Applications of Mathematics

Tianzi Jiang; Songde Ma

On a new kind of 2-periodic trigonometric interpolation

Applications of Mathematics, Vol. 41 (1996), No. 6, 401-410
Persistent URL: http://dml.cz/dmlcz/134334

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON A NEW KIND OF 2-PERIODIC TRIGONOMETRIC INTERPOLATION

Tianzi Jiang and Songde Ma, Beijing

(Received February 22, 1995)

Summary. It is well-known that the interpolation theory plays an important role in many fields of computer vision, especially in surface reconstruction. In this paper, we introduce a new kind of 2 -period interpolation of functions with period 2π. We find out the necessary and sufficient conditions for regularity of this new interpolation problem. Moreover, a closed form expression for the interpolation polynomial is given. Our interpolation is of practical significance. Our results provide the theoretical basis for using our interpolation in practical problems.

Keywords: Interpolation, trigonometric polynomial, regularity, computer vision
AMS classification: 41A05

1. Introduction

It is well-known that the interpolation theory plays an important role in many fields of computer vision, especially in surface reconstruction. Recently, many works have been devoted to studying the Hermite interpolation and Birkhoff interpolation. Here we only mention a very small part of them, for example, see [1-4]. As we know, these interpolations are only adequate for smooth functions. In many practical issues of computer vision, we do not know if the interpolated function is differentiable or we only know the values of the interpolated function at nodes, so we can not use these interpolations. From computational view, divided difference is a nat ral candidate for replacing derivative because divided difference is the discretization of the derivative of functions. In this paper, we will replace the conditions of derivatives for 2 -periodic interpolation by those of differences at the nodes. We only consider the interpolation of 2π-periodic functions at the nodes $x_{k}=x_{k, n}=k \pi / n(k=$ $0,1, \ldots, 2 n-1$).

For $f \in C_{2 \pi}$ and $0<h<\pi / n$, we define

$$
\begin{gathered}
\delta f(x)=\delta^{1} f(x)=f(x+h)-f(x-h), \\
\delta^{m} f(x)=\delta\left(\delta^{m-1} f(x)\right)=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} f(x+(m-2 k) h), \quad m \geqslant 2 .
\end{gathered}
$$

We shall say that $t(x) \in \mathcal{T}_{n}$, if $t(x)$ is a polynomial of the form

$$
t_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

If

$$
\begin{aligned}
t_{n}(x)= & \frac{a_{0}}{2}+\sum_{k=1}^{n-1}\left(a_{k} \cos k x+b_{k} \sin k x\right)+a_{n} \cos (n x+\varepsilon \pi / 2) \\
& (\varepsilon=0 \text { or } 1)
\end{aligned}
$$

we shall say that $t_{n}(x) \in \mathcal{T}_{n, \varepsilon}$ ($\varepsilon=0$ or 1).
Let $p(t)=p_{e}(t)+p_{o}(t)$ be a real algebraic polynomial, where $p_{e}(t)$ is even and $p_{o}(t)$ is odd, and $p_{e}(0)=0$. Our problems are
P_{1} : For any two given sets of complex numbers $\left\{\alpha_{k}\right\}_{0}^{n-1}$ and $\left\{\beta_{k}\right\}_{0}^{n-1}$, if $p(2 h) \neq 0$, decide whether or not there exists a unique trigonometric polynomial $t_{n}(x) \in$ $\mathcal{T}_{n, \varepsilon}(\varepsilon=0$ or 1$)$ satisfying the conditions

$$
t_{n}\left(x_{2 k}\right)=\alpha_{k}, \quad\left(p(\delta) t_{n}\right)\left(x_{2 k+1}\right) / p(2 h)=\beta_{k}, \quad(k=0,1, \ldots, n-1)
$$

We call the interpolation problem satisfying the above conditions a 2 -periodic interpolation.
P_{2} : If the answer to Problem P_{1} is affirmative, then usually, we say the interpolation problem is regular. Find necessary and sufficient conditions on n such that Problem P_{1} is regular.
P_{3} : Find the fundamental polynomials of the interpolation when Problem P_{1} is regular.

2. Lemmas

In order to prove our main results we need the following lemmas.

