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Abstract. We consider a multivariate regression (growth curve) model of the form Y =
XBZ + ε, E ε = 0, var(vec ε) = W ⊗ Σ, where W =

∑k
i=1 θiVi and θi’s are unknown

scalar covariance components. In the case of replicated observations, we derive the explicit
form of the locally best estimators of the covariance components under normality and
asymptotic confidence ellipsoids for certain linear functions of the first order parameters
{Bij} estimating simultaneously the first and the second order parameters.
Keywords: Replicated growth curve model, covariance components, multivariate regres-

sion, asymptotic confidence region
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The Growth Curve Model (GCM) with covariance components is a multivariate
regression model defined by the relations:

Y = XBZ + ε(1)

E ε = 0, var (vec ε) =
k∑

i=1

θiVi ⊗ Σ =W ⊗ Σ.

Here Y is an n × p matrix of p-dimensional observations, X , Z, Σ, V1, . . . , Vk

known matrices (of the types n × m, r × p, n × n and p × p, respectively), B an
m × r matrix of the first order parameters and θ1, . . . , θk the second order (scalar)

parameters. The sign ⊗ denotes the Kronecker product. In this paper, we do not
consider other possible structures of var(vec ε).

The uniformly best estimators of unknown parameters B and θ exist only in very

special cases. On the other hand, locally best estimators (which are commonly used)
depend on a priori chosen parameter value, which may be misleading. That is why
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we want to weaken the dependence of the estimator on the a priori value. A possible

way of doing that is to study asymptotic behavior of the local estimators in the
replicated GCM.

The replicated GCM (with s replications) is described as follows:

Yj = XBZ + εj, j = 1, . . . , s(2)

E εj = 0, var (vec εj) =
k∑

i=1

θiVi ⊗ Σ

and Y1, . . . , Ys are stochastically independent random variables. Moreover, we sup-
pose throughout the paper that Yj ’s are normally distributed.

Remark: a) The fact that e.g. the n × p matrix Yj is normally distributed with
mean XBZ and variance of vecYj equal to W ⊗ Σ, is written in the following way:

Yj ∼ Nn×p(XBZ, W,Σ).

b) If G is a p × p matrix, we denote the k × k matrix whose (i, j)-th element is

Tr (GViGVj) by SG.
c) PT

X

(
= X(X ′TX)−X ′T

)
is the projection matrix onto the column spaceM(X)

of a matrix X , MT
X

(
= I − PT

X

)
is the projection matrix onto the orthogonal com-

plement O(X) toM(X).
Formally, we can write our model also as the multivariate model

Y = 1s ⊗XBZ + ε,

where

Y = (Y ′
1 , . . . , Y

′
s)
′
, 1s = (1, . . . , 1︸ ︷︷ ︸

s

)′

with

(3) E ε = 0 and var (vec ε) =W ⊗ Is ⊗ Σ,

or as the one-dimensional model

vec Y = (1⊗ Z ′ ⊗X) vec B + vec ε,

where

vec Y =
(
(vec Y1)′, . . . , (vec Ys)′

)′
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and

(4) var (vec ε) =
k∑

i=1

θi(Is ⊗ Vi ⊗ Σ).

That is why we can apply in it the known results from the above mentioned models.
First, we need to know the locally best estimator.

Theorem 1. Let Yj ∼ Nn×p

(
XBZ,

k∑
i=1

θiVi,Σ
)
, j = 1, . . . , s, be independent

random variables. The locally at the point θ = θ0 minimum variance unbiased

invariant estimator (LMVUIE) of the function γ = f ′θ is

γ̂ = Tr [AWλ] ,

where

Wλ =
k∑

i=1

λiVi, W0 =
k∑

i=1

θoiVi,

A =
s∑

l=1

W−1
0 (Yl − Y )′Σ−1(Yl − Y )W−1

0(5)

+s ·W−1
0 Y ′Σ−1MΣ−1

X Y W−1
0 + s ·W−1

0 M
W−1
0

Z′ Y ′Σ−1PΣ
−1

X Y W−1
0 M

W−1
0

Z′ ,

λ is an arbitrary solution of the system

[
(sn− r(X))SW−1

0
+ r(X)S

W−1
0 M

W
−1
0

Z′

]
λ = f

and r(X) is the rank of the matrix X . The estimator γ̂ does not depend on the

choice of the solution.

