z)= (J K. 
Ken 

Knz^ 
The dependence of U, £, . . . upon Z will be usually not explicitly indicated in what 

follows. Let Z G Nh H f ] b e a fixed interior node (the case Z G IV^ n dQ is treated 

in Section 3). Let AiBi be the line segment £i D U. Then we have Ai,Bi G dU (see 

Figure 1). 

Put 

(2.1) (AІ-Z)І, ЬІ = (BІ-Z)І, i = l,...,d, 

where (.)t- stands for the i-th component, i.e., we have d i s t ( ^ , Z ) = |a;| and 

dist(£?;, Z) = \bi\. For i;̂  G V̂  we define £h.e weighted averaged gradient GhVh at 
interior nodal points as follows 

(2.2) (Ghvh(Z))i = Һ 
ЬІ — a 

•diVhl I<A, + rdiVh\l<n 
ai-bi uxBi 
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for i = 1, . . . , d, where KA{, KB{ C U are such simplexes from Th that A; € KAi and 
Bi G Ksi • The position of KA{ and KB{ is indicated in Figure 1. It is clear that 
Q>i 7-= bi (since they have converse signs) and that both the weights bi/(bi — a*) and 
o>i/(ai — bi) are positive and their sum is 1. Notice that the choice of the simplexes 
KA{ or Ksi need not be uniquely determined, since Ai or Bi can be contained in 
more than one simplex K C U. Nevertheless, the value of Ghvh(Z) is still uniquely 
defined. For instance, in Figure 1 there are two triangles KB2 and K'B<2 containing 
the point B2. In this case, however, 

d^\KB2
=d2Vh\K'B2-

R e m a r k 2.L Each component of the weighted averaged gradient Ghvh is de
fined by another weights, in general. But for uniform triangulations (where any two 
adjacent triangles of Th form a parallelogram) we have 

(Ghvh(Z))i = \diVh\Kjk + \divh\xB , 

in other words, the weights are independent of i (cf. [12, p. 147]). 

3. GLOBAL SUPERAPPROXIMATION PROPERTIES 

OF THE WEIGHTED AVERAGED GRADIENT 

Throughout the paper the Sobolev space W£(ft) and the product space (W£(ft))d 

are equipped with the standard norm ||.||fc,p = ||-IU,P,n
 a "d seminorm |.|jbjP = |.|fc,Plo-

The symbol ||.|| stands for the Euclidean norm. As usual, we denote by C,C,... 
the so-called generic positive constants which are not necessarily the same at each 
occurrence and which do not depend on relating functions and the discretization 
parameter h. 

Let nh: C(ft) -» Vh be the usual linear interpolation operator such that 

7rhv(Z)=v(Z) VZeNh. 

Moreover, let 
7TKV = 7Thv\K WKeTh. 

We will extend the definition (2.2) to boundary nodes (see Remark 3.1). Let 
N£ C Nh be the set of those nodes Z of dQ for which there exists i e { 1 , . . . , d} such 
that U(Z) fl U(Z) = Z. Consider for instance a triangulation Th of the unit square 
11. If its sides are parallel to the coordinate axes then N% = 0 otherwise N% contains 
all four vertices of ft. 
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For Z £ dQn(Nh\N%) the set £{nU is a straight line segment for any i e { 1 , . . . , d}. 

If Z is not the endpoint of this segment (see Figure 2 for i = 1) then the points Ai 

and Bi are defined as in Section 2. If Z is one of the endpoints, we denote by A{ 

the opposite endpoint and take Bi € U fl 0 so that ,4; is in the interior of ZBi (see 

Figure 2 for i = 2) and 

(3.1) C|ať| ^ |òi| < C\OІ\, 

where a*, 6; are defined by (2A) and C > 1 and C > 1 are independent of ft. Note 

that the points Bi can be chosen on element boundaries as well as inside of elements. 

Now if v Є C(П) and i Є {1,..., d) we set 

(3.2) (CvMZ)). = a.KЛi) - (ÛІ + ftMz) + /Зiг;(£?i) for Z Є Nh\ Лt°, 

where 

(3.3) Oti = 
ЬІ 

di(bi — a i ) ' 

with ai and bi given in (2.1). 

ßi = 
di 

ЬІ(ÜІ - bi)' 

Figure 3 
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Next, let us consider Z G iV°. Let s\,..., sd be unit (column) vectors independent 

of h, let the matrix S = ( s i , . . . , sd) be nonsingular. Assume that the vectors s* tend 

from the node Z into Q, as illustrated in Figure 3 for d -= 2. Let i G { l , . . . , d} 

and v smooth be fixed. Then we choose a local Cartesian coordinate system ^ in 

which the axis x\ is parallel to s,. Denote by G; an approximation of the directional 

derivative 

| ^ ( Z ) = (gradU(zT))Ts, 
OSi 

obtained by (3.2) in % such that (3.1) holds. Then it is natural to define 

(3.4) Ghv{Z) = {S-1)Tghv{Z), 

where ghv{Z) = {gx,...,gd)
T. 