Lemma 2.1. If
(1)

$$
K_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

then
(i) $K_{n}\left(x_{2 k}\right)=\delta_{0, k}(k=0,1, \ldots, n-1)$ if and only if

$$
\left\{\begin{array}{l}
\frac{1}{2} a_{0}+a_{n}=\frac{1}{n} \\
a_{k}+a_{n-k}=\frac{2}{n} \\
b_{k}-b_{n-k}=0 \\
k=1, \ldots, n-1
\end{array}\right.
$$

(ii) $K_{n}\left(x_{2 k}\right)=0(k=0,1, \ldots, n-1)$ if and only if

$$
\left\{\begin{array}{l}
\frac{1}{2} a_{0}+a_{n}=0 \\
a_{k}+a_{n-k}=0 \\
b_{k}-b_{n-k}=0 \\
k=1, \ldots, n-1
\end{array}\right.
$$

Proof. It is an easy consequence of the following two known identities.

$$
\frac{\sin \frac{n x}{2}}{n \sin \frac{x}{2}}=\frac{1}{n}\left[1+2 \sum_{j=1}^{(n-1) / 2} \cos j x\right], \quad n \text { odd }
$$

and

$$
\frac{\cos \frac{x}{2} \sin \frac{n x}{2}}{n \sin \frac{x}{2}}=\frac{1}{n}\left[1+2 \sum_{j=1}^{(n-2) / 2} \cos j x+\cos \frac{n x}{2}\right], \quad n \text { even. }
$$

The above two identities come from formula (2.15) in [3].

Lemma 2.2. If $K_{n}(x)$ is given by (1), then
(i) $\quad K_{n}\left(x_{2 k+1}\right)=\delta_{0, k}(k=0,1, \ldots, n-1)$ if and only if

$$
\left\{\begin{array}{l}
\frac{1}{2} a_{0}-a_{n}=\frac{1}{n} \\
a_{k}-a_{n-k}=\frac{2}{n} \cos j x_{1} \\
b_{k}+b_{n-k}=\frac{2}{n} \sin j x_{1} \\
k=1, \ldots, n-1
\end{array}\right.
$$

(ii) $K_{n}\left(x_{2 k+1}\right)=0(k=0,1, \ldots, n-1)$ if and only if

$$
\left\{\begin{array}{l}
\frac{1}{2} a_{0}-a_{n}=0 \\
a_{k}-a_{n-k}=0 \\
b_{k}+b_{n-k}=0 \\
k=1, \ldots, n-1
\end{array}\right.
$$

The proof consists in applying Lemma 2.1 after the observation that

$$
\begin{aligned}
K_{n}\left(x_{2 k+1}\right)= & K_{n}\left(x_{2 k}+\frac{\pi}{n}\right) \\
= & \frac{a_{0}}{2}-a_{n}+\sum_{j=1}^{n-1}\left(P_{j} \cos j x_{2 k}+Q_{j} \sin j x_{2 k}\right) \\
& (k=0,1, \ldots, n-1),
\end{aligned}
$$

where

$$
P_{j}=a_{j} \cos j x_{1}+b_{j} \sin j x_{1},
$$

and

$$
Q_{j}=b_{j} \cos j x_{1}-a_{j} \sin j x_{1} .
$$

Lemma 2.3. For $s=1,2, \ldots$, we have

$$
\begin{aligned}
\delta^{2 s} \cos j x & =(\mathrm{i} 2 \sin j h)^{2 s} \cos j x, \\
\delta^{2 s} \sin j x & =(\mathrm{i} 2 \sin j h)^{2 s} \sin j x, \\
\delta^{2 s+1} \cos j x & =\mathrm{i}(\mathrm{i} 2 \sin j h)^{2 s+1} \sin j x, \\
\delta^{2 s+1} \sin j x & =-\mathrm{i}(\mathrm{i} 2 \sin j h)^{2 s+1} \cos j x .
\end{aligned}
$$

Proof. It is easy to prove it by induction.

Lemma 2.4. Let $p(t)=p_{e}(t)+p_{o}(t)$ be a real algebraic polynomial, where $p_{e}(t)$ is even and $p_{o}(t)$ is odd. We have

$$
\begin{aligned}
p(\delta) \cos j x & =p_{e}(\mathrm{i} 2 \sin j h) \cos j x+\mathrm{i} p_{o}(\mathrm{i} 2 \sin j h) \sin j x, \\
p(\delta) \sin j x & =p_{e}(\mathrm{i} 2 \sin j h) \sin j x-\mathrm{i} p_{o}(\mathrm{i} 2 \sin j h) \cos j x .
\end{aligned}
$$

Proof. From Lemma 2.3, we have

$$
\begin{aligned}
& p_{e}(\delta) \cos j x=p_{e}(\mathrm{i} 2 \sin j h) \cos j x, \\
& p_{o}(\delta) \cos j x=\mathrm{i} p_{o}(\mathrm{i} 2 \sin j h) \sin j x, \\
& p_{e}(\delta) \sin j x=p_{e}(\mathrm{i} 2 \sin j h) \sin j x, \\
& p_{o}(\delta) \sin j x=-\mathrm{i} p_{o}(\mathrm{i} 2 \sin j h) \cos j x .
\end{aligned}
$$

This implies Lemma 2.4.

