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Abstract. This paper deals with the linear approximation scheme to approximate a sin-
gular parabolic problem: the two-phase Stefan problem on a domain consisting of two
components with imperfect contact. The results of some numerical experiments and com-
parisons are presented. The method was used to determine the temperature of steel in the
process of continuous casting.
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1. INTRODUCTION

The two-phase Stefan problem in enthalpy formulation is a non-linear singular
parabolic problem. This problem has been of great interest recently from both the
theoretical and the numerical point of view.

Desioles, Droux, Rapaz J. and Rapaz M. in [1] solved this problem by the finite
element method and for the corresponding non-linear discrete problem they used
Newton’s method. Nochetto and Verdi in [8] used piecewise linear finite elements
in space and a semiimplicit scheme in time to obtain a discrete problem. Then the
non-linear Gauss-Seidel method was used.

Nochetto and Verdi in [7] used a linear approximation scheme to approximate the
singular parabolic problem by a linear discrete problem. Kacur, Handlovicova and
Kacurové in [4] replaced the parameter p in the linear approximation scheme by a
function p(x). This modification allows to increase the step of discretization of the
time axis.

In this paper the linear approximation scheme, introduced in [4], is used to solve
the two-phase Stefan problem on a domain consisting of two components with im-
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perfect contact. A modification of the iterative method to determine the function
wu(x) is also presented.

Let @ € RY (N = 1,2,3) be a bounded domain, Q;, Q2 € RV, Q; N Qy = 0,
Q= Q1 UQUA (mes A = 0) with the boundary 9Q = 9Q; U8Q,UT. T = 991 NN,
o0 = 00, \T, 9y = 005 \T" are Lipschitz continuous. Let I = (0,7),0 < T < oo.

This paper deals with the problem of determining the functions u': Q; x I — R,
u?: Q9 x I — R which satisfy, in a weak sense, the differential equations

out o o
0 O _apat), 25 - ap)

together with the contact condition on I'

9B (ut)
v

= h(x,t, 8" (u'), B2 (u®) [F* (8" (u')) — F*(B(u?))],

08 (w!) _ 05°(w?)

I'x 1T
ov ov on x

and the conditions on O}

7%(:1) = d' (8" (u"))[F5 (8" (u1)) — ¢"] on O x I,
3)
20,2
78587(:) = &*(8%(u?))[F5 (8% (u?)) — ¢ on O x I

as well as with the initial conditions
(4) ut(z,0) = uj(z) on €, u?(z,0) = ud(z) on .

In (3) v is the unit outward normal vector to 9 and in (2) v refers to the unit
outward normal vector to I, pointing from ; to Q5. The condition (2) describes
the imperfect contact between the components €2; and 2.

The functions 8%, 82, d', d?, @', ¢?, F}, F¢, F1, F?2, h, u}, u} are sufficiently
regular functions of their variables satisfying the following assumptions:
(H;) B8*: R — R is a nondecreasing, Lipschitz continuous function with a Lipschitz
constant L g,

B0)=0, |B(s)=Cils|-C2 VseR,  i=1,2,
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Hy) F': R — R, F{: R — R, d*: R — R are continuous functions,
0
[FU(s)| S C(L+]s),  |Fg(s)] < C(L+]s)),
|d'(s)] < C  VseR, i=1,2,

(H3) h: Qx I xR xR =R, |h(x,t,s,r)| <C V(z,tsr)eQxIxRxR,
(Ha) uf € Ls(), @' € La(0Q x I),i=1,2,
where C, C1, Cs are constants.

The problem (1)—(4) includes the free boundary problems (Stefan problems) in
enthalpy formulation. If 3 is nondecreasing, then (1)—(4) models the heat transfer in
the course of solidification of steel in a process of continuous casting with imperfect
contact between the mold and the slab.

Let H'(Q4), H'(Q2) be the usual first order Sobolev spaces. We introduce the
product space V = H(Q;) x H'(Q2), the dual space of V is denoted by V* and the
duality pairing between v € V and w € V* is written as (v, w). Also we set

(v, w) :/ vlw! dx—i—/ v?w? dr,
Ql Q2

(v,w)aq = / vlw! ds—l—/» v?w? ds,
o0y 21923
(v', whr :/vlwl ds, (v, w?)r :/v2w2 ds.
r r

Definition 1. A function u € Ly(I, Ls) is a variational solution of (1)-(4), if
B(u) € Lo(1,V), Opu € Lo(I,V*) and
(O, w) + (VB(u), Vw) + (d(B(u)(Fo(B(u) = ©),w) 5,
+ (., B (uh), B2 () [FH (5" (u')) — F(B (u)], w —w?) . =0

