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Abstract. The method of determining Bayesian estimators for the special ratios of vari-
ance components called the intraclass correlation coefficients is presented. The exact pos-
terior distribution for these ratios of variance components is obtained. The approximate
posterior mean of this distribution is also derived. All computations are non-iterative and
avoid numerical integration.
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1. Introduction

The mixed linear models can be of extreme value in the field of quality control,

applied genetics, medicine, agriculture, etc. Considering the random models, the
main problem is inference regarding the variance of the random effects, in particular

the estimation of them.
Hill (1965) and (1967), Tiao and Tan (1965) and Stone and Springer (1965) were

the first to develop variance component estimators based on the Bayesian approach
to inference. Other papers devoted to the Bayesian approach to estimating vari-

ance components include Rajagopal and Broemeling (1983) and Gharraf (1979), Je-
lenkowska (1988) and Cook, Broemeling, Gharraf (1990). In the last paper the exact

posterior probability distribution for the error variance was derived. In addition, the
authors also derived the exact posterior mean and variance for an estimator of the

remaining variance components. Using the exact posterior moments, they obtained
approximate posterior probability distributions for the variance components.
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In this paper, using this approximate posterior distribution for variance compo-

nents we consider the problem of Bayesian estimation of some special ratios of the
variance components called the intraclass correlation coefficients. Such coefficients
are of importance in practice.

Section 2 describes the model and its assumptions. Section 3 provides an illustra-
tion of the posterior analysis which includes the approximate posterior distribution

for the intraclass correlation coefficients and posterior means for them. These mo-
ments do not require numerical integration nor constrained optimization. Section 4

presents two numerical examples involving a one-way and a two-way nested design.

2. Model and assumptions

The general linear model with c variance components is given by

(2.1) y = Xθ + U1b1 + . . .+ Ucbc,

where

y is an (n× 1) vector observations,
X is an (n× q) known design matrix of rank q,

θ is a (q × 1) vector of unobservable fixed effects,
Ui is an (n×mi) known design matrix of rank mi, i = 1, . . . , c,
bi is an (mi × 1) vector of unobservable random variables.
In order to simplify somewhat the notation, let b = (b′1, . . . ,b′c)′, U = (U1, . . . , Uc).
Using this notation the model (2.1) can be written as

y = Xθ + Ub.

If c = 1, the model (2.1) is reduced to the fixed model; if c > 1 we have the mixed
linear model, and assuming Xn×1 = (1, . . . , 1)′ we receive the random model. Fixed,

mixed, and random are terms which came from the sampling theory framework, and
are not applicable to the Bayesian approach; nevertheless we will continue to use

them, but within a Bayesian context.
Assume that the spaces generated by the columns of matrices U1, . . . , Uc are mutu-

ally orthogonal and the vectors b1, . . . ,bc are independent and normally distributed
with zero means and covariance matrices (σ21Im1 , . . . , σ

2
c Imc), respectively. The un-

known parameters (σ21 , . . . , σ
2
c ) are called the variance components.

The main problem in this paper consists in estimating a function of variance

components of the form

(2.2)
(σ21

σ2
,
σ22
σ2

, . . . ,
σ2c
σ2

)
, where σ2 =

c∑

i=1

σ2c .
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These ratios are called intraclass correlation coefficients. Estimating the vector (2.2),

we can make inference about the relative contribution of each source of variation to
the total variance.

3. Posterior distribution of the intraclass correlation coefficients

In Section 2 we have assumed that

(3.1) b ∼ N(0, σ2i Imi), σ2i > 0, i = 1, . . . , c.

The problem of estimating the ratios of variance components

(3.2) X1 =
σ21
σ2

, . . . , Xc =
σ2c
σ2

will now be considered. For an exact Bayesian analysis, the posterior distribution of
(X1, X2, . . . , Xc) is needed.