�����. All statements can be obtained from Theorem 5.6.8 in Kubáček [7] for

the one-dimensional replicated model. Calculation is rather tedious, but straightfor-
ward; we use only the well-known properties of the Kronecker product and the vec

operator. �

The importance of the last two terms in the matrix A descends with an increasing
number of replications s. It seems then that the estimator of W based on

S∗1 =
s∑

l=1

(Yl − Y )′Σ−1(Yl − Y )
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could be a good estimator independent of the a priori value of θ. In fact, as is

shown in the next theorem, we have two options: either to use S∗1 or S∗1 +S∗2 , where
S∗2 = s · Y ′Σ−1MΣ−1

X Y .

Theorem 2. Random variables

(6) W ∗ =
1

sn− r(X)

( s∑

l=1

(Yl − Y )′Σ−1(Yl − Y ) + s · Y ′Σ−1MΣ−1
X Y

)

and PΣ
−1

X Y are independent, and

W ∗ ∼ Wp

(
sn− r(X),

1
sn− r(X)

W
)
.

In particular,

EW ∗ =W

and

var(vec W ∗) = (I +Kp)(W ⊗W ).

������	. a) Wp(., .) denotes the Wishart distribution. For the definition of

the commutation matrix Kp, see e.g. Magnus and Neudecker [8].
b) It can be shown that the estimator W ∗ is in this (normal) case optimal.

�����. We shall show that S∗1 ∼ Wp(n(s − 1), W ) and it is independent of
Y , S∗2 ∼ Wp(n−r(X), W ) and it is independent of PΣ

−1
X Y and S∗1 and S∗2 are mutually

independent.

Let Q be an orthogonal matrix of order s such that its first column is (s−1/2, . . . ,

s−1/2)′. According to the properties of orthogonal matrices, all other columns have

zero sums. Let us define Ti = Σ−1/2Yi and Ui =
s∑

j=1
qjiTi. Then it is easy to show

that

S∗1 =
s∑

i=1

(Ti − T )′(Ti − T ) =
s∑

i=1

U ′
iUi − U ′

1U1 =
s∑

i=2

U ′
iUi.

Because vec Yi ∼ Nnp((Z ′ ⊗X) vec B, W ⊗ Σ), we have

vec Ui ∼ Nnp

( s∑

j=1

qji(Z ′ ⊗ Σ−1/2X) vec B,

s∑

j=1

q2ji(W ⊗ I)

)

and

cov (vec Ui, vec Uj) = δijW ⊗ I.
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It is clear now that all Ui’s are mutually independent and (because
s∑

j=1
q2ji =

‖q·i‖2 = 1 ∀i) Ui ∼ Nn×p(0, W, I) for i = 2, . . . , s. It follows that the rows in each
matrix Ui (i = 2, . . . , s) are independent identically distributed random vectors with

the variance matrixW . Then U ′
iUi ∼ Wp(n, W ) for i = 2, . . . , s and S∗1 =

s∑
i=2

U ′
iUi ∼

Wp (n(s− 1), W ).
It is easy to show that cov (vec Y , vec (Ti − T )) = 0 ∀i = 1, . . . , s. This implies

that Y and S∗1 =
s∑

i=1
(Ti − T )′(Ti − T ) are independent random variables.