Yw € V almost everywhere in I and

()

(6) u(0) = ug in V*.
Here
w = [wlvwz]’ Uo = [u(lJ’ugL Vw = [vwl’va]’ ﬁ(u) = [ﬂl(ul)’ﬂZ(ug)]’

d(B(u))(Fo(B(w)) — ¢) = [d" (8" (u")) (Fy (8" (uh)) — "), d*(B7 (u?)) (F5 (5% (u?)) — ¢°)]

and w!|r, w?|r are traces of the functions w! € H'(Q4), w? € H'(Q3) on T
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2. LINEAR APPROXIMATION SCHEMES

To solve (5)—(6) numerically by the Rothe method we apply a linear scheme in-
troduced in [4].
Let meN, 7= = t] =j7,7=0,1,...,m. We denote

uj(@) = [uj(2), u} ()] = [u' (2,1;), u® (2, ;)] = u(z, ),
0;(x) = [0j(2), 03 (x)] =[5 (uj (), B (u5 ()] = Blu;(2)),

1 J
(,0](1') - - (P(xat) de,
T Ji,,
Opul, b)) ~ Ui~ -1
T

and the linear approximation scheme will be in the form

©; — Buj-1)
(Mj%’w) +(VO;, V) + (d(0;-1)(Fo(0;-1) — ¢j),w) o,
+ (h(x,t;,05 1,07 )[FYO]_ ) — F*(©F_ ), w' —w’), =0 YweV,

(8) uj = uj1+ p15(0; — Buj-1)),

(7)

for j=1,2,...,m
Here pj = [uj,115] € Loo(fh) X Loo(€2) and together with ©; it satisfies the

convergence condition

1
(9) 18(u;) = Bluj—1)| < al®; = Bluj—1)| +0( ).
(10) 0<do<pu} <K, 0<06<pi<K
forj =1,2,...,m. §, K are positive constants, & € (0,1) and mo(%) — 0if m — oo.

According to (H;) the functions 8!, 32 are nondecreasing. If 3% is not strictly
monotone, then we approximate it by 3’ strictly monotone, that is Lipschitz con-
tinuous and ||3}, — 3° l(r) = o( ) If 3¢ is strictly monotone, we set 3%, = 3.

We determine the functions u;, ©; by iterations

. 1
(11) i 0 = min {K,m},

12) (M kfle)jvk%ﬁ(“jfl),w) + (VOjk, V) + (d(©;-1)(Fo(©;-1) — ¢5),w) 5,
+ (b, t;,0)_1, ©F_)[F(O]_)) = FX(O )l w' —w?) =0  VweV,
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B (B (uj—1) + (O — Bluj—1))) —uj_1
O,k — Buj-1) ’

fj, = min {Mj,k—l;

(13)
Hik—10(O5k — Buj-1)) }
B (wj—1 + ptjk-1(0;,k — Bluj-1))) = B (uj-1)
for k=1,2,3,....
We use the functions ©;, 115, u; to find the Rothe functions
m 1
(14) u™(t) = uj-1+ —(uy —wy-)(t —t1), o1 SESH,
t—1i_
(15) O"(t) =0 1+ ——(0; - 0;1),  t1<t<t,

(16) 0" (t) =0;, a™(t) = uj, ti1 <t<tj

for j=1,2,...,m

We find that the iterative process (11)-(13) converges for k — oo to ©;, p,
satisfying (7)—(10), and the Rothe functions, defined in (14)-(16), converge to a
weak solution of problem (1)—(4). First we prove some a priori estimates for the
functions p; x, ©; , defined in (11)—(13).

Lemma 1. There exist 6 > 0, C' > 0 such that for k =0,1,2,...,j=1,2,...,m

we have

Proof. From the construction of yj, we find ,u]k C,i=12,k=0,1,2,.
for C =K.

Let 6 = L:‘}n. Then M},o = min {K
Ci,a € (0, 1)

Suppose that ,u}ﬁk_l > 6. We find ,u}k > oL

} > ' because of B (s) < Lp <

1
’ ﬁ}n/(u;—l)

If ,u}’k = ,u}’kil, the assertion is true.

