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Abstract. To find nonlinear minimization problems are considered and standard C
2-

regularity assumptions on the criterion function and constrained functions are reduced to
C
1,1-regularity. With the aid of the generalized second order directional derivative for C

1,1

real-valued functions, a new second order necessary optimality condition and a new second
order sufficient optimality condition for these problems are derived.
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1. Introduction

Characterizing the optimal solution by means of second order conditions is a prob-

lem of continuous interest in the theory of mathematical programming constrained

problems with twice continuously differentiable data. Many valuable results on

second-order conditions have been established in [1–3, 10, 12, 16]. Recently, more

attention has been paid to problems which are not with C2 data (see [4–6, 8, 9,

13–15]).

The aim of this paper is to reduce C2-regularity assumptions on constraints from

Liu [13] to C1,1-regularity. With the aid of the generalized second order directional

derivative for C1,1 real-valued functions (see Section 2), a nontraditional second

order necessary optimality condition and a nontraditional second order sufficient op-

timality condition for C1,1 constrained nonlinear minimization problems are derived

(see Section 3). In these problems, all constrained functions are assumed to be C1,1

functions and the criterion function f is also only a C1,1 function. This has several
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practical applications (cf. [8, 11]), e.g, if f is a C2 function, then the penalty function

(f+)2, where f+ is a positive part of f , is C1,1 but not C2, in general.

Let En stand for the n-dimensional Euclidean vector space. Recall that x ∈ U ⊂

En is a local (strict local) minimum for the problem

minimize f(x) over all x ∈ U,

if there exists a neighbourhood N(x) such that

f(x) 6 f(x) (f(x) < f(x)) ∀x ∈ N(x) ∩ U \ {x}.

Hiriart-Urruty et al in [8] defined the generalized Hessian matrix of f at x ∈ S as

follows:

∂2f(x) = Co{A | ∃{xi}
∞
i=1 : xi → x,with f twice differentiable at xi

and ∇2f(xi)→ A}

where “Co” stands for the convex hull and S is a nonempty open subset of En, f is

a C1,1 real-valued function on S and ∇2f(x) is the standard Hessian matrix of the

second derivatives of f at x. If f is twice differentiable at x then

∂2f(x) = {∇2f(x)}.

Hiriart-Urruty concluded that: if x ∈ S is a local minimum for problem

(1.1) minimize f(x) over all x ∈ S,

then for each direction d ∈ En there exists a matrixA ∈ ∂2f(x) such that (Ad, d) > 0.

However, by the following example, it is not true that (Ad, d) > 0 for all A ∈ ∂2f(x).

�������
1.1. Set S = (−∞,∞) and

f(x) =

∫ |x|

0

ϕ(t) dt for x ∈ S,

where

ϕ(t) =

{

2t2 + t2 sin(1/t) if t > 0,

0 if t = 0.

Since 3t2 > ϕ(t) > t2 > 0, we have f(x) > |x|3/3 > 0 for all x ∈ E1, and since f(0) =

0, it is clear that x = 0 is a local (and also global) minimum point of f . Obviously

(cf. [8]), ∂2f(0) = [−1, 1] and consequently (Ad, d) > 0 for A ∈ [0, 1] ⊂ ∂2f(0) and

all d ∈ E1, but (Ad, d) < 0 for A ∈ [−1, 0) ⊂ ∂2f(0) and all d ∈ E1.
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To overcome the above disadvantage, the first author, in [13], defined the gener-

alized second order directional derivative for C1,1 vector functions, investigated the

relation between it and the generalized Hessian matrix and derived a second order

necessary optimality condition and a second order sufficient optimality condition for

unconstrained nonlinear programming problems with a C1,1 criterion function.

2. The generalized second-order directional derivative

for C1,1 functions

Let S ⊂ En be a nonempty open set and let ‖.‖ stand for the Euclidean norm. We

denote by C1,1(S) the class of all real-valued functions f which are differentiable on

S and whose gradient ∇f is locally Lipschitz continuous on S, i.e.,

∀z ∈ S ∃C > 0 ∃ε > 0 ∀x, y ∈ z + εBn ‖∇f(x)−∇f(y)‖ 6 C‖x − y‖,

where Bn is the unit open ball in En. The gradient ∇f is therefore differentiable

almost everywhere on S by Rademacher’s theorem (see [17]).

In Liu [13], the generalized second order directional derivative of f ∈ C1,1(S) at

x ∈ S in the direction d ∈ En was defined as the set

∂2∗f(x)(d, d) = {F | ∃{ti}
∞
i=1 : ti → 0

+ =⇒ 2t−2i (f(x+ tid)−f(x)− ti∇f(x)d)→ F}.