3. MAIN RESULTS AND THEIR PROOFS

Theorem 3.1. (i) For $\varepsilon=0$, Problem P_{1} is regular if and only if

$$
\begin{equation*}
p_{e}(\mathrm{i} 2 \sin j h) \neq 0, \quad \Delta_{j}:=A_{j}^{2}+B_{j}^{2} \neq 0 \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{j} & =p_{e}(\mathrm{i} 2 \sin j h)+p_{e}(\mathrm{i} 2 \sin (n-j) h) \\
B_{j} & =\mathrm{i}\left[p_{o}(\mathrm{i} 2 \sin (n-j) h)-p_{o}(\mathrm{i} 2 \sin j h)\right]
\end{aligned}
$$

$j=0,1,2, \ldots, n-1$.
(ii) For $\varepsilon=1$, Problem P_{1} is regular if and only if

$$
\begin{equation*}
p_{o}(\mathrm{i} 2 \sin j h) \neq 0, \quad \Delta_{j} \neq 0 \tag{3}
\end{equation*}
$$

$j=0,1,2, \ldots, n-1$.
Proof. We only prove part (i) because the proof of part (ii) is similar. Let $Q_{n}(x) \in \mathcal{T}_{n, 0}$ have the form

$$
Q_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n-1}\left(a_{k} \cos k x+b_{k} \sin k x\right)+a_{n} \cos n x
$$

and let

$$
\left\{\begin{array}{l}
Q_{n}\left(x_{2 k}\right)=0 \\
\left(p(\delta) Q_{n}\right)\left(x_{2 k+1}\right)=0 \\
k=0,1, \ldots, n-1
\end{array}\right.
$$

Taking $K_{n}(x)=Q_{n}(x)$ in part (2) of Lemma 2.1, we have
(4)

$$
\left\{\begin{array}{l}
\frac{1}{2} a_{0}+a_{n}=0 \\
a_{j}+a_{n-j}=0 \\
b_{j}-b_{n-j}=0 \\
j=1, \ldots, n-1
\end{array}\right.
$$

Applying Lemma 2.4 and $p_{e}(0)=0$, we have

$$
\begin{aligned}
\left(p(\delta) Q_{n}\right)(x)= & \sum_{j=1}^{n-1}\left\{\left[a_{j} p_{e}(\mathrm{i} 2 \sin j h)-\mathrm{i} b_{j} p_{o}(\mathrm{i} 2 \sin j h)\right] \cos j x\right. \\
& \left.+\left[b_{j} p_{e}(\mathrm{i} 2 \sin j h)+\mathrm{i} a_{j} p_{o}(\mathrm{i} 2 \sin j h)\right] \sin j x\right\} \\
& +a_{n} p_{\epsilon}(\mathrm{i} 2 \sin n h) \cos n x+a_{n} \mathrm{i} p_{0}(\mathrm{i} 2 \sin n h) \sin n x .
\end{aligned}
$$

Taking $K_{n}(x)=\left(p(\delta) Q_{n}\right)(x)$ in part (2) of Lemma 2.2, we have

$$
\left\{\begin{array}{l}
-a_{n} p_{e}(\mathrm{i} 2 \sin n h)=0 \tag{5}\\
a_{j} p_{e}(\mathrm{i} 2 \sin j h)-\mathrm{i} b_{j} p_{o}(\mathrm{i} 2 \sin j h) \\
\quad \quad-a_{n-j} p_{e}(\mathrm{i} 2 \sin (n-j) h)+\mathrm{i} b_{n-j} p_{o}(\mathrm{i} 2 \sin (n-j) h)=0 \\
b_{j} p_{e}(\mathrm{i} 2 \sin j h)+\mathrm{i} a_{j} p_{o}(\mathrm{i} 2 \sin j h) \\
\quad+b_{n-j} p_{e}(\mathrm{i} 2 \sin (n-j) h)+\mathrm{i} a_{n-j} p_{o}(\mathrm{i} 2 \sin (n-j) h)=0 \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

From the first equations (4) and (5) we have $a_{0}=a_{n}=0$ if and only if $p_{e}(\mathrm{i} 2 \sin n h) \neq 0$.