If
L B B u)y) + a(O), = B (u]0) —ul
Hik = o, — Al(ul_,) ’

then the monotocity and the Lipschitz continuity of 3}, yields

1B T B (u ) + (O] = BH(uj 1)) —ujy

ik = 1l =

e [T
1 alol, Al
Loy, 16— Pl
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If

m»—n

ul, = 1511005, — B (5,
Pk ﬂl( -1 +N3k 1(631k ( _1) — ( 1)

then also
|/’6;,k71a(@]1k ﬁl(ugl 1
|88, (uj_y + g1 (O] ), — B (uj_1))) — B, (uf_y)]

alpje—1(0f — B (uj_1))]
" Loy [ply (01, — B (u]_))]

k= |Mg1',k‘ =

therefore pj , > 6" for Vk = 0,1,2,.. ..
In the same way we find 62 < M?k < C for 62 = 70—, C =K. Weset s =
' 8

m

min{é!, 62} and the proof is complete. O
Lemma 2. There exists C' such that for k =1,2,... we have

19j.kllv <C
Proof. For w=0; in (12) we obtain

O, — Bu;_
(MJ«AM’ 9j,k) + (VO,ik, VO,ik) + (d(O;-1)(Fo(O;-1) — ¢;), Oj k)00
Jr(h[Fl(@]l—l) - FZ(G)?—l)]a G;Jf - G?,k)l‘ =0.
Using the inequalities

1
(17) (u,v) <€||U||2+EIIUH2, e >0,

1
(18) lull o0y < C (eI Vuld )+ Zlulfye), >0
and Lemma 1, we conclude
510, kl17, + 7IIVO,kll7, < (1jr-18(uj-1),O;x)
—7(d(©;1)(Fo(©;-1) = ¢;), 05 1)a0 — T(A[F(©]_;) — F*(©7_,)],0;, — 67 )r
K T
< ;H%(Ua‘fl)\li +Ke|0x7, + Z11d(©;-1)(Fo(©;-1) — el 00

.
+ZIRFN O] Tum) + < ZIRF2O2_ )3 0y + meCI05 4113, + VO ]13,).

For sufficiently small ¢ we deduce ||©;x|v < C. O
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The main result of this section reads as follows:

Theorem 1. Iterations (11)—(13) converge for k — oo, that is p; — p; in
Lp(Q) % Lp(Q2), p €N, O — 65 in W3 (1) x W3(Q2), #j € Loo(21) X Loo(Q2),
0; € Wa (1) x W3 (Q02) and u;, ©; satisfy conditions (7), (9), (10).

Proof. The sequences {u];}72, {15 ,}72, are nonincreasing and bounded
for YV € 1,5, so they converge pointwise to bounded functions /Ajl-, ,u? and also
tike — p5 in Ly(Qq) x Lp(Q2), 1 < p < oo. In (12) weset k =k, k =k — 1 and
w = 0j — 0, r_1. After subtraction we find

(19)
Ok — Bluj—1) O k-1 — Bluj_1)
(Mj,k—l%aej,k - @j,k—l) - (,Uj,k—Z . - I 0 — @j,k—l)
+(V@j,k — V@j7k_1, V@j,k — V@j7k_1) =0
and

(%(GM = 0jk-1),0;k — G)j,;H)
1
+;((ﬂj,k71 — i k—2)(Ojk — Buj-1)),0;k = Ojk-1) <O,
where we have used |[VO,; — VO, x_1] > 0.
According to Lemma 1 and Holder’s inequality we have

1
10k — Ojk-1ll7, < gH@j,k = O k-1llL, g k-1 — tjr—2lLe - 1€k — B(uj—1)llLs-

The sequence {©; ;}72, is bounded in V', ug € L3(Q1) x L3(Q22) and [ is Lipschitz

continuous, therefore S(u;—1) € L3 and [|©;, — B(uj—1)||z, is bounded for k£ =

1,2,.... Since ||ptj,k—1— 5 k—2]|£s — 0, also [|©; x,—O; k_1| /L, — 0. By wirtue of (19)

we also have |VO; ; — VO, k1|, — 0, therefore ©, ), — ©; in W3 (Q1) x WH(Q2).
With respect to (13) Vz, Vk

B (B (uj—1) + a(O)k — B(uj-1))) —uj1
O,k — B(uj—1) .

Mk S

We let k& — oo and invoke (8). Then
Bm (uj) = B (uj—1)| < a[©; — B(uj-1)|.
Also
|8(uj) = Buj—1)| < [B(u;) = B () + [Bm () = Bim(uj—1)[ + [Bm (1) — Bluj—1)]
1 1
< | (45) = B (j—1)] + 0 =) < @l = Bluj—1)| + 0 —)

and the assertion (9) is proved. To obtain (7) we take the limit for kX — oo in (12).
Thus the proof is complete. O
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3. CONVERGENCE OF LINEAR APPROXIMATION SCHEME

In this section we establish the convergence of Rothe functions defined in (14)—(16)
to a weak solution of problem (1)—(4). First we prove some a priori estimates.