Since f ∈ C1,1(S), there exists C > 0 such that for any i ∈ {1, 2, . . .} there exists

x̃i ∈ [x, x+ tid] ⊂ En such that

‖t−2i (f(x+ tid)− f(x)− ti∇f(x)d)‖ = t−2i ‖ti∇f(x̃i)d − ti∇f(x)d‖(2.1)

6 t−1i ‖∇f(x̃i)−∇f(x)‖‖d‖ 6 Ct−1i ‖x̃i − x‖‖d‖ 6 C‖d‖2.

Hence,

{t−2i (f(x + tid)− f(x)− ti∇f(x)d)}
∞

i=1

is bounded for any x ∈ S and d ∈ En, and thus this sequence has at least one

accumulation point. This means that ∂2∗f(x)(d, d) is well-defined and nonempty.

In Example 1.1, x = 0, f(0) = 0 and f ′(0) = ϕ(0) = 0. Thus for any fixed d ∈ E1
we obtain

|2t−2i (f(x+ tid)− f(x)− tif
′(x)d)| = |2t−2i f(tid)| = 2t

−2
i

∣

∣

∣

∫ |tid|

0

ϕ(t) dt
∣

∣

∣

6 2t−2i

∣

∣

∣

∫ |tid|

0

3t2 dt
∣

∣

∣
= 2t−2i [t

3]
|tid|
0 → 0 as ti → 0

+.
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Hence,

(2.2) ∂2∗f(0)(d, d) = {0} ∀d ∈ E1.

Obviously, if f is twice differentiable at x then

(2.3) ∂2∗f(x)(d, d) = {dT∇2f(x)d} = ∂2f(x)(d, d) ∀d ∈ En,

where

∂2f(x)(d, d) = {dT Md | M ∈ ∂2f(x)}, d ∈ En.

We know from Liu [13] that if f ∈ C1,1(S) and x ∈ S then for each d ∈ En we

have

(2.4) ∂2∗f(x)(d, d) ⊂ ∂2f(x)(d, d).

From Example 1.1 and (2.2) we get that for all d ∈ E1, d 6= 0,

∂2∗f(0)(d, d) = {0} � [−d2, d2] = ∂2f(0)(d, d).

This shows that (2.4) is not the equality, in general.

3. The second order optimality conditions for C1,1 problem

First we introduce a second order necessary optimality condition and a second

order sufficient optimality condition for the unconstrained problem (1.1).

Theorem 3.1. Let f ∈ C1,1(S). If x ∈ S is a local minimum for problem (1.1)

then ∇f(x) = 0 and for all d ∈ En and for all F ∈ ∂2∗f(x)(d, d), we have F > 0.

�����
(see [13] or [14]). �

As a consequence we get the well-known result:

Corollary 3.2. Let f ∈ C2(S). If x ∈ S is a local minimum for problem (1.1)

then for all d ∈ En we have

dT∇2f(x)d > 0.

������
3.3. From (2.4) and Theorem 3.1, we can easily obtain Hiriart-Urruty’s

result which is introduced below (1.1), where only the existence of an element

from the generalized Hessian matrix is guaranteed. On the other hand, the sec-

ond order necessary condition from Theorem 3.1 holds for all d ∈ En and for all

F ∈ ∂2∗f(x)(d, d).
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Theorem 3.4. Let f ∈ C1,1(S) and x ∈ S. If ∇f(x) = 0 and if for all d ∈ En,

d 6= 0, and for all F ∈ ∂2∗f(x)(d, d) we have F > 0, then x is a strict local minimum

for problem (1.1).

The
�����

can be obtained from [13] or from the proof of Theorem 3.9. �

�������
3.5. Set

f(x) = f(x) + 1
2
x2,

where f is from Example 1.1. Since f(0) = 0, it is obvious that x = 0 is a local (and

also global) minimum point of f . For all d ∈ En and F ∈ ∂2∗f(0)(d, d) = {d2}, we

have F > 0 (cf. Theorem 3.1) and if d 6= 0 then F > 0 (cf. Theorem 3.4).

As a consequence of Theorem 3.4 we get the well-known result:

Corollary 3.6. If f ∈ C2(S), x ∈ S, ∇f(x) = 0 and if for any d ∈ En, d 6= 0, we

have

dT∇2f(x)d > 0,

then x is a strict local minimum for problem (1.1).