The operator Ghv is thus defined for all nodal points Z G Nh. Thus we may 

introduce a continuous piecewise linear vector function (still denoted by Ghv) which 

is uniquely defined by the values at nodes, i.e., from now on 

Ghv G Vh x . . . x Vh (d-times). 

R e m a r k 3.L The formula (3.2) for vh £ Vh can be interpreted as the equivalent 

definition of the weighted averaged gradient from (2.2). To see this, consider an 

interior node Z G Nh H ft and some vh eVh. Using the fact that 

. , vh{Ai)-vh{Z) , vh{Bj)-vh{Z) 
dMKAi = . dMKBi = 1. > 

we find, by (3.3), that the definition (2.2) coincides with that in (3.2). That is why 

the operator Ghv will still be called the weighted averaged gradient. 

For Z Є Nhwe set 

Һ{Z) = max hк, 
кeтhìкcu 

where HK = diamK. Thus we have h(Z) ^ h. By (2.1) and (3.1), obviously 

(3.5) max( |a i | , | 6 . |KC/.(Z) . 

Lemma 3.2. There exists a constant C > 0 such that 

(3-6) |a. | ^ -r—, \0i\ ^ -r-r, 
\Q'i\ \Vi\ 

where a,, bi and cti, fa are of the form (2.1) and (3.3), respectively. 
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P r o o f . Let Z G Nh\Nh
) and i G {V . . . , d} be given. We shall distinguish two 

cases: 
1) Z is in the interior of AiB{. Then, by (2.1), a* and fc; have the converse signs 

and thus using (3.3), we obtain 

ia.i _ M _ N < _____ = J_ 

| a i | | 6 i - a i | |ai|(|6i| + |a i | ) |a,| |6»| |_J*| ' 

1/3.1 _ __ < lQ'l _ J _ 
IP*' NI6.-o*l N W N ' 

2) Ai is in the interior of ZBi. Then, a,i and 6, have the same signs and, by (3.1) 

and (3.3), 
, , _ \bi\ \bj\ C__ 
| Q t | \oi\Qbi\ - k | ) " |o.|(l - 1/C)|6i| |o . | ' 
1/3 I __ N < N = _!__ 
| P t | |6i|(|6i| - loil) " |6i|(C|ai| - |a.|) |6.|" 

If Z G LV° and i G { 1 , . . .,d} then we use the same procedure as above in the local 
Cartesian coordinate system ^ . • 

Definition 3.3. A family ^ = {Th}h->o of decompositions of H into simplexes 
is said to be regular (strongly regular) if there exists a constant x > 0 such that for 
any decomposition Th G & and any simplex K G Th there exists a ball S&K with 
radius QK such that 38K C K and 

(3.7) xhK ^ _)_<- (xh ^ _>K). 

R e m a r k s 3.4. Any strongly regular family is obviously regular. In the case 
d = 1, any family is regular. If d > 1 we have for the radius of the ball inscribed to 
K that 

( . d meas_i_* 
(3.8) QK me&Sd-idK' 

A constructive proof of the existence of a strongly regular family of decompositions 
of an arbitrary polyhedron into tetrahedra can be found in [16, p. 58]. 

Lemma 3.5. Let & be regular and for d = 1 strongly regular. Then there exists 
a constant C such that for any Z G Nh 

(3.9) h(Z) ^ ChK VJC G Th, K C U(Z). 
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P r o o f . The proof is evident for d = 1. So let d G {2,3}. First we prove that 

there exists an integer M (independent of h) such that for any Th G & there are 

around any nodal point at most M simplexes. 

The case d = 2 immediately follows from the Zlamal condition which is equivalent 

with the regularity of & (see e.g. [7, p. 128]). 

Finally let d = 3. We show that all angles between faces of any K 6 Th G & and 

all angles at vertices of these faces satisfy the minimum angle condition. 

1. Let ip be the angle between two arbitrary faces T', T " of K. Let S be the area 

of T' and let s be the length of the corresponding spatial altitude of K perpendicular 

to V—see Figure 4. Then by (3.7) and (3.8) 

x < 
QK 3 meas3I\T 

< 
s5 

hK ft A' meas2<9I\~ ft/<5 hK 

Hence, ?/) G (7, K — 7), where 

^ sinip. 

7 = arcsin x G (0, | ) for a given x G (0,1). 

This means that all angles between faces of K satisfy the minimum angle condition. 

2. Let T be an arbitrary face of K and let <p be the angle between two arbitrary 

edges of T the lengths of which are e, /—see Figure 4. Then by (3.7) and (3.8), 

, Qк ^rк 
x^~~< ~Г~ 

hк hк 

2 meas2T 

hK measidT ft A / 

ef sin (f 
< ——— ^ sincp, 

where r # is the radius of the circle inscribed to T. We again see that all angles at 

vertices of faces of K are in the interval (7, - - 7), i.e., the minimum angle condition 

holds. 