Trivially,
√

s Y ∼ Nn×p(
√

sXBZ, W,Σ). Then, according to Rao [9],

S∗2 = s(Σ−1/2Y )′Σ−1/2MΣ−1
X Σ1/2(Σ−1/2Y ) ∼ Wp(n− r(X), W ),

because Σ−1/2MΣ−1
X Σ1/2 is an idempotent matrix of the rank n − r(X). S∗2 and

PΣ
−1

X Y are independent because
(
PΣ

−1
X Σ1/2

)(
Σ−1/2MΣ−1

X Σ1/2
)
= 0. Independence

of S∗1 and S∗2 follows from the fact that S∗2 = s · U ′
1Σ

−1/2MΣ−1
X Σ1/2U1 and all Ui’s

are independent. Then S∗ = S∗1 + S∗2 ∼ Wp(sn − r(X), W ). All properties of W ∗

now follow from the known properties of the Wishart distribution. �

We need the estimate of W ∗ as a basis for further estimation of the second order
parameters θ.

Theorem 3. Let Yi ∼ Nn×p (XBZ, W,Σ), i = 1, . . . , s, be independent identi-

cally distributed random variables and let W =
k∑

i=1
θiVi, where θ ∈ Θ ⊂ �

k , Θ is

an open bounded set in�k , W is regular ∀θ ∈ Θ, Σ is a regular matrix and matrices
V1, . . . , Vk are linearly independent. Then LMVUE of the vector θ at the point θ0
based on the matrix W ∗ exists and is of the form

(7) θ̂(θ0) = S
−1
W−1
0

η(θ0),

where the vector η has elements ηi = Tr
(
W ∗W−1

0 ViW
−1
0

)
. Moreover,

var
θ

θ̂(θ0) =
2

sn− r(X)
S−1

W−1
0
SW−1

0 WW−1
0
S−1

W−1
0

.

�����. According to Kubáček [6], Theorem 3.2, its consequence and Re-

mark 3.3, it is sufficient to take the first two terms from Theorem 1 and to construct
the unbiased estimator of θ on this basis. The assumptions of our theorem guarantee
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the fulfilment of all requirements of the quoted theorems. Then, let us consider the

estimator

γ̂ = Tr
(
S∗W−1

0 WλW−1
0

)
=

k∑

i=1

λi Tr
(
S∗W−1

0 ViW
−1
0

)
.

According to Theorem 2, we have

E
θ

γ̂ =
k∑

i=1

λi Tr
(
W−1
0 ViW

−1
0 ES∗

)
= (sn− r(X))

k∑

i=1

λi Tr
(
W−1
0 ViW

−1
0 W

)

= (sn− r(X))
k∑

i=1

k∑

j=1

λiθj Tr
(
W−1
0 ViW

−1
0 Vj

)
= (sn− r(X))θ′SW−1

0
λ.

This estimator is unbiased iff

E
θ

γ̂ = θ′f ∀θ ⇔ f = (sn− r(X))SW−1
0

λ.

Independence of the matrices Vi guarantees that SW−1
0
is regular and this implies

that all θi are estimable. Then, using f = ei, we have

θ̂i(θ0) = λ′(i)(sn− r(X))η(θ0) = e′iS
−1
W−1
0

η(θ0),

which proves the first assertion.
Because var (vec W ∗) = 1

sn−r(X) (I +Kp)(W ⊗W ), we conclude that

cov(ηi, ηj) = cov
(
Tr

(
W ∗W−1

0 ViW
−1
0

)
,Tr

(
W ∗W−1

0 VjW
−1
0

))

=
2

sn− r(x)
Tr

(
W−1
0 ViW

−1
0 WW−1

0 VjW
−1
0 W

)
=

2
sn− r(x)

{
SW−1

0 WW−1
0

}
ij

.

This proves the second assertion. �

Now we are able to define new estimates

Ŵ =
k∑

i=1

θ̂i(θ0)Vi(8)

θ̂∗ = θ̂
(
θ̂(θ0)

)
= S−1

Ŵ−1η
(
θ̂(θ0)

)
(9)

Ŵ∗ =
k∑

i=1

θ̂∗i (θ0)Vi(10)

̂̂
B = (X ′Σ−1X)−X ′Σ−1Y Ŵ−1

∗ Z ′(ZŴ−1
∗ Z ′)−,(11)

where the vector η
(
θ̂(θ0)

)
has elements ηi = Tr

(
W ∗Ŵ−1ViŴ

−1).
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We will derive their properties in the following theorems. Naturally, we will con-

centrate on the estimator ̂̂
B.