Second we will generalize the above two theorems to the following inequality and

equality constrained minimization problem:

minimize f(x)(3.1)

subject to gj(x) 6 0, j = 1, . . . , `,(3.2)

hk(x) = 0, k = 1, . . . , m,(3.3)

where f , gj , j = 1, . . . , `, and hk, k = 1, . . . , m, are C1,1 functions on

R = {x ∈ En | gj(x) 6 0, j = 1, . . . , `; hk(x) = 0, k = 1, . . . , m}.

Suppose that R is nonempty and let x ∈ R be a local minimum for problem

(3.1)–(3.3). Moreover, assume the following constraint qualification:

(H) : ∇gj(x), j ∈ J(x), and ∇hk(x), k = 1, . . . , m, are linearly independent,

where J(x) = {j | gj(x) = 0}, is satisfied. Then there exists (cf. [16]) a vector

(λ1, . . . , λ`, µ1, . . . , µm) ∈ E`+m, such that the Kuhn-Tucker Optimality Conditions

∇f(x) +
∑̀

j=1

λj∇gj(x) +
m

∑

k=1

µk∇hk(x) = 0,(3.4)

λj > 0 and λjgj(x) = 0 ∀j = 1, . . . , `,(3.5)

are satisfied.
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To get the second order conditions, we associate with each multiplier λ =

(λ1, . . . , λ`) a set G(λ) defined as follows:

G(λ) =







x ∈ En

∣

∣

∣

∣

∣

∣

gj(x) = 0 for j such that λj > 0

gj(x) 6 0 for j such that λj = 0

hk(x) = 0 for k = 1, . . . , m







and denote the cone of feasible directions to G(λ) at x by

(3.6) D(x;λ) = {d | ∃δ > 0 ∀θ ∈ (0, δ] x+ θd ∈ G(λ)}.

If we express the usual Lagrangian function by

(3.7) L(x;λ, µ) = f(x) +
∑̀

j=1

λjgj(x) +
m

∑

k=1

µkhk(x),

where λ = (λ1, . . . , λ`) and µ = (µ1, . . . , µm), and denote the generalized second

order directional derivative of L(.;λ, µ) at x by ∂2∗L(x;λ, µ)(d, d), then the second

order necessary condition can be formulated as follows:

Theorem 3.7. Let x be a local minimum of problem (3.1)–(3.3) and let (H) hold.

Then for each Kuhn-Tucker multiplier vector (λ, µ) satisfying (3.4) and (3.5) at x,

for each d ∈ D(x;λ) and for each L ∈ ∂2∗L(x;λ, µ)(d, d) we have L > 0.

�����
. On the contrary assume that there exist (λ, µ), d ∈ D(x;λ) and L ∈

∂2∗L(x;λ, µ)(d, d) such that L < 0. Then there exists a sequence {ti}
∞
i=1, ti → 0

+ as

i → ∞, such that

(3.8) t−2i (L(x + tid;λ, µ)− L(x;λ, µ)− ti∇L(x;λ, µ)d) < 0.

Since d ∈ D(x;λ) and ti → 0
+ as i → ∞, we see from (3.6) that there exists an integer

i0 such that x + tid ∈ G(λ) for all i > i0, and thereby L(x + tid;λ, µ) = f(x+ tid).

But this together with (3.4), (3.5), (3.7) and (3.8) implies f(x + tid) < f(x) for all

i > i0, which contradicts the fact that x is a local minimum for problem (3.1)–(3.3).

�

From this theorem and (2.3) we can easily get the following result:

Corollary 3.8. Let f , gj, j = 1, . . . , `, and hk, k = 1, . . . , m, be C2 functions

at x ∈ R and let (H) be assumed. If x is a local minimum for problem (3.1)–(3.3)
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then there exists a Kuhn-Tucker multiplier vector (λ, µ) satisfying (3.4) and (3.5) at

x and for any d ∈ D(x;λ) we have

dT∇2L(x;λ, µ)d > 0.

If we define the tangent cone to R at x by

(3.9) T (x) = {d | ∃{ti}
∞
i=1, ti → 0

+, ∃{di}
∞
i=1, di → d : x+ tidi ∈ R ∀i = 1, 2, . . .}

then we have the second order sufficient condition for the problem (3.1)–(3.3):

Theorem 3.9. Let f , gj , j = 1, . . . , `, and hk, k = 1, . . . , m, be C1,1 functions

at x ∈ R. If there exists a Kuhn-Tucker multiplier vector (λ, µ) satisfying (3.4) and

(3.5) at x and if for each d ∈ T (x), d 6= 0, and for each L ∈ ∂2∗L(x;λ, µ)(d, d) we

have L > 0, then x is a strict local minimum of problem (3.1)–(3.3).