Figure 4 

Let Z e Nh be arbitrary. Consider a sphere 

^ = {z£R3\\\z-Z\\=r}, 
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where r > 0 is less than any edge of any K C U(Z)9 K € Th. Then K n 5? is a 
spherical triangle. The radius Q of its inscribed circle is given by (see [3, Chap. 3.5.3]) 

(3.10) £ = r arctanlsin tan — J , 

where </?i -̂  </?2 is assumed, and <pi,</>2></>3 and Vi are sketched in Figure 5. Note 
that -01 is the angle between two faces of K. Since 

7 ^ ^ 3 . </?3 + V?2 - </?! . </>3 + </>2 . 7 
2 ^ T ^ 2 < — " — < - ~ 7 < K - - , 

_ < _ i < _ _ _ 
2 ^ 2 ^ 2 2' 

we have by (3.10) that 

Q > r arctan (sin — tan —) _ rk > 0 

which implies that 
meas2^ 47ir2 4 

^ mea^ ITnj? 7 ) < "V~ < A*' 

Thus we have got the existence of the number M independent of h also in the case 
d = 3. 

Figure 5 

Since 2QK is less than the shortest spatial altitude which is not greater than any 
edge, we have by (3.7) that 

h>K < —QK ^ 7r~eK, x 2x 
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where eK is the length of an arbitrary edge of K. The same relation holds clearly 
also for d = 2. Thus we obtain 

hK ^ —hK1, 
2x 

where K, K' are any adjacent triangles or tetrahedra form Th E &. Consequently, 

hK^{2x)-MhK^ 

where K and K" are arbitrary simplexes having the same vertex Z E Nh. • 

L e m m a 3.6. Let q E (f,oo), q ^ 1, let & be regular and for d = 1 strongly 
regular. Then there exists a constant C > 0 such that for any decomposition Th E & 
and any Z E Nh there exists a closed neighbourhood fy = &{Z), d i a m ^ ^ Ch{Z), 
such that 

|| gradi;(Z) - Ghv{Z)\\ ^ C{h{Z))2'd^\v\3^ Vv E W*{W). 

P r o o f . Let Z E Nh \ N£ and i E { 1 , . . . , d} be arbitrary but fixed. From (3.3), 
we easily find that 

(3.11) ctidi+Pibi = 1, 

and 

(3.12) aia2i+(3ib2 = 0. 

By the Taylor formula for any quadratic polynomial p E P2(-^) we come to 

(3.13) p{Ai) - p{Z) = diP{Z)ai + \d2p{Z)al 

(3.14) p{Bi) - p{Z) = dip{Z)bi + \d2p{Z)bl 

Multiplying (3.13) by at-, and (3.14) by ft, and summing this, we get from (3.2), 
(3.11) and (3.12) that 

{Ghp{Z))i = diP{Z). 

For rrii = min(|a;|, |6;|) define a linear functional 

(3.15) Fi{v) = mi{div{Z) - {Ghv{Z)){), v E C\Q). 
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Clearly, 

(3.16) Fi(p) = 0 V p € P 2 ( n ) . 

By (3.9) and (3.7) we have for ra, = |a,| that 

mi \ai\ \cii\ 2gK 2x 

where K C U is that simplex for which Ai £ K. Since |b;| > |a;| for boundary nodes, 
the proof of (3.17) for internal nodes in the case ra2- = |b;| is analogous. 

Let W = <%(Z) be a closed domain for which 'ZA~iU~ZRi C <% for all i, diam °l/ ^ 
Ch(Z) and [ / C ^ C l l (e.g. ^ = U for interior nodes and the existence of 9/ for 
boundary nodes follows from (3.1)). Then by (3.15), (3.2) and (3.6), we have 

\Fi(v)\ < ro,(|| grad v||0|oo,* + 2(1^1 + IftDIHIo.oo,*) 

^ rrii(\\ grad v||o,oo,«r + C[r—X + TTT ) IHo.oo,*) 
\\a{\ \bi\J 

^ diam %|| grad v||0,oo,* + 2C|H|0,oo,* Vv € C*(n). 

From here, (3.16) and the Bramble-Hilbert theorem [5, Theorem 3], we obtain 

\Fi(v)\ ^ C{h{Z))3-d/i\v\3,q,v to e W3
q{W) 

whenever q e (f ,oo) and q ^ 1. Therefore, from the definition (3.15) and (3.17) 

(3.18) . \diV(Z) - (Ghv(Z))i\ ^ C(h(Z))2-d^\v\3,q,v, 

which completes the proof for q e (f, oo), q ^ 1 and Z e Nh\N°. 

The case Z E N® follows similarly from the definition (3.4), where the matrix S 

is independent of h. We again use the local coordinate systems ^ for i = 1, . . .,d. 

• 
In the following we shall use the inequality for q G ( \ , oo] 

(3.19) M o , , ^ (measn)1 / l* | |o.0 0 < max(l, (measn)2)|H|0,oo V* G L°°(n). 