Lemma 3. There exist C' and 1y such that for all T < 79,

max | 5(u;)|z, +TZHV@ I, +leua ujall7, <

1<j<m
j=1 j=1

Proof. Rewriting (7) with respect to (8) in the form results in

(%Jﬂ) +(VO;, Vw) 4 (d(©;_1)(Fo(0;-1) — ¢;), w) yo+

(20)
+ (h(t,=,0]_1,05_)[F'(6]_,) — F*(©F_1)],w" —w?). =0.

Setting w = 70; and summing (20) for j =1,2,...,k we obtain
(21)

Ma

k k
uj —uj_1,0;) + Y (VO;,7V6;) + > (d(©;-1)(Fo(0,-1) — ;). 70;) o,
j=1 j=1

j:1

k
+> (At 2,0} 4,02 [F (O] ) — F*(©2_,)],70} — r0%) =0.
j=1

Also from (8) we find

(22) 0, = Uj —Uj—1 + B(uj_1),
sy

therefore

k k
—Uj-1
—ujo1,05) = Y (uy — ;- et )+ (uj —ujo1, B(uy))
=1

Jj=1 Jj=1

Z —Uj—1, “J)‘ﬁ(“j—ﬂ)

Jj=1

k
> Z llu; — uj_ﬂlimj + /Q D (uy)dr — /(b(uo)dx
=1

k
=DMy =it lza, i (B(eg) = B(wj—1)) |z,

Jj=1
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where Lj . is the space Ly with weight = ™ and P(s fo
For Vs € R we have

B’ [ Los?
Mﬁ<lﬂ@@< ==

therefore

(Bun))? |
/Q B(up) dz > /Q or, - Qe = CilsI,

L 2
/@(uo)dxg/ﬁ—%dx:(}g.
Q o 2

() — Bty-2)] < 016, — Bug)| +0( ) =l oy = )] 401,

By virtue of (9) we have

therefore

1
123 (Bu5) = Blatg— 1)z, < ety = wj-ilza,, +o0(=)-

We estimate the first term of (21) by

k

k
1
Sy —ui1,05) =1 —a) Y |l fuj,1||%2,uj + C1Bue)li, + Co *’w(g)’

j=1 j=1
where a € (0,1) and C1, Cy are independent of m.
The second term in (21) can be rewritten in the form

k k
> (V6;,7V0,) =7 [[VE,l[i,.

j=1 j=1

The third term in (21) satisfies

k
> (d(©;-1)(Fo(©;-1) — ¢).70;) o,

=1

Z/ Fo(0)-1) — ¢;)70,|ds

k

ZT/ Csl(1410;_1])© \ds—l—rZ/ Cs]9;0;|ds
o0

Jj=1
< Cy +C5TZ/ @?ds.
=179
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The last term in (21) fulfils

k
> (2,0}, 07 )[F(O]_)) - F2(07_,)),7(6] — 7))

j=1

Tzcﬁ/ce (2+10}_4| +62_,])[0} — 02| ds

< Cy +Tcgz/ ds+/(@§)2ds

therefore the third and forth term in (21) is estimated by

010+Omz U @1-)2d5+/ (@§)st].
891 8522

J=1

With the use of inequality (18) and an estimate that is a consequence of (22),

1
(23) [CHAES sl —uj-1llZ, + 18(u-)lI7,.

we can rewrite

k
Cuo-+ Ot Y. 103100 + 1631100,
j=1
k ’ k ’ k
< Cuo+eCia7 Y _|VO;17, + Cra > I8 )F, + Crag; D My =l

Jj=1 Jj=1 Jj=1

We substitute in (21):

010+6012TZ||V@ 17, +012—Z||ﬁ uj-1)|17, +Cras ZHUJ w17,

Jj=1 j=1
k k

>(1—a) Y lluj—ujali,, +CillBlur)li, +Cet+7) IVE,i,.
j=1 j=1

The norms Ly and Lo, are equivalent, therefore

k k
.
(I—-a)- Cl3g} DMy — ujllg,, +1- eCr2)T Y _IVO;17, + CullBux)ll7,

j=1 j=1

k
-
< Cu+ C’12g Z 18(uj -0,

Jj=1
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For sufficiently small € and 7y we have
70
(170[)7013?>0, 1*6012>0,

and by applying the Gronwall Lemma we prove the assertion of Lemma for 7 < 7.