Lemma 4. Let {Tn}∞n=1 be a sequence of estimators of a parameter θ ∈ Θ ⊂ �
k

such that √
n(Tn − θ)

D−→
n→∞

Nk(0,Σ(θ)).

Let Θ be an open set in �k , Σ be a continuous function of the parameter θ, and let

Σ(θ) be regular ∀θ ∈ Θ. Further, let a function g : Θ→ �
m have continuous partial

derivatives
∂gi

∂θj
∀i, j and let the matrix ∂g

∂θ′
Σ(θ)

∂g′

∂θ
be regular ∀θ ∈ Θ. Then

√
n
( ∂g

∂T ′n
Σ(Tn)

∂g′

∂Tn

)−1/2(
g(Tn)− g(θ)

) D−→
n→∞

Nm(0, I).

�����. See Rao [9], section 6a.2. �

Lemma 5. Under the assumptions of Theorem 3 we have

Ŵ
P−→

s→∞
W

and √
s
(n

2
S

Ŵ−1

)1/2 (
θ̂∗ − θ

)
D−→

s→∞
Nk(0, I).

�����. The first assertion is trivial, because the estimator θ̂(θ0) is unbiased and
varθ θ̂(θ0) −→

s→∞
0. This implies, together with the fact that SW−1 is a continuous

function of the variance components, that

(n

2
S

Ŵ−1

)1/2
−

(n

2
SW−1

)1/2 P−→
s→∞

0

and

θ̂∗ − θ̂(θ) = S−1
W−1
0

η
(
θ̂(θ0)

)
− S−1

W−1
0

η(θ)
P−→

s→∞
0.

According to Theorem 2, W ∗ is the sum of independent identically distributed ran-

dom variables; that is why the sequence
{√

s(W ∗ − W )
}∞

s=p+1
is asymptotically

normally distributed. The estimator θ̂(θ) is a function of W ∗; then, according to

Lemma 4, also the sequence
{√

s(θ̂(θ)− θ)
}∞

s=p+1
is asymptotically normal and,

with respect to Theorem 3, we have

√
s
(n

2
SW−1

)1/2
(θ̂(θ)− θ)

D−→
s→∞

Nk(0, I).
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Since √
s
(n

2
S

Ŵ−1

)1/2
(θ̂∗ − θ) =

√
s
(n

2
SW−1

)1/2
(θ̂(θ) − θ) + εs

where

εs =
√

s
(n

2
SW−1

)1/2
(θ̂∗ − θ̂(θ0))

+
√

s

[(n

2
S

Ŵ−1

)1/2
−

(n

2
SW−1

)1/2]
(θ̂(θ0)− θ)

+
√

s

[(n

2
S

Ŵ−1

)1/2
−

(n

2
SW−1

)1/2]
(θ̂∗ − θ̂(θ0))

P−→
s→∞

0,

the sequences
{√

s
(n

2
S

Ŵ−1

)1/2
(θ̂∗ − θ)

}∞

s=p+1

and
{√

s
(n

2
SW−1

)1/2
(θ̂(θ)− θ)

}∞

s=p+1

have the same asymptotic distribution. �

We can consider two types of linear functions of B:

1) α1 = CBD, where C and D are of the types u×m and r × v,
2) α2 = Tr(F ′B), where F is of the type m× r.

The first type is a matrix function; all elements of the matrix are functions of the

type c′Bd = Tr(Bdc′). This implies that the second class of functions is larger. On
the other hand, structures of the first type are very natural in our model. That is

why we will investigate both cases. The following theorems show that estimators of
these parametric functions are asymptotically normal and determine an asymptotic

confidence ellipsoid for them.