Corollary 3.7. It is 

(3.20) Ghp(Z) = gradp(Z) Vp G P2(n) VZ E A^, 

i.e., for any quadratic polynomial p we have Ghp = gradp over aii elements. 
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Theorem 3.8. Let q G (f, oo), q ^ 1 and let & be strongly regular. Then there 

exists a constant C > 0 such that for any decomposition Th G & we have 

(3.21) \\&*dv-Ghv\\0tq^Ch2\v\3tq VveWJKVl). 

P r o o f . Let q G (f, oo], q ^ 1 be arbitrary. Recall (see [7, p. 126]) that 

(3.22) ||t; - rrKv\\0tqtK ^ C/i2
K|t;|2,g,K Vtf G Th Vv G W2(K), 

without any regularity assumptions upon the family &. Let Lhv be a continuous 
piecewise linear vector function over Th such that 

(3.23) Lhv(Z) = gradt;(Z) VZ G Nh. 

Then, by (3.22), 

(3.24) || gradt; - Lhv\\0,q < Ch2\v\3,q VU G W*(Q). 

Let us introduce 

6i(Z) = {K1 G Th | measi((ZAi uYB{) n K') > 0}, 

Q(/f,o= U U K'-
ZeKHNn K'eSi{Z) 

Note that simplexes, which have only one point (vertex) on the segment ZAi U ZBi, 

do not belong to 5i(Z). The set Q(K,i) is an "oriented garland" of simplexes around 
the simplex K. 

Since Ghv is a continuous piecewise linear vector function, for any K G Th and 
i G {1, •. .,d} we have by (3.23) and Lemma 3.6 (compare (3.18)) that 

(3.25) \\(Lhv-Ghv)i\\0,oo,K = max \d{v(Z)-(Ghv(Z))i\ <: Ch2-d^\v\3^Q{Kii). 

Next, we may write 

\\(Lhv - Ghv)i\\0iqtK ^ chdjlq\\(Lhv - Gfct^Ho.ocK ^ Ch2\v\3^Q{K,{). 

The union Q(K,i) contains at most M simplexes, where M is independent of h (see 
also the proof of Lemma 5.1 below) as follows from (3.1) and the strong regularity 
of &. Consequently, 

\\Lhv-Ghv\^q<k £ \\Lhv-Ghv\\l^K<Ch2< £ \v\lqMKii)<CMh2<i\v\lq 

Ken Ken 
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and 

(3.26) \\Lhv-Ghv\\o,q^Ch2\v\3,q 

follows. Combining (3.24) and (3.26), we arrive at 

|| gradv - Ghv\\0,q < || gradi; - Lhv\\0,q + \\Lhv - Ghv\\0,q ^ Ch2\v\3,q. 

D 

4 . APPROXIMATION OF THE SECOND DERIVATIVES 

In this section we show that piecewise constant derivatives of the weighted aver
aged gradient can be used as a good approximation of the second derivatives. 

Theorem 4.1. Let q G (f, oo), q ^ 1 and let & be a strongly regular family of 

decompositions. Then there exists a constant C > 0 such that for any decomposition 

Th G & we have 

|| gradi; - Ghv\\hq ^ Ch\v\3^q Vv £ W^tl). 

P r o o f . Since the family & of decompositions is regular, we have (see [7]) 

(4.1) \\w-nhw\\hq^Ch\w\2,q Vwew2(n). 

Thus for Lhv defined by (3.23) we have by (4.1) that 

(4.2) || gradv - Lhv\\hq ^ Ch\v\3,q Vv e Wg
3(fl). 

Since & is strongly regular, the standard inverse inequality (see e.g. [7, Theorem 
17.2]) and (3.26) imply that 

(4.3) \\Lhv - Ghv\\ltq ^ Ch~l\\Lhv - Ghv\\o,q ^ Ch\v\3iq. 

Using finally the triangle inequality, (4.2) and (4.3), we get 

|| grad*; - Ghv\\ltq ^ || gradi; - Lhv\\1%q + \\Lhv - Ghv\\ltq ^ Ch\v\3>q. 

D 
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5 . APPLICATION TO THE FINITE ELEMENT METHOD 

Let us consider the following elliptic model problem 

(5.1) — div(A gradw) = / in ft, 

u = 0 on dft, 

where A = (Xij)fj=1 is a symmetric matrix, \{j G W2\£(ft) f° r some e > 0, there 
exists a constant Co ^ 0 such that 

(5.2) C T A ( a ; ) ^ Colieil2 VxGfi V£ G Rd 

and / G W*(ft). Let us assume that the solution u of (5.1) belongs to W*(fl), where 
q > d. 

We define the finite element approximation uh in the standard way, i.e., 

UH e V° = {vh G Vh | vh = 0 on 90} , 

a(uh,vh) = (f,vh)o,2 Vvh G Vh°, 

where 

a(u,v) = (Agrad^x,grad^;)o,2 

and (., .)0,2 is the L2-inner product. It is well-known that 

(5.3) a(u-uh,vh) = 0 V^E^°. 