O
Lemma 4. There exists a constant C' independent of m such that for j =
1L,2,....m
le;l7, < C.
Proof. The assertion follows from (23) and Lemma 3. O

Lemma 5. There exists C' independent of m such that

C
[u™ — @™ Lyr,L0) < N

Q

— 1@ (-4 7) = @™ Lo(1,2) <

Vm’
C

1©™ — B(@™) |l Lo(r, Lo 0™ — 0™ Ly(1,10) < T

< <
)\\/ma

Proof. Lemma 3 yields

T

k tj
_ t—t;_q
MWwwaW@=Z[ Awq+ I gy — ) — uy)? d
j=17ti-1

k
T 9 CcT
= ng; Juj —uj—1ll7, < 3

)

k .
J ) =By =3 [ [ (ager — ) dwat < EF
~ La(I,L2) = Uj1 — Uy) AVAL S —
j=1"7ti-1/Q

because of T = 1, = %
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With the use of (8), (22) we find

10" — B(@" ) La(r,L0) = Z/ / Ojt1 — 'ui(uﬁl ))) dxdt

J

k
2
<Y |- Y105 - 6l
2 j:l

J

2

j=1
k
Ujt1 — Uy Uj — Uj—1
o+ Blug) = L By )
gH () — = (1)

Lo

= O"‘Q

CcT 1 Ch
<2—+TZ(52(H%+1 wjl}, + llus = o l13,) + L3y — w13, ) < =
Jj=1

_ t—ti_ 2
18" — O™ Ly(1,L.) = Z/ / — (@51 + — 1(®j—®j_1))) da dt
’ k
= gz 18 —©;-17,
j=1

<,

k
T CQ
<3 > ( (luj —wj-1ll, + lujo1 —uj—al,) + Lilluj—1 — Uj—ﬂl%z) <
j=1
and the proof is complete. O

Lemma 7. There exists C' independent on m such that

[0cu™ (| Ly (1,v+y < C.

Proof. According to (7) and with respect to (Hsz), (Hs) and (18) we have

sup [(D™,w)| < sup [(VE™, V)| + sup |(d(@I)(Fo(@I) — 3™, w) o
lw]l<1 lw]l<1 lw]l<1
+ sup |(h(x,t, elm @2 [FY(elm) - F2(e2™)),w' - w2>r|
lwll<1

< C1+ G207, + C5[IVO™|[1,,

where ©™(x,t — 1) = ©"(z,t). Then the assertion of Lemma follows from Lemma 3
and Lemma 4. g

Lemma 8. There exists C independent of m such that for 0 < z < zg the
inequality
T—z _ _ C
/ 0™ (t+2)— O™ ()7, dt < — + C=
0

vm
holds.
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Proof.

T—2z
/ 187 (¢ + 2) — O™ (1)[13, dt
0

Bam(t+z—71))+ (@"(t+z)—a™(t+z—1))

T—=z
LA

)
—m 1 —m —m 2
=B (7)) — s @) — (e = )| de
<[ 1Bz ) - B - ), de
0
T—=z
+5i2 @™ (t +2) —a™(t + 2z — )7, + @™ () —a™(t —7)|7, dt.

The second term can be estimated by % and the first with respect to the Lipschitz
continuity of § can be estimated by

/ B+ ) - BT ()3, de
T—z—1
Lﬁ/ / (4 2)) = B (1))@ (E+ 2) — @™ (1)) da i
Lﬁ/ o T/ O"(t+z—1)—O"({t—71))(@"(t+2) —a™(t)) dedt

+L5/T - / < T )~ ()

+’m( ") - (t))D(Iﬂm(tJrZ)—am(t)|)dxdt,

where we have used (22) and the triangle inequality. From Lemma 4, 5 and 6 we
have

Lﬁ/o /Q(C:)m(tJrz—T)f@m(th))(ﬂm(tJrz)fam(t))dxdt
T—z—T1
:Lg/o /Q(@m(t—l—z—T)—@m(t—r))(ﬂm(t—i-z)—um(t—i-z)
t+2z
+/ ou™ds +u"(t) —a™m(t))dedt
T—z—1 . ' .
< Lﬁ/o (0™t +z—7)llv + 10" — 7)llv)(la™ (t + 2) — u™(t + 2)|| L,
t+2z
+/t [O0pu™ (8) ||y~ ds + [[u™(t) — @™ (t)| ) dt
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T—z—1 C z
< Lﬁ/ 201(—2+/ [9u™ (t + €]
0

v
CC C
<201/ 10cu™ (| Ly 1,1+ dE + 4 \;5 ) <ng+7:n.

Similarly

Lﬁ/OT”/Q <’m(ﬂm(t+z+7)am(t+z))‘

Hom s () - m(t))\)(am<t+z>—am<t>>dxdt
gLﬁ 6\/_206 51

because of |||, < Cs. That means

Cy Cr

T—z
_ _ C
/ @™ (t+z) — O™ (t)[]3, dt < E+C3Z+ +—=
0

and the proof is complete.

v=d€ + 2) dt

it

O

Theorem 2. There exists u € La(I, La) with 5(u) € Lo(I,V) such that u™ — u

in Ly(I, Lg), Opu™ — Opu in Lo(I,V*), @™ — [(u) in Lo(I,V) and B(u
B(u), ©™ — B(u) in Lo(I, La), {my} is a suitable subsequence of {m}.