From the other equations of (4) and (5) we have

$$
\left\{\begin{array}{l}
a_{j}\left[p_{e}(\mathrm{i} 2 \sin j h)+p_{e}(\mathrm{i} 2 \sin (n-j) h)\right] \\
\quad+\mathrm{i} b_{j}\left[-p_{o}(\mathrm{i} 2 \sin j h)+p_{o}(\mathrm{i} 2 \sin (n-j) h)\right]=0 \\
\mathrm{i} a_{j}\left[p_{o}(\mathrm{i} 2 \sin j h)-p_{o}(\mathrm{i} 2 \sin (n-j) h)\right] \\
\quad+b_{j}\left[p_{e}(\mathrm{i} 2 \sin j h)+p_{e}(\mathrm{i} 2 \sin (n-j) h)\right]=0 \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

That is,

$$
\left\{\begin{array}{l}
A_{j} a_{j}+B_{j} b_{j}=0 \\
-B_{j} a_{j}+A_{j} b_{j}=0 \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

Hence $a_{j}=b_{j}=0(j=1,2, \ldots, n-1)$ if and only if $\Delta_{j}=A_{j}^{2}+B_{j}^{2} \neq 0(j=$ $1,2, \ldots, n-1)$. This completes the proof of Theorem 3.1.

If we denote the fundamental polynomials of $(0, p(\delta))$ interpolation by $r_{j, \varepsilon}(x)$ and $\varrho_{j, \varepsilon}(x)$, respectively, then it is clear that

$$
r_{j, \varepsilon}(x)=r_{0, \varepsilon}\left(x-x_{j}\right), \quad \varrho_{j, \varepsilon}(x)=\varrho_{0, \varepsilon}\left(x-x_{j}\right), j=1,2, \ldots, n-1
$$

We come to give the explicit forms of the fundamental polynomials $r_{0, \varepsilon}(x)$ and $\varrho_{0, \varepsilon}(x)$. They are determined by the conditions

$$
\begin{align*}
& r_{0, \varepsilon}\left(x_{2 k}\right)=\delta_{0, k}, \quad\left(p(\delta) r_{0, \varepsilon}\right)\left(x_{2 k+1}\right)=0 \tag{6}\\
& \varrho_{0, \varepsilon}\left(x_{2 k}\right)=0, \quad\left(p(\delta) \varrho_{0, \varepsilon}\right)\left(x_{2 k+1}\right)=\delta_{0, k} \tag{7}
\end{align*}
$$

$k=1,2, \ldots, n-1$.
Theorem 3.2. Let

$$
\left\{\begin{array}{l}
C_{1, j}=A_{j} p_{e}(\mathrm{i} 2 \sin (n-j) h)+\mathrm{i} B_{j} p_{o}(\mathrm{i} 2 \sin (n-j) h) \\
\left.D_{1, j}=B_{j} p_{e}(\mathrm{i} 2 \sin (n-j) h)-A_{j} p_{o}(\mathrm{i} 2 \sin (n-j) h)\right] \\
C_{2, j}=A_{j} \cos j x_{1}-B_{j} \cos j x_{1} \\
D_{2, j}=B_{j} \cos j x_{1}+A_{j} \cos j x_{1} \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

where A_{j} and B_{j} are the same as in Theorem 3.1. (i) If $\varepsilon=0$ and (2) hold, then

$$
\left\{\begin{array}{l}
r_{0,0}=\frac{1}{n}+\frac{2}{n} \sum_{k=1}^{n-1} \frac{C_{1, k} \cos k x+D_{1, k} \sin k x}{\Delta_{k}} \tag{8}\\
\varrho_{0,0}=\frac{\cos n x}{n p_{e}(\mathrm{i} 2 \sin n h)}+\frac{2}{n} \sum_{k=1}^{n-1} \frac{C_{2, k} \cos k x+D_{2, k} \sin k x}{\Delta_{k}}
\end{array}\right.
$$