Now a natural question arises: having the finite element approximation uh, is the 

weighted averaged gradient Ghuh superconvergent for some kind of meshes, i.e., does 

the estimate 

| | g r a d ^ - G ^ ^ | | 0 , 2 = ^(^ 2 ) 

hold? For simplicity we establish only a local estimate over a fixed sub domain 

Sl0 CC fi. Making use of the triangle inequality, we may write 

|| gradix - Ghuh\\0,2,n0 ^ || gradu - Ghu\\0,2,n0 

(5.4) +\\Ghu - Gh(irhu)\\0,2,n0 + \\Gh(^hu) - Ghuh\\0,2,Q0. 

The first term of the upper bound can be estimated on the basis of Theorem 3.8, 

namely 

(5.5) || gradu - Ghu\\o,2,n0 ^ Ch2\u\3,q, 
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provided the family of decompositions is regular. To estimate further terms we first 

prove the following lemmas. 

Lemma 5.1. Let & = {Th}h-*o be a strongly regular family. Then there exists 

a constant C such that 

| |CW||o,2 ^ C|| grad^||o,2 Vvh G Vh. 

P r o o f . Let K G Th, i G { 1 , . . .,d) and vh G Vh be arbitrary but fixed. Since 

Ghvh is a linear function on K, we have 

(5.6) \\(Ghvh)i\\l^K ^ measK(Ghvh(Z))l 

where Z = ZK = (z\,. •., z*) is an appropriate vertex of K. Obviously, 

(5.7) vh(Ai) - vh(Z) = [ l divh(t) dt, 
JZi 

rzi+bi 
(5.8) vh(Bi) - vh(Z) = / divh(t) dt, 

J Zi 

where vh(t) = Vh(z\,..., Zi-\, t, Zi+\,.. .,Zd) and where the local coordinate Cartesian 
system ^ (cf. (3.4)) is applied whenever Z e N®. Recall that N° contains only a 
finite number of points and this number is independent of h. 

First, let Z G Nhni}. Multiplying (5.7) by ai and (5.8) by fa, summing this, and 
using the fact (see (3.3)) that aiCii = \ai\ \ai\, fiibi = |/3;| |6;|, we obtain by (3.2) and 
(3.11) that 

(5.9) \(Ghvh(Z))i\ ^ \a{\\ f % ' divh(t)dt\ + \fc\\ f * * diVh(t)dt\ 
J Zi ' J Zi ' 

^ (aidi+fiibi) max \(diVh\K,)\ = \(diVh\E)\, 
K' €z8i (Z) 

where 

Si(Z) = {K' G Th | measi((ZA; U ZB{) H K') > 0} 

and E = Ei(K) is that element from Si(Z), where \diVh\ attains its maximum. 
Consequently, according to (5.9), 

measK (Ghvh(Z))2 ^ m e a s ^ d ; ^ ^ ) ! 2 ^ CmeasE\(diVh\E)\2, 
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and thus 

(5.10) measK(Ghvh(Z))2
i < CmeasE||grad^|E||2, 

where C does not depend on h due to the strong regularity of &. 

Secondly, assume that Z € Nh n d£l. Then by (3.3) we have 

la i+Ä ІN + IAIIЬi-o.1--
o ? - Й 

aibi(ӣi — bi) 

UІ + ЬІ 

bi 

Oi| + 

<3 : 

ai 
ЬІ(UІ - bi) 

\bi -a{\ 

as \a,i\ < \bi\. Prom here we get analogously to (5.9) that 

\(Ghvh(Z))i\ = U / ' ' divh(t) dt + fr f ' ' divh(t) dt 
' J Zi J Zi 
I rzi+ai rzi+bi 

= \(<Xi+/3i) divh(t)At + fii I divh(t)dt 
J Zi J Zi+di 

^ (\a{ + Pi\\a,i\ + \Pi\\bi - a i | ) max 1(3^1^/) ! ^ 31(^^1^)1 

for Z £ JV°, and again the local coordinates of ^ are employed if Z G N®. This and 

(3.4) yield 

\\Ghvh(Z)\\^C\\gi<idvh\El 

where C is independent of h and grad is in global Cartesian coordinates (x i , . . . , Xd)-

Thus (5.10) holds also in the case Z G NhD dft. 

Let i be fixed. Since 

dist(K,E) ^ dist(.Z,£) ^ Ch(Z) ^ Ch 

(see (3.5)) and since & is strongly regular, there exists an integer M independent 

of h such that E corresponds to at most M different simplexes from Th, i.e., there 

exist m ̂  M and i ^ i , . , , KTm G Th such that E = E(K\) = . . . = E(Km). In fact, a 

C/i-neighbourhood of the simplex K may contain at most M simplexes, where 

м^íi±^)d<(l + C)V d„-d 

QKj 

due to Definition 3.3. Here QK} is the radius of the minimal ball among all balls 

inscribed in the simplexes of the C/i-neighbourhood. Setting 

T° = {EeTh\3KeTh:E = E(K)}, 
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we get by (5.6) and (5.10) that 

\\(GHVh)i\\l2 = Y, \\(GhVh)i\\lt2tK < £ measK(Ghvh(ZK))2 

Ken Ken 

^C £ meas £?(/.:) || g r a d ^ | E / ^ ||2 ^ MC £ meas.E|| g r a d ^ l ^ y 2 

KeTh EeTjl 

^MC £ measK\\gradvh\K\\2 = C £ \\gradvh\K\\l2K = C\\giadvh\\
2

0i2, 
Ken Ken 

which completes the proof. • 

From now on we shall deal only with the case d = 2. The proof of the next lemma 
uses some relations and notions of Levine [20]. 