As a starting point for the posterior independent σ2i we can use the approxi-
mate posterior distribution of variance components derived by Cook, Broemeling

and Gharraf (1990) as

(3.3) p(σ21 , . . . , σ
2
c |y) ∝

c∏

i=1

fiχ2

(σ2i
Si

∣∣∣ νi

)
,

where fiχ2 is the inverted chi-square density function with degree of freedom

νi = 4 +
(ν − 4)T 2i

Vi
, i = 2, . . . , c, ν1 = ν = n−m− q,

and

Si =
Ti

mi(ν − 2)
[
2 +
(ν − 4)Ti

Vi

]
i = 2, . . . , c,

S1 = S = y′Rby − θ̂′Pθθ̂,

where
Rb = In − U(U ′U)−U ′, θ̂ = (X ′RbX)−X ′RbY

and

Ti = S tr∆ii + (ν − 2)b̂′ib̂i,

Vi = S2
2
tr∆ii + (ν − 2) tr∆2ii + 2(ν − 2)(ν − 4)Sb̂′i∆iib̂i.
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The matrix Li is defined so that

b̂ = Lib̂, b̂ = (U ′RθU)′U ′RθY, Rθ = In −X(X ′X)−X ′

and
∆ii = Li(U ′RθU)−L′i, i = 2, . . . , c.

Next, we will make the transformation

σ21 = σ21 ,

σ22 = σ21(1−X2 − . . .−Xc)−1X2,(3.4)
...

σ2c = σ21(1−X2 − . . .−Xc)−1Xc.

The Jacobian of this transformation is

(3.5)
∣∣∣J

( σ21 , . . . , σ
2
c

σ21 , X2, . . . , Xc

)∣∣∣ = (σ21)c−1X−c
1 , where X1 = 1−X2 − . . .−Xc.

Making the transformation from (σ21 , . . . , σ
2
c )
′ to (σ21 , X2, . . . , Xc)′ and using (3.3),

(3.4) and (3.5), the joint posterior density function for (σ21 , X1, . . . , Xc)′ is

(3.6) p(σ21 , X1, . . . , Xc) ∝
X

1
2

c∑
i=1

νi

1

c∏
i=1

(
Si

Xi

) νi
2 +1

(σ21)
1
2

c∑
i=1

νi+1 c∏
i=1
Γ
(

νi

2

)
Si

exp

[
− 1
2σ21

(
S1 +

c∑

i=2

Si

Xi
X1

)]
.

Integrating (3.6) with respect to σ21 , the joint posterior distribution of (X1, X2, . . . ,
Xc)′ is given by

(3.7) p(X1, X2, . . . , Xc) ∝
Γ
(
1
2

c∑
i=1

νi

)

c∏
i=1
Γ
(

νi

2

)
SiXc

1

c∏

i=2

(SiX1
XiS1

) νi
2 +1

(
1 +

c∑

i=2

SiX1
XiS1

)− 12
c∑

i=1
νi

.

Thus, using the transformation

w2 =
S2X1
X2S1

, 0 < w2 <
S2
S1

,

w3 =
S3X1
X3S1

, 0 < w3 <
S3
S1

,

...

wc =
ScX1
XcS1

, 0 < wc <
Sc

S1
,
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the Jacobian of which is
∣∣∣J

(X1, X2, . . . , Xc

w2, . . . , wc

)∣∣∣ =
(X1

S1

)c c∏

i=2

Siw
−2
i ,

one can receive the joint posterior distribution for w2, . . . , wc as

(3.8) p(w1, . . . , wc) ∝
Γ
(
1
2

c∑
i=1

νi

)

c∏
i=1
Γ
(

νi

2

)
c∏

i=2

W
νi
2 −2

i

(
1 +

c∑

i=2

Wi

)− 12
c∑

i=1
νi

.

As can be seen, the expression (3.8) has the form of the inverted Dirichlet distribution

(Tiao and Tan (1965)).
This leads to the following theorem:

Theorem 1. The posterior distribution of the vector (w2, . . . , wc)′ is the joint in-
verted Dirichlet density, given by (3.8) with the vector of parameters

(
ν2
2 , . . . , νc

2 , ν1
2

)

for νi > 0 and i = 1, . . . , c.

So, the first marginal moments of (w1, . . . , wc)′ can be written (see Press, 1972,

p. 136) in the form
E(Wi) =

νi

ν1 − 2
.

Now we can write
X1 =

r1
r

, X2 =
r2
r

, . . . , Xc =
rc

r
,

where

r1 = 1, r2 =
σ22
σ21

, . . . , rc =
σ2c
σ21

, and r =
c∑

i=1

ri.

Thus,

r̂1 = 1,

r̂2 =
(ν1 − 2)S2

ν2S1
,

...

r̂c =
(ν1 − 2)Sc

νcS1
.