(ii) If $\varepsilon=1$ and $\nmid 3)$ hold, then

$$
\left\{\begin{array}{l}
r_{0,1}=\frac{1}{n}+\frac{2}{n} \sum_{k=1}^{n-1} \frac{C_{1, k} \cos k x+D_{1, k} \sin k x}{\Delta_{k}} \tag{9}\\
\varrho_{0,1}=\frac{\mathrm{i} \sin n x}{n p_{o}(\mathrm{i} 2 \sin n h)}+\frac{2}{n} \sum_{k=1}^{n-1} \frac{C_{2, k} \cos k x+D_{2!} \sin k x}{\Delta_{k}}
\end{array}\right.
$$

Proof. We only prove part (ii) because the proof of part (i) is similar. For $\varepsilon=1$, we denote

$$
\begin{equation*}
Q_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n-1}\left(a_{k} \cos k x+b_{k} \sin k x\right)+b_{n} \sin n x \tag{10}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left(p(\delta) Q_{n}\right)(x)=\sum_{j=1}^{n-1} & \left\{\left[a_{j} p_{e}(\mathrm{i} 2 \sin j h)-\mathrm{i} b_{j} p_{o}(\mathrm{i} 2 \sin j h)\right] \cos j x\right. \\
& \left.+\left[b_{j} p_{e}(\mathrm{i} 2 \sin j h)+\mathrm{i} a_{j} p_{o}(\mathrm{i} 2 \sin j h)\right] \sin j x\right\} \\
& +b_{n} p_{e}(\mathrm{i} 2 \sin n h) \sin n x-\mathrm{i} b_{n} p_{o}(\mathrm{i} 2 \sin n h) \cos n x
\end{aligned}
$$

If $Q_{n}(x)$ satisfies conditions (6), then taking $K_{n}(x)=Q_{n}(x)$ in the part (i) of Lemma 2.1 and $K_{n}(x)=\left(p(\delta) Q_{n}\right)(x)$ in part (ii) of Lemma 2.2 we have

$$
\left\{\begin{array}{l}
\frac{1}{2} a_{0}=\frac{1}{n} \tag{11}\\
a_{j}+a_{n-j}=\frac{2}{n} \\
b_{j}-b_{n-j}=0 \\
j=1, \ldots, n-1
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\mathrm{i} b_{n} p_{o}(\mathrm{i} 2 \sin n h)=0 \tag{12}\\
a_{j} p_{e}(\mathrm{i} 2 \sin j h)-\mathrm{i} b_{j} p_{o}(\mathrm{i} 2 \sin j h) \\
\quad \quad-a_{n-j} p_{e}(\mathrm{i} 2 \sin (n-j) h)+\mathrm{i} b_{n-j} p_{o}(\mathrm{i} 2 \sin (n-j) h)=0 \\
b_{j} p_{e}(\mathrm{i} 2 \sin j h)+\mathrm{i} a_{j} p_{o}(\mathrm{i} 2 \sin j h) \\
\quad \quad+b_{n-j} p_{e}(\mathrm{i} 2 \sin (n-j) h)+\mathrm{i} a_{n-j} p_{o}(\mathrm{i} 2 \sin (n-j) h)=0 \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

From (11) and (12) we have $a_{0}=2 / n, b_{n}=0$, and

$$
\left\{\begin{array}{l}
a_{j} p_{e}(\mathrm{i} 2 \sin j h)-\left(\frac{2}{n}-a_{j}\right) p_{e}(\mathrm{i} 2 \sin (n-j) h)+B_{j} b_{j}=0 \\
\mathrm{i} a_{j} p_{o}(\mathrm{i} 2 \sin j h)+\mathrm{i}\left(\frac{2}{n}-a_{j}\right) p_{o}(\mathrm{i} 2 \sin (n-j) h)+A_{j} b_{j}=0 \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

That is,

$$
\left\{\begin{array}{l}
A_{j} a_{j}+B_{j} b_{j}=\frac{2}{n} p_{e}(\mathrm{i} 2 \sin (n-j) h) \tag{13}\\
-B_{j} a_{j}+A_{j} b_{j}=-\frac{\mathrm{i} 2}{n} p_{o}(\mathrm{i} 2 \sin (n-j) h) \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