Lemma 5.2. Assume that d = 2, q G (2,oo) and that the family & = {Th}h^o 

is generated by smooth distortions (W^-diffeomorphism) of uniform triangulations 

of square grids of mesh-size h. Then 

\ai(v(Ai) - 7rhv(Ai)) + (3i(v(Bi) - nhv(Bi))\ ^ Ch2-2^\\v\\3tqM 

holds for i = 1,2, Z G Nh n ft, sufficiently small h and v G W*(U) with U = U(Z). 

P r o o f . I f g > 2 then the second derivatives of v G Wq(fi.) are continuous by 
the Sobolev imbedding theorem. Without loss of generality, let us consider i = 1 
and the hexagon U from Figure 6. We shall drop the index 1 in what follows and 
set xA = x(A),xB = x(B), a.s.o. Obviously, we have 

(5.11) 7rhv(A) = TAV(G) + T'AV(F), 

(5.12) nhv(B) = TBV(D) + T'BV(E), 

where 

Write 

and 

~Уғ ~УE ^ гn n 
тA = , тв = , тA,твЄ 0 , 1 , 

УG -УF УD~ УE 
тA = l-тA, т'в = l-тв. 

ţ = X-X0, = У=У~У0 

f(v) = a[nhv(A) - v(A)] + 0[vhv{B) - v(B)]. 

We have by [20, Lemma 2.2] and Definition 3.3 

(5.13) C1h^hK4C2h, hK/\a\^hK/{2QK)<C, hK,/b^C VK €Th. 
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Y = Yo + h 

D\ Y = Y0 

X = XQ — h 
X = X0 

Y = Y0-Һ 

X = X0 + Һ 

Figure 6 

Let us find estimates for quadratic terms v e {f2,r?2,£f7}. First, we realize that 

(5.14) av(A) + pv(B) = 0 

due to (3.12) (note that £A = a and £B = b) and TJA = T]B = 0. 
Using (5.11), (5.12) and (5.14), we may write for v G {^2,rl2,^r/} 

f(v) = a(TAv(G) + Tf
Av(F)) + (5(TBV(D) + T'BV(E)) = h(v) + f2(v), 

where 

h(v) = aTAv(G) + PT'BV(E), 

f2(v) = aT'Av(F) + (3TBV(D), 

Let us introduce 

(5.15) t0 = (TA + T'B)/2, h = (TA - T'B)/2, 

so that 

h(v) = t0(av(G) + /3v(E)) - h(0v(E) - av(G)) = fn(v) + fi2(v). 

Introducing further 

6 = (a + P)/2, 1 = (p-a)/2, 

we may write 

(5.16) | /n( t / ) | ^ \av(G) + (3v(E)\ ^ \S\ \v(G) + v(E)\ + | 7 | \v(E) - v(G)\. 

Let us estimate \S\. We have 

(5.17) \a + /3\ = ,b + a 
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Using (5.11), (5.12) and (5.15), we obtain 

(5.18) \a + b\ = \U + 6 J | < fata + T'B^E\ + \T'AZF + TB£D\ 

= Mia + ZB) ~ hits - fo)| + |«OUF + ID) + h(£,D - &)\ 

where 

to = (T'A + TB)/2, i0 €[0,1]. 

It is easy to find the following bounds 

(5.19) |f0 + fc| + |CF + £D\ < o/i2||a;||2,oo, 

|& - fc | + Ki9-W<oft|Nll.oo 

Let us find an estimate for |£i|. We have 

2t _ -yp -VF _ yEyF - ypyc 
yD-yE yc-yF (yD-yE)(yc-yF) 

I W f W - |jHg3)fW = n(h) 
[^(03) ̂  ^(e^me,) ^ §^(02)] d(hy 

where 0-. are some points on the square grid in accordance with the Taylor formula. 

It is readily seen (again from the Taylor formula) that 

whereas 

|n(fc)| ^ C/iIMlioo, 

gndW-- [||(0) + ^(0)] 2>0. 
Consequently, 

(5-20) l*i|<oft||l/lla,oo 

holds for sufficiently small h. 

Combining (5.18)-(5.20), we get 

(5.21) \a + b\ < |fo + £E| + |£F + £D\ + M(|£E - fo| + |£D - frl) 

< Cfc2(||x||2|0o + l|y|ll,ooWi,oo) = C,h2. 