Theorem 6. Let α1 = CBD be an estimable function. Then, under the as-

sumptions of Theorem 3, if moreover the matrices Z ′ and D′ have full column rank

and the matrix C(X ′Σ−1X)+C′ is regular, we have

√
s Γ̂−1/2 vec

(
C

̂̂
BD − CBD

) D−→
s→∞

Nuv(0, I)

and

s

[
vec (C ̂̂

BD − CBD)

]′
Γ̂−1

[
vec (C ̂̂

BD − CBD)

]
D−→

s→∞
χ2uv,
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where

Γ̂ = D′(ZŴ−1
∗ Z ′)−1D ⊗ C(X ′Σ−1X)+C′ +

2
n

FV S−1
Ŵ−1
∗

V ′F ′,(12)

F = D′(ZŴ−1
∗ Z ′)−1ZŴ−1

∗ ⊗ C(X ′Σ−1X)+X ′Σ−1r̂Ŵ−1
∗ M

Ŵ−1
∗

Z′ ,(13)

V = (vec V1, . . . , vec Vk) and r̂ = Y −X
̂̂
BZ.

�����. One can easily find that estimability of α1 is equivalent to the exis-
tence of matrices Mu×n and Np×v such that MX = C and ZN = D. That means

α1 =MXBZN. Again, we want to make use of Lemma 4. Let us consider the func-

tion g
(
vec MPΣ

−1
X Y , θ̂∗

)
= vec C

̂̂
BD =

(
N ′P Ŵ−1

∗
Z′ ⊗ I

)
vec MPΣ

−1
X Y . Random

variables W ∗ and PΣ
−1

X Y are, according to Theorem 2, independent; this implies
that θ̂∗ and MPΣ

−1
X Y are also independent. It can be easily seen that

MPΣ
−1

X Y ∼ Nn×p

(
MPΣ

−1
X XBZ,

1
s

W, Ω

)
,

where Ω = C(X ′Σ−1X)+C′. Now, with respect to Lemma 5, we can state that

√
s

(
vec (MPΣ

−1
X Y −MPΣ

−1
X XBZ)

θ̂∗ − θ

)
D−→

s→∞
Nnp+k

((
0
0

)
,

(
W ⊗ Ω 0
0 2

nS
−1
W−1

))
.

Let us denote vec MPΣ
−1

X Y = y. Then

∂g

∂(y, θ̂∗)′

(
Ŵ∗ ⊗ Ω 0

0 2
nS

−1
Ŵ−1
∗

)
∂g′

∂(y, θ̂∗)
=

∂g

∂y′

(
Ŵ∗ ⊗ Ω

) ∂g′

∂y
+

∂g

∂θ̂∗′

(
2
n
S−1

Ŵ−1
∗

)
∂g′

∂θ̂∗
,

∂g

∂y′
= N ′P Ŵ−1

∗
Z′ ⊗ I,

∂g

∂θ̂∗′
= −

(
N ′P Ŵ−1

∗
Z′ ⊗MPΣ

−1
X r̂Ŵ−1

∗ M
Ŵ−1
∗

Z′

)
(vec V1, . . . , vec Vk)

(we have exchanged Y for r̂, because X
̂̂
BZ

(
M

Ŵ−1
∗

Z′

)′
= 0). Taking into account the

properties of the projection matrices and the relations between the matrices M, N

and C, D, respectively, we are led to the relation

N ′P Ŵ−1
∗

Z′ Ŵ∗
(
P

Ŵ−1
∗

Z′

)′
N ⊗ Ω = D′(ZŴ−1

∗ Z ′)−1D ⊗ C(X ′Σ−1X)+C′.