�����
. Suppose x ∈ R is not a strict local minimum for problem (3.1)–(3.3).

Then there exists a sequence {xi}
∞
i=1 ⊂ R, xi → x as i → ∞, such that xi 6= x and

(3.10) f(xi) 6 f(x) ∀i = 1, 2, . . . .

We may suppose xi = x+ tidi, where ti → 0
+ as i → ∞ and ‖di‖ = 1.

Since L(x;λ, µ) is given by (3.7), we immediately see that L(.;λ, µ) ∈ C1,1(R).

Hence, we can prove like in (2.1) that the sequence

(3.11) {2t−2i (L(x+ tidi;λ, µ)− L(x;λ, µ)− ti∇L(x;λ, µ)di)}
∞

i=1

is bounded. So, there exists a convergent subsequence and we might assume (3.11)

is convergent. Denote its limit by L. Since ‖di‖ = 1, we can select a converging

subsequence of {di}, which converges to d 6= 0 and which is for simplicity denoted

again by {di}, i.e., di → d as i → ∞. Recalling that ti → 0+ as i → ∞ and

x+ tidi ∈ R for all i, we conclude by (3.9) that d ∈ T (x). Now we check whether

(3.12) L ∈ ∂2∗L(x;λ, µ)(d, d).
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By (3.11), the definition of L and the mean-value theorem, we see that there exists

a sequence εi → 0 as i → ∞ such that

L = 2t−2i (L(x + tidi;λ, µ)− L(x;λ, µ)− ti∇L(x;λ, µ)di) + εi

= 2t−2i

∫ 1

0

(ti∇L(x + stidi;λ, µ)di − ti∇L(x;λ, µ)di) ds+ εi

= 2t−1i

∫ 1

0

(∇L(x + stidi;λ, µ)−∇L(x;λ, µ))(di − d) ds(3.13)

+ 2t−1i

∫ 1

0

(∇L(x+ stidi;λ, µ)−∇L(x+ stid;λ, µ))dds

+ 2t−1i

∫ 1

0

(∇L(x+ stid;λ, µ)−∇L(x;λ, µ))dds+ εi.

Recall that ∇L is locally Lipschitz continuous and ‖di‖ = ‖d‖ = 1. Consequently,

there exist C1 > 0 and C2 > 0 such that

|2t−1i

∫ 1

0

(∇L(x + stidi;λ, µ)−∇L(x;λ, µ))(di − d) ds|

6 2t−1i

∫ 1

0

‖∇L(x+ stidi;λ, µ)−∇L(x;λ, µ)‖‖di − d‖ ds(3.14)

6 2t−1i

∫ 1

0

C1sti‖di‖‖di − d‖ ds = C1‖di − d‖ → 0 as i → ∞

and

|2t−1i

∫ 1

0

(∇L(x + stidi;λ, µ)−∇L(x + stid;λ, µ))dds|

6 2t−1i

∫ 1

0

‖∇L(x+ stidi;λ, µ)−∇L(x+ stid;λ, µ)‖‖d‖ ds(3.15)

6 C2‖di − d‖ → 0 as i → ∞.

By (3.13)–(3.15) and the mean-value theorem we have

(3.16) L = 2t−2i (L(x + tid;λ, µ)− L(x;λ, µ)− ti∇L(x;λ, µ)d) + ε′i,

where ε′i → 0 as i → ∞. Letting i → ∞, we get from (3.16) that (3.12) holds.

Recalling that xi = x+ tidi ∈ R, we obtain

gj(x+ tidi) 6 0, j = 1, . . . , `,(3.17)

hk(x+ tidi) = 0, k = 1, . . . , m.(3.18)
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Hence, from the first equality in (3.13) and from (3.7), (3.18), (3.4), (3.5), (3.17) and

(3.10) we have

(3.19) L 6 0.

Note that the relations (3.12) and (3.19) contradict the assumption L > 0 for all

L ∈ ∂2∗L(x;λ, µ)(d, d) and all d ∈ En, d 6= 0. �

The following corollary can be obtained directly from this theorem and (2.3).

Corollary 3.10. Let f , gj, j = 1, . . . , `, and hk, k = 1, . . . , m, be C2 functions

at x ∈ R. If there exists a Kuhn-Tucker multiplier vector (λ, µ) satisfying (3.4) and

(3.5) at x, and if for any d ∈ T (x), d 6= 0, we have

dT∇2L(x;λ, µ)d > 0,

then x is a strict local minimum for problem (3.1)–(3.3).
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