Substituting (5.21) into (5.17) yields that 

li2 

''I * C£h\-\ab\ 
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Lemma 3.2 implies 

(5-22) h K |(l/3| +H)< c a r 1 + H-1). 

Since 

max(e2 ,ry2 , |^|)^^ 

holds for all (x, y) G K, we have 

\v(G) + v(E)\ ^ \v(G)\ + \v(E)\ <h2
K + h2

K, . 

Consequently, 

(5.23) \5\ \v(G) + v(E)\ ^ Ch2(h2
K + h2

K,)\ab\-1. 

We show that 

(5.24) (/ix + ̂ K O H " 1 *$<? 

for sufficiently small h. Making use of (5.21) and [20, Lemma 2.2], we obtain 

b ̂  \a\ — C\h2 ^ \a\ — C2 meas K. 

Then 

6 \a\ meas if 2 meas If x x 
- — ^ T o 2 — r ^ ^ — ̂ 2—7" ^ o C > u 

hK hK hK riK 

follows from (5.13) for sufficiently small h. An analogous estimate holds for \a\/hK' 
and therefore 

^ T T ^ ^ + T T ) ^ -
|a|6 \ b \a\ / 

Next, for t; G {^2,^2,^} we obtain 

(5.25) \v(E)-v(G)\^Ch3, 

employing the estimates (5.19). 
Combining (5.22), (5.25) and using [20, Lemma 2.2] and (5.13), we obtain 

(5.26) | 7 | \v(E) - v(G)\ ^ Ch3(b~l + H " 1 ) ^ dh(meas K/\a\ +meas K'/b) 

C2h(h2
K/\a\ + h2

K,/b) ^ C3h(hK + hK>) ^ Ch2. 

Finally, 
\hi(v)\^Ch2 
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follows from (5.16), (5.23), (5.24) and (5.26). 

Next we employ (5.20), Lemma 3.2 and (5.13) to derive 

l/i2(f)K|ti|(|/3|K^)l + WKG)l) 
^ Ch(h2

K,/b + h2
K/\a\) ^ Cih{hK> + hK) < C2h

2. 

Consequently, we obtain 

| / i ( « ) | ^ | / n ( « ) | + | / i a ( t ; ) |<C/ . a . 

The estimate of |/2V*I)| is completely analogous, as follows from (5.19) and the rela

tion 

r'A - rB = 1 - rA - TB = r'B - rA = -2* i . 

To find an estimate for a general function v G VV3(ft), we employ the following 
projection operator II: JV2 (U) -» span {f2,772,£77}, 

Uv=<2 meas u)~l\ejv S
dx dy+2^ I J£dx dy+^i 0dx M • 

Obviously, we have 

(5.27) f(v) = f(Uv) + f(v - Uv), 

(5.28) |/(IIt;)| < | ( meas U)"1 [|/(£2)| / | 0 | dx dy + 2 | / ( ^ ) | / 
т2 

д2v 

d2v 

dxdy 

\f(fl2)\ jj^dxdy] ^Ch2\v\2<00,v, 

dxdy 

using the above result. 

For f(v — Uv) we employ a special version of the Bramble-Hilbert theorem [5, 
Theorem 3]. Let us introduce 

m = min(|a|, b), g(v) = mf(v — Uv). 

Obviously, 

( 772 771 \ 
r-r, --- ) = 1, m ^ 1 for sufficiently small ft, 
\a\ 0 / 

so that by virtue of Lemma 3.2 we may write 

\g(v)\ ^ m\f(v)\ + m |/(nv) | < C\v\0tOOtU 4- Ch2\v\2t00tU 

261 



and 

h2 ^Ch2
K ^C (d iamU ) 2 , 

follows from (5.13). 

Secondly, 

g(p) = mf(p - Up) = o VpeP2(U) 

holds due to the definition of II. 

Then [5, Theorem 3] yields that 

(5-29) \g(v)\ < C(diamU)3-2^|t;|3,(/)t/ 

holds when q > 2. Since 

diam U -̂  2 max hx ^ Ch and — ^ C 
m 

follows form (5.13), the estimate (5.29) implies 

(5.30) \f(v - Uv)\ ^ m " 1 ! ^ ) ! ^ Ch2-2^\v\3iqiU. 

Combining (5.27), (5.28) and (5.30), we arrive at 

\f(v)\ ^ Ch2-2^(h2^\v\2^u + \v\3,qtU) ^ ch^^Wvh^u. 

Here we used the inequality 

H2,oo f f/<C(diamU)-2^||V | |3,gf tI. 

• 
Consider again the weak solution u of (5.1). Since u(Z) = nhu(Z) for all nodes, 

we have by Lemma 5.2 and the definition (3.2) that 

\\Ghu(Z) - Gh(irhu)(Z)\\ < C/i2-2/lu||3,g,t/ 

for all Z e Nh D ft. Hence, for the second term in (5.4) we get 

(5.31) \\Ghu - G*(7rfcu)||0|2fno < C ^ I M k , , 

using the same technique as in the proof of Theorem 3.8. 
For the last term of (5.4) we obtain under the assumptions of Lemma 5.1 that 

(5.32) \\Gh(nhu - uh)\\o,2,n0 < \\Gh(-Khu - u/i)||0,2 < C\nhu - uh\i>2. 
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A sufficient condition for the ^(/i2)-convergence of the right-hand side is the inequal

ity 

(5.33) a(u - irhu,vh) ^ Ci(u)h2\vh\h2 Vv* G V£. 