This proves the first assertion. The second is a direct consequence of the first and
Sverdrup’s theorem. �
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Theorem 7. Let α2 = Tr(F ′B) = Tr(U ′XBZ) be an estimable function, let the

matrix Z ′ have full rank and let the matrix U ′PΣ
−1

X ΣU be regular. Then, under the

assumptions of Theorem 3,

√
s

ξ̂

(
Tr(F ′ ̂̂B)− Tr(F ′B)

)
D−→

s→∞
N (0, 1)

and
s

ξ̂

(
Tr(F ′ ̂̂B)− Tr(F ′B)

)2
D−→

s→∞
χ21

holds, where

(14) ξ̂ = Tr
(
F ′(X ′Σ−1X)+F (ZW−1

∗ Z ′)−1
)
+
2
n

τ ′S−1
Ŵ−1
∗

τ

and the vector τ has elements

(15) τi = Tr
(
F ′(X ′Σ−1X)+X ′Σ−1r̂Ŵ−1

∗ M
Ŵ−1
∗

Z′ ViŴ
−1
∗ Z ′(ZŴ−1

∗ Z ′)−1
)

.

�����. It is analogous to that of Theorem 6. Again it is clear that estimability
of α2 is equivalent to the existence of a matrix U such that F = X ′UZ ′. Let us

consider the function

g
(
vec U ′PΣ

−1
X Y , θ̂∗

)
= Tr(U ′X ̂̂

BZ) =
(
vec P

Ŵ−1
∗

Z′

)′ (
vec U ′PΣ

−1
X Y

)
.

Then var
(
vec U ′PΣ

−1
X Y

)
=
1
s
W ⊗U ′PΣ

−1
X ΣU . Denoting u = vec U ′PΣ

−1
X Y we get

∂g

∂u′

(
Ŵ∗ ⊗ U ′PΣ

−1
X ΣU

) ∂g′

∂u
=

(
vec P

Ŵ−1
∗

Z′

)′ (
Ŵ∗ ⊗ U ′PΣ

−1
X ΣU

)(
vec P

Ŵ−1
∗

Z′

)

= Tr

[
U ′PΣ

−1
X ΣUŴ∗

(
P

Ŵ−1
∗

Z′

)′]
= Tr

[
F ′(X ′Σ−1X)+F (ZŴ−1

∗ Z ′)−1
]

and

∂g

∂θ̂∗i
= −

(
vec P

Ŵ−1
∗

Z′ ViŴ
−1
∗ M

Ŵ−1
∗

Z′

)′ (
vec U ′PΣ

−1
X Y

)

= −Tr
[
U ′PΣ

−1
X Y Ŵ−1

∗ M
Ŵ−1
∗

Z′ Vi

(
P

Ŵ−1
∗

Z′

)′]

= −Tr
[
F ′(X ′Σ−1X)+X ′Σ−1r̂Ŵ−1

∗ M
Ŵ−1
∗

Z′ ViŴ
−1
∗ Z ′(ZŴ−1

∗ Z ′)−1
]
= −τi

(we have exchanged Y for r̂ again). The first assertion is a consequence of Lemma 4.
The second is again an immediate consequence of the first one. �
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������	. a) We could write Y instead of r̂ in both Theorems 6 and 7.

b) We could leave the assumption of regularity of the matrix U ′PΣ
−1

X ΣU , if we
started from the less effective estimator S∗1 of the matrix W instead of S∗; we could
then take the function g as a function of vec Y which has a regular variance matrix

and is independent of θ∗. The assertion of Theorem 7 would be still valid—only
convergence would be slower.

If we knew the matrixW , then the standard least squares estimator of B would be
B̂ = (X ′Σ−1X)−X ′Σ−1Y W−1Z ′(ZW−1Z ′)−. The variance of the estimators of the

parametric functions α1 and α2 would consist only of the first terms (withW instead
of Ŵ∗) of the formulas in Theorems 6 and 7. These theorems thus show how much

the variance of the estimators of α1 and α2 is affected by estimating the variance
matrix. Naturally, this correction is only an asymptotic one. Numerical studies in

the one-dimensional case show that, especially when the number of replications is
small, the real variance of the estimator is rather larger than the asymptotic one (see

Kubáček [6]).

The following two theorems show the situation in two important special cases:

when the matrix W is completely unknown (including its structure) and when the
matrix W is diagonal. Proofs are analogous to those of Theorems 6 and 7 and that
is why we omit them. We consider only the function α1.