Proof. LetQ* C Qandx+y € QVz € Q*. The sequence {©™}5°
in Ly(I,V), therefore

[ @7t ) =87 0)) da < [ (V" (t.2))*de < Cly.

Let |y| < J, 0 < z < zp. Applying Lemma 7 we obtain

T—zo
/ / "tz +y) — O™ (t,x))? dedt
T—zo _ _
</ / O™t +z,2+1y) — O™ (t,x +y)) > dedt

T—zo
/ / "t x4 y) — O™ (tx))? dedt

—+Cz+C\y|

<7

48
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{®@™}2_, in La(I, L) is compact because of Lemma 7 and Kolmogorov’s criterion.
There exists a suitable subsequence {©™*}7° , which converges to ¥ in La(I, L2).
Applying Lemma 5 we find that {©™*}, {8(u™*)} tend to ¢ in Ly(I, L2). Because of
|1@™* || £,(1,L,) < C, a suitable subsequence {@™* } (also denoted by {@™* }) converges
in the weak sense to w in Ly(I, Lg). O™  — x in Lo(I,V*) because it is bounded
in Ly(I,V*). We let k — oo in the term

T’ Tt T ot
/ (u™* (t),w) dt = / / (O™ Jw) dsdt = / / (Opu™*  w) dsdt,
0 o Jo o Jo

which implies x = O;u.
B(s) is monotone, therefore

T
/ (B@™) — B(w), @™ —w)dt >0,  Vw € Lo(I, La).
0
Passing k — oo we find
T
/ (¥ - B(w),u —w)dt >0, Yw € Lo(I, La).
0

Setting w =u =t ez, 2 € Loo(Q1 X I) X Loo(Q2 x I), € > 0 we arrive at

T T
/ (0 — B(u —e2),e2)dt <0, / (¥ — B(u+ez),ez)dt > 0.
0 0

Passing ¢ — 0 we find ¥ = B(u).
Because of Lemma 3 and Lemma 4

. L t—tj_q 2
0" =3 [ | [ (65 E 0, - 051) s
=17t

t_t,_ 2
‘|‘/ (VGJ + #(V@] - V®j_1)) d$:| det
Q T
" 47 9 T 9 4T 9 T 9
< Z ?H@jHLz + gHej—lHLz + ?HV@ﬂ'LQ + §||V9j—1||L2

Jj=1

5 5 5
< =C —Cy = =(C1T + Cy),
3 1m7’—|—3 5 3( 1T + Cs)

therefore {©™} is bounded in Ly(I,V), and {©™*+} converges in the weak sense to
B(u) in La(I, V), because Lo(I, V) C Lo(I, L2). O
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Lemma 9. Let u™* — u, then ©™ — ((u) in Ly(I,V).

Proof. Rewrite (7) in the form

T T T
| oarewy ars [F(98m Tuyde s [ (@B E@) - 57, w) g
0 0 0
T
(24) +/0 (h(x,t, 0™, 2™ )[Fy (B7™) — F5 (02™)],w' — w?) . dt =0,

where ™ = p(t;), tj_1 <t <t;, j=1,2,...,mg. Let w= 0" — B(u). Using

t

lim [ (Oume, &7 dt > / B(u(t)) dz — / B(uo) e,

k—oo Jo Q Q
/0 (O, Bu)) dt — /be(u(t))dx - /Q B(uo) de,
(see [5]) we find .
kli)rgo ; (Bpu™*, 0™ — B(u)) dt > 0.

The second term in (24) can be rewritten in the form
T B T
| (veme vem - vpw)ae= [ |vem - Vs, a
0 0
T p—
—I—/ (VO™ —V3(u), VB (u))dt.
0

The sequence ©™* converges to B(u) in La(I, La), is bounded in Ly(I,V), and a
suitable subsequence converges in the weak sense to 8(u) in La(I, V). Therefore

/0 (VO™ — V(u), VAu)) dt — 0

for k — oo, and OV — Bl(ul) in Lo(I, L2(0Q1)), ©2™F — 32(u?)in La(I, L2(92))
(see [5]), therefore

T
| @@ @) = 57).8™ — 5(w) ot - 0.
Similarly

T
/ (h($, t, C:)}_vmk , C:)E_vmk)[FOl(C:)}_,mk) _ F02 (@E_,mk)},
0
C:)l,m;C _ ﬂl(ul) _ @Z,mk + ﬂ2(u2))rdt 0.
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Using (24) we find
T p—
0= / VO™ — VB(u)|7, dt + o(1),
0

which implies ©™* — B(u) in La(I, V). O
The main result of this section reads as follows:
Theorem 3. There exists a variational solution of problem (1)—(4) and subse-
quences {©™*}° . {u™#}2° ) such that u™ — w in Lo(I, Ly), O™ — O = [(u)

in Ly(I,V). The functions ©™, u™ satisfy the conditions (8)—(9). If the variational
solution of (1)—(4) is unique, the original sequences {©™}, {u™} are convergent.