In fact, using the positive definiteness (5.2), (5.3) and (5.33), we may write 

Co\uh - -Khu\\a ^ a(uh - nhu,uh - nhu) 

= a(u - nhu,uh - nhu) ^ Ci(u)h2\uh - ^^11,2-

Combining this with (5.32), we get 

(5.34) \\Gh(nhu - ^)||o,2,n0 ^ C(u)h2. 

Then (5.4), (5.5), (5.31) and (5.34) yield that 

|| gradu - Ghuh\\0y2,n0 ^ C(u)h2, 

in other words, the weighted averaged gradient of the finite element solution is locally 
superconvergent. 

Thus the whole problem reduces to the crucial inequality (5.33). 
Following Levine [20] for d = 2, we obtain a class of superconvergent triangula-

tions (the so-called quasiuniform triangulations) satisfying the inequality (5.33) with 
Ci(u) = C||u||3,2. (Then C(u) = C||u||3)q.) They are generated by smooth distor
tions (VV^-diffeomorphism) from uniform triangulations of square grids of mesh-size 
h. The distorted triangulations have the following properties: 

(i) precisely six elements meet at every node internal to the triangulation, 
(ii) any quadrilateral formed by two adjacent elements is "almost parallelogram", 

as the distance of the midpoints of the diagonals is &(h2). 

E x a m p l e 5.3. In optimal shape design, one meets domains (see e.g. [4]) 

®<(v) = {(2/1,2/2) e R2 I 0 < Vl < v(y2), 0 < y2 < 1}, 

where v G VV^QO, 1]). This domain is usually approximated by a polygonal domain 
ft(vh), and Q,(v) can be transformed to the square ft = (0,1) x (0,1) by the mapping 

yi=Yiv(Y2), (Yi,Y2)eCl, 

2/2 = Y2. 

Let n > 1 be an integer, h = 1/n. Then the square uniform mesh of Cl with 
the mesh-size h, which is triangulated by diagonals of slope +1 , is mapped onto a 
superconvergent mesh of the domain fi.(vh), if a positive C exists such that v(y2) ^ C 
for every y2 G [0,1]. 
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R e m a r k 5.4. In the forthcoming paper [13], we shall present other interior 
error estimates, where the global regularity assumption u G Wj}(fi,) is replaced by 
an interior regularity and some local error estimates up to the boundary. 

6. NUMERICAL TESTS 

Let u(x\,x2) = .2:1X2(1 - x\)(l — x2) be the solution of the Poisson equation on 
the unit square Q, = (0,1) x (0,1), i.e., N® = 0. Let uh G Vh be the finite element 
approximation of u over the triangulations of Figure 7. Since Au is a quadratic 
polynomial, we were able to calculate the right-hand side of the associated Gram 
system exactly using an integration formula which is exact for all cubic polynomials. 

The Gram system of simultaneous equations was solved by a direct method. Thus 
the function Uh wets computed exactly (except the rounding errors). 

For w = (wuw2)
T G (L°°(n))2 we set 

IMI00A) = ] ^ ess sup K (a;) I 
• - x€f-o 

where ft0 = (0.15,0.85) x (0.15,0.85). The averaged gradient was calculated by the 
formula (3.2). Note that continuous piecewise linear functions can be easily evaluated 
at any point B{ G ft. Table 1 illustrates the | |. | |oo,n0 'norm OI"the following errors 

eh = grad(ix - uh), Eh = gradix - Ghuh, 

even though the theory was done for the case q < 00. Recall that grad Uh is piecewise 
constant whereas GhUh is piecewise linear. We observe that the practical accuracy 
of the weighted averaged gradient seems to be almost &(h2). Moreover, for all 
considered triangulations and all Z G fto H Nh we have got 

(6.1) || gradu(Z) - C?fcu(^)|| » 10"12 

which is almost zero in computer arithmetics. This result follows from the formulae 
(3.13) and (3.14) which hold also for any biquadratic polynomial from Q2(£l). Hence, 
as in the proof of Lemma 3.6 we find that 

Ghp(Z) = gradp(Z) VZ G Nh Vp G Q2(Tl), 

which explains the result (6.1). 
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Figure 7 

For "more nonuniform" meshes than in Figure 7 we usually observe only the 

^(/i1+e)-superconvergence for some e £ (0,1). 

Һ IKЦooA) ||-5yi||oo,П0 

0.3969 0.03903 0.01321 

0.2111 0.02610 0.00450 

0.1088 0.01492 0.00134 

0.0552 0.00811 0.00043 

Table 1 
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