From (13) we have

$$
\left\{\begin{array}{l}
a_{j}=\frac{2}{n \Delta_{j}}\left(A_{j} p_{e}(\mathrm{i} 2 \sin (n-j) h)+B_{j} \mathrm{i} p_{o}(\mathrm{i} 2 \sin (n-j) h)\right) \\
b_{j}=\frac{2}{n \Delta_{j}}\left(B_{j} p_{e}(\mathrm{i} 2 \sin (n-j) h)-A_{j} \mathrm{i} p_{o}(\mathrm{i} 2 \sin (n-j) h)\right) \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

This implies the first equality of (9).
If $Q_{n}(x)$ satisfies conditions (7), then taking $K_{n}(x)=Q_{n}(x)$ in part (ii) of Lemma 2.1 and $K_{n}(x)=\left(p(\delta) Q_{n}\right)(x)$ in part (i) of Lemma 2.2 we have

$$
\left\{\begin{array}{l}
\frac{1}{2} a_{0}=0 \tag{14}\\
a_{j}+a_{n-j}=0 \\
b_{j}-b_{n-j}=0 \\
j=1, \ldots, n-1
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\mathrm{i} b_{n} p_{o}(\mathrm{i} 2 \sin n h)=\frac{1}{n} \tag{15}\\
a_{j} p_{e}(\mathrm{i} 2 \sin j h)-\mathrm{i} b_{j} p_{o}(\mathrm{i} 2 \sin j h) \\
\quad-a_{n-j} p_{e}(\mathrm{i} 2 \sin (n-j) h)+\mathrm{i} b_{n-j} p_{o}(\mathrm{i} 2 \sin (n-j) h)=\frac{2}{n} \cos j x_{1} \\
b_{j} p_{e}(\mathrm{i} 2 \sin j h)+\mathrm{i} a_{j} p_{o}(\mathrm{i} 2 \sin j h) \\
\quad b_{n-j} p_{e}(\mathrm{i} 2 \sin (n-j) h)+\mathrm{i} a_{n-j} p_{o}(\mathrm{i} 2 \sin (n-j) h)=\frac{2}{n} \sin j x_{1} \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

From (14) and (15) we have $a_{0}=0, b_{n}=-\mathrm{i} /\left(n p_{o}(\mathrm{i} 2 \sin n h)\right)$, and

$$
\left\{\begin{array}{l}
A_{j} a_{j}+B_{j} b_{j}=\frac{2}{n} \cos j x_{1} \tag{16}\\
-B_{j} a_{j}+A_{j} b_{j}=\frac{2}{n} \sin j x_{1} \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

From (16) we have

$$
\left\{\begin{array}{l}
a_{j}=\frac{2\left(A_{j} \cos j x_{1}-B_{j} \cos j x_{1}\right)}{n \Delta_{j}} \\
b_{j}=\frac{2\left(B_{j} \cos j x_{1}+A_{j} \cos j x_{1}\right)}{n \Delta_{j}} \\
j=1,2, \ldots, n-1
\end{array}\right.
$$

This implies the second equality of (9).

4. Conclusion

In this paper, we have replaced the conditions of derivatives for Hermite interpolation and Birkhoff interpolation by those of differences at the nodes. First, we have introduced a new kind of 2-period interpolation of functions with period 2π. Second, we found the necessary and sufficient conditions for regularity of this new interpolation problem. Moreover, a closed form expression for the interpolation polynomial was given. Our interpolation is of practical significance. Our results provide the theoretical basis for using our interpolation in practical ploblems. In future, we will try to extend our idea to the case of algebraic polynomial interpolation and of multivariate interpolation.

References

[1] G.G. Lorentz, K. Jetter and S.D. Riemenschneider: Birkhoff Interpolation. Addi-son-Wesley Publishing Co., Reading, Mass., 1983.
[2] A. Sharmea, J. Szabados and R.S. Varga: 2-periodic lacunary trigonometric interpolation: $(0, M)$ case. Proc. Conf. on Constructive Theory of Functions'87, Varna, Bulgaria. pp. 420-426.
[3] A. Sharmea, Sun Xiehua: A 2-periodic Trigonometric Interpolation Problem. Approx. Theory and its Appl. 8 (1992), no. 4, 1-16.
[4] J. Szabados: On the Rate of Convergence of a Lacunary Trigonometric interpolation Process. Acta Math. Hungar. 47 (1986), 361-370.
[5] Liu Yongping: On the trigonometric interpolation and the entire interpolation. Approx. Theory and its Appl. 6 (1990), no. 4, 85-106.

Authors' address: Tianzi Jiang, Songde Ma, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, P.R. China, e-mail: jiangtz@prlsun6.ia.ac.cn.