Proof. Theorem 2 and Lemma 9 imply
('9tum’“ — 8tu in LQ(I, V*), oMt — ﬁ(u) in L2(17 V)

For 7 — 0 we have
t _ t _
|18z - sl at o, [ 98 - Vsl dt o,
0 0
t t
[ 13t = sz, at 0. [ 198 ~ VBGIE, dt —o,

and O™ — (3(u) almost everywhere in I x 9Q1, I x 9. For more details see [4].
Therefore in (24) we can pass to k — oo, which implies the assertion of Theorem
3. Let u be the unique solution of problem (1)—(4). Suppose that {©™}%°_, has
two convergent subsequences, which tend to different functions © = 3(u), © = (@)
Then u, @ are variational solutions of (1)—(4), which contradicts with the uniqueness
of u. Therefore the original sequence is convergent. O

4. FULL DISCRETIZATION SCHEME

In this section we consider the full discretization scheme. Let {V), A € A} be a
sequence of finite dimensional subspaces of V satisfying
(Hs) V{\n}2%; such that A, — 0 for n — oo and for Vv € Lo(I,V)I{v "}, €
Ly(I,Vy,) such that v* — v in Ly(I,V).

The corresponding full discretization scheme of (8)—(10) reads as follows:

(25) wj = uj_1 + pi (0] — Bluj_1)),

o1



N~ Bluiy
(Mj%m,w) +(VO2, V) + (d(03)(Fo(©)_,) — ;) w) o,

+ (h(z,t;, 057, ©7)[FH(O5%) — F2(07)]w! —w?). =0

(26)

forVw e Vy, j=1,2,...,m, where the functions y; = [/Ajl-,u?] € Loo(1) X Lo (022),
@;‘ € V), satisfy the convergence conditions

1
(27) 1B(u) = Bluj-1)] < al®} = Blu;—1)| + o ).
(28) 0<d<pu; <K, 0<6<p)<K.

Analogously to the previous section p;, @;-‘ will be obtained by iterations

1
(29) 4,0 = min {K, m},
A
oy (i 2 ) 4 (V62 V) + (U0 (O] ) )
+ (h(@, 1,057, 05 [FL(O)Y) — F2(O3)] w! —w?), =0 Yw e VA,
5_1(@%(% 1)+04(@§k Bluj-1))) —uj—1
Gj,k Bluj-1) 7
1 k-10(07 , — Buj-1)) }
Bin(uj—1 + p,-1(07 = B(uj-1))) — B (uj—1) )’

fij, = min {,Ufj,kfla
(31)

for k=1,2,3,....
Let v = (1, ), 7 = £ We denote

t—tj1

O7(t) = O)_1 + ©)-0),), ©&(nH=6)
(32) -t

u(t) = uj_1 + (uj —uj-1),  @'(t) =uj1

for t;_1 <t <tj,j=1,2,...,m. The subsequence of v, v — (0,0), will be denoted
by {¥}.

Our main results of this section are

Theorem 5. The iteration process (29)—(31) converges for k — oo, that means
Wk — [ in Lp(Ql) X LP(Q2), p e N, @;\,k — @5‘ in LQ(Ql) X LQ(Q2), and M, @;‘
satisfies the conditions (26), (28).
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Theorem 6. Let 7 — 0, A — 0 and let the assumptions (H;)—(Hs) be satisfied.
Then there exists {¥} and a variational solution u of (1)—(4) such that u? — u in
Ly(I,Ls), ©7 — fB(u) in Lo(I,V). The functions ©7, u7 are defined in (32) and
@;;1, uj_1 satisfy (25)—(28). If the variational solution of (1)—(4) is unique, then
the original sequences {©7}, {u7} are convergent.