Finally, the estimators of the relative contributions of the variance components to

the total variance of y are

(3.9) X̂1 =
r̂1
r̂

, . . . , X̂c =
r̂c

r̂
, where r̂ =

c∑

i=1

r̂i.
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4. Numerical examples

The relative contribution of variance components to the total variance described
in the earlier sections will now be illustrated by two data sets. Both data sets are

generated by known parameters and taken from Box and Tiao (1973). The first data
follow a one-way balanced design. The statistical model used to generate the data

was

(4.1) yij = θ + bi + bij ,

where θ represents the population mean, bi, i = 1, . . . , 6 represents a random effect

due to the particular batches that are to be selected, and bij , j = 1, . . . , 5 denotes
the experimental error for sample j taken from batch i. Further, it will be assumed

that

(4.2) bi ∼ N(0, σ22) and bij ∼ N(0, σ21).

The variance of yij is σ22 + σ21 . Our interest will be focused on the estimation of the
intraclass correlation coefficients

(4.3) X1 =
σ21

σ21 + σ22
and X2 =

σ22
σ21 + σ22

.

The data in Table 1 represent a balanced design with six batches and five samples
for each batch.

Batch
1 2 3 4 5 6
7.298 5.220 0.110 2.212 0.282 1.722
3.846 6.556 10.386 4.852 9.014 4.782
2.434 0.608 13.434 7.092 4.458 8.106
9.566 11.788 5.510 9.288 9.446 0.758
7.990 −0.892 8.166 4.980 7.198 3.758

Table 1. Generated Data from Box and Tiao (1973) p. 247.

The true values of the variances are known and are σ21 = 16 and σ22 = 4. Conse-

quently,

X1 =
σ21

σ21 + σ22
= 80%, X2 =

σ22
σ21 + σ22

= 20%.

The ANOVA estimates are σ̂21 = 12.34 and σ̂2c = 0.67, so that the intraclass correla-
tion coefficients are σ̂21

σ̂21+σ̂22
= 94.85% and σ̂22

σ̂21+σ̂22
= 5.15%.
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The approximate Bayesian estimators for these special ratios of variance compo-

nents are

x̂1 = 81.34% and x̂2 = 18.66%.

It is interesting to note that the Bayesian estimators are closer to the true valued
than the standard estimators.

The second example describes a two-way nested design. Table 2 contains data

taken from Box and Tiao (1973), page 282. The observations were generated from
the table of random normal deviates using the three component model. The model

used to generated the data was

(4.4) yijk = θ + bi + bij + bijk, i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K,

where yijk are the observations, θ is a common location parameter, bi, bij and bijk

are three different kinds of random effects. The random effects (bi, bij , bijk) are all

independent and

(4.5) bi ∼ N(0, σ23), bij ∼ N(0, σ22), and bijk ∼ N(0, σ21).

It follows in particular that V ar(yijk) = σ2 = σ21 + σ22 + σ23 so that the parameters

(σ21 , σ
2
2 , σ

2
3) are the variance components.

j = 1 j = 2
I k = 1 k = 2 k = 1 k = 2
1 2.004 2.713 0.603 0.252
2 4.342 4.229 3.344 3.057
3 0.869 −2.621 −3.896 −3.696
4 3.531 4.185 1.722 0.380
5 2.579 4.271 −2.101 0.651
6 −1.404 −1.003 −0.775 −2.202
7 −1.676 −0.208 −9.139 −8.653
8 1.670 2.426 1.834 1.200
9 2.141 3.527 0.462 0.665
10 −1.229 −0.596 4.471 1.606

Table 2 Generated Data from Box and Tiao (1973), p. 282

The parameters used in generating the data were θ = 0, σ21 = 1.0, σ
2
2 = 4.0, σ

2
3 =

2.25, I = 10, J = k = 2. Hence σ21
σ2 = 13.8%,

σ22
σ2 = 55.2%,

σ23
σ2 = 31.0%. The ANOVA

estimators are σ̂21 = 1.04, σ̂22 = 5.62, σ̂23 = 3.6, σ̂2 = 10.26. Within the sampling

theory framework such estimates of the relative contributions of (σ21 , σ
2
3 , σ

2
3) to the

total variance σ2 are the ratios σ̂21
σ̂2 = 10.1%,

σ̂22
σ̂2 = 54.7%,

σ̂23
σ̂2 = 35.1%.
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The Bayesian estimators for these special ratios of variance components are

X̂1 = 10.07%, X̂2 = 59.55%, X̂3 = 30.38%.

It is interesting to note that the Bayesian estimator X̂1 is consistent with ANOVA

point estimate and the estimator X̂3 is very near to the true value of 31.0%.
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