Theorem 8. Let α1 = CBD be an estimable function, let the matrices Z ′ and

D′ have full column rank and let the matrix C(X ′Σ−1X)+C′ be regular. Further,

let the matrix W be unknown and vechW ∈ Θ ⊂ �
p(p+1)/2 , where Θ is an open

bounded set such that W is regular ∀ vechW ∈ Θ. Then

√
s Γ̃−1/2 vec (CB̃D − CBD)

D−→
s→∞

Nuv(0, I)

and

s
[
vec (CB̃D − CBD)

]′
Γ̃−1

[
vec (CB̃D − CBD)

]
D−→

s→∞
χ2uv,

where

B̃ = (X ′Σ−1X)−X ′Σ−1Y (W ∗)−1 Z ′
(
Z (W ∗)−1 Z ′

)−
,(16)

Γ̃ = D′
(
Z (W ∗)−1 Z ′

)−1
D ⊗ C(X ′Σ−1X)+C′ +

1
n
[(cC)F ]Q[(cR)F ′] ,(17)

F = D′
(
Z (W ∗)−1 Z ′

)−1
Z (W ∗)−1 ⊗ C(X ′Σ−1X)+X ′Σ−1r̂ (W ∗)−1M

(W∗)−1

Z′ ,(18)

{Q}ij,kl = w∗ikw∗jl + w∗jkw∗il for i � j, k � l and r̂ = Y −XB̃Z.
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Remark: vech is the vec-half operator and (cC), (cR) are the operations of appro-

priate columns and rows summation. For exact definitions see Kubáček [5].
In the case ofW being diagonal, using a “diagonal estimator“ ofW would be more

appropriate than using W ∗ as the starting estimate. This is the only difference of

the next theorem from the other ones. It is clear from Theorem 2 that

var
√

s w∗ii
D−→

s→∞
2
n

w2ii.

Theorem 9. Under the assumptions of Theorem 6, if W is a diagonal matrix

then √
s Γ̂−1/2� vec (CB̂�D − CBD)

D−→
s→∞

Nuv(0, I)

and

s
[
vec (CB̂�D − CBD)

]′
Γ̂−1

[
vec (CB̂�D − CBD)

]
D−→

s→∞
χ2uv,

where

∆ = Diag(W ∗), r̂ = Y −XB̂�Z,

B̂� = (X ′Σ−1X)−X ′Σ−1Y∆−1Z ′(Z∆−1Z ′)−,(19)

Γ̂� = D′(Z∆−1Z ′)−1D ⊗ C(X ′Σ−1X)+C′(20)

+
2
n

p∑

i=1

δ2ii [D
′FiF

′
iD ⊗ CGiG

′
iC

′] ,

Fi = D′(Z∆−1Z ′)−1Z∆−1ei,(21)

Gi = C(X ′Σ−1X)+X ′Σ−1r̂∆−1M∆−1
Z′ ei,(22)

or

Γ̂� =
[
D′(Z∆−1Z ′)−1D ⊗ C(X ′Σ−1X)+C′

][
Z∆−1Z ′ ⊗X ′Σ−1X(23)

+
2
n

p∑

i=1

δ2iiZ∆
−1eie

′
i∆

−1Z ′ ⊗X ′Σ−1r̂∆−1M∆−1
Z′ eie

′
i∆

−1M∆−1
Z′ r̂′Σ−1X

]

×
[
(Z∆−1Z ′)−1D ⊗ (X ′Σ−1X)+C′

]
.

Acknowledgement. I would like to express my thanks to Prof. Kubáček for his
generous help and leadership in the research.

68



References

[1] K.M.S. Humak: Statistische Methoden der Modellbildung I. Akademie-Verlag, Berlin,
1977.

[2] K.M.S. Humak: Statistische Methoden der Modellbildung III. Akademie-Verlag, Berlin,
1984.

[3] J. Kleffe, J. Volaufová: Optimality of the sample variance-covariance matrix in repeated
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