The proofs of Theorems 5 and 6 are similar to those of Theorems 2 and 4.
5. NUMERICAL EXPERIMENTS

The scheme introduced above was tested by solving numerically the example

ou

(33) = = pw),
9B(u) _ Bw)|
(34) - B e = q4(y, t)> - B - - q2(y, t)a
9B(u) 9P(u)
- =4q (yat)a - =4q (yat)a
o |, ! o |,—q °
(35) U(.’E,y,O) = ’U/()(-’E,y),
where Q = (0,0.25) x (0,0.5), I = (0,0.4) and
s s<0
B(s) = 0 0<s<1
10s — 10 1<s

with the exact solution

(36) u(z,y,t) =
e® -1 P <0

Here ® = 0.1 — x — y + 2t = 0 is the exact free boundary and ¢1, g2, g3, g4 are the
derivatives of the exact solution.

The domain 2 was discretized by 1352 squares 0.01 x 0.01 and the time variable
was gradually discretized with the steps 7 = 0.1, 0.02, 0.01, 0.004, 0.001, 0.0004,
0.0001.

We set e(z,y,t) = |u(z,y,t) — a(z,y,t)|. Figure 1 shows the results obtained with
7 =0.001 at the time t = 0.1. The values of e are greater only in the neighbourhood
of the free boundary.
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The scheme (8)—(13) (Scheme 1) was also compared with the linear approximation
schemes introduced in [4] (Scheme 2) and in [7] (Scheme 3). We set

(37) E= /OT /ab /Cd(u(x,y,t) — iz, y,t))? dy dz dt.

Table 1 shows the results provided by various schemes for various values of 7. The
value of F, obtained by Scheme 1, monotonely decreases with decreasing 7. The
results of Scheme 2 are for greater 7 very good, but with smaller 7 the error grows.
The results of Scheme 3 are not so good as those of Scheme 1 and Scheme 2.

The average numbers of iterations, which are made in every time step, are also of
interest. Scheme 3 needs only 1 iteration for computation at one time layer, Scheme
2 needs 4 iterations. Scheme 1 needs more iterations, therefore this scheme demands
more time for computation.

Figure 1
Scheme 1 Scheme 2 Scheme 3
T E iter. E iter. E iter.
0.1 5.64e — 03| 11 |2.77¢—03| 4 [5.28¢—03| 1
0.02 |[3.12¢e—03| 17 |1.13e—03| 4 |3.75¢—03| 1
0.01 ||[1.81e—03| 22 |1.08¢—03| 4 |3.02e—03| 1
0.004 ||8.63¢— 04| 18 |2.73e—04| 4 |2.06e—03]| 1
0.001 ||2.79¢ — 04| 18 |2.38¢—04| 4 |1.07e—03| 1
0.0004 | 1.00e — 04| 19 |3.99¢e—04| 4 [6.62¢—04| 1
0.0001(8.83e—05| 19 |5.77e—04| 4 [3.10e—04| 1

Table 1
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When solving the Stefan problem, the problem of determining the free boundary
is very important. In Figure 2 we show the results of determining the free boundary
with use of Scheme 1 (Figure 2.a), Scheme 2 (Figure 2.b) and Scheme 3 (Figure 2.c)
at time ¢t = 0.1 computed with 7 = 0.01. The boundary is determined as the set of
[, y] that satisfy the inequality 0 < w(z,y,t) < 1, therefore the boundary is not a
single line but a zone. The best results are produced by Scheme 2, because the zone of
the free boundary is tin, but for a greater time (for example ¢t = 0.3) the determined
zone does not include the exact free boundary. The zone produced by Scheme 3 is
wide, so the approximation of the exact free boundary is not excellent. The zone
produced by Scheme 1 is not so wide as in Scheme 3, the exact free boundary is well
approximated also for a greater time.

0.50 0.50 0.50

0.40 |- 0.40 |- 0.40 |-

0.30 P 0.30 0.30 |-

0.20 0.20 0.20

0.10 0.10 0.10 |

0.00 0.00 L1 L 0.00 e .
0.00 0.00 0.10 0.20 0.00 0.10 0.20

Figure 2b Figure 2c

6. THE TEMPERATURE OF STEEL IN THE PROCESS OF CONTINUOUS CASTING

The scheme (8)—(13) was used to determine the temperature of steel in the process
of continuous casting. We used the slab in the form of a rectangle 0.207m x 1.666m
and the mold 0.271m x 1.730m. The contact between the mold and the slab was
imperfect due to the presence of an air slot and was described by the condition (3).
The speed of motion of the slab in the mold was constant, therefore we replaced
the z-axis of the mold by the time-axis. The temperature was computed in 85 time
layers with use of 14 625 finite elements of rectangular form. The results at the time
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when the slab leaves the mold, are shown in Figure 3.

0.1335m
—— 100
0.1035m
1200 —1000 N
1490
— 1521
0.0000m
0.000m  0.06m 0.56m 0.833m 0.865m
Figure 3
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