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Abstract. In this paper, a method of numerical solution to the dominant eigenvalue
problem for positive integral operators is presented. This method is based on results of the
theory of positive operators developed by Krein and Rutman. The problem is solved by
Monte Carlo method constructing random variables in such a way that differences between
results obtained and the exact ones would be arbitrarily small. Some numerical results are
shown.
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Introduction

Let L(M) be a Banach space of real functions defined on a set M ⊂ En, K a
cone of nonnegative functions belonging to L(M) with ∅ �= K0 (the interior of K).
Consider linear integral operatorsA andB,A : L(M)→ L(M), B : L(M)→ L(M),

AΦ =
∫

M
A(x, y)Φ(y) dy, BΦ =

∫

M
B(x, y)Φ(y) dy, Φ ∈ L(M)

with nonnegative kernels A(x, y), B(x, y) and suppose that

(i) A and B are bounded, AK ⊂ K, BK ⊂ K while for any Φ ∈ K \K0 there is
a positive integer m = m(Φ) such that BmΦ ∈ K0;

(ii) BAnB are compact for any n = 0, 1, 2, . . .;
(iii) spectral radii r(A) and r(B) of operators A and B satisfy the inequalities

r(A) < 1 and r(B) > 0.
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Next, let us consider an operator T : L(M)→ L(M),

(1) T = (I−A)−1B =
∞∑

i=0

AiB

and let us search for an eigensolution to the problem

(2) λΦ = TΦ

such that the eigenvalue λ is dominant.
Clearly, by assumptions (i)–(iii) T2 is a positive compact operator while the spec-

tral radius r(T) of the operator T is positive. So the theory of Krein and Rutman
[1] can be employed according to which the following assertion is true:

There is one and only one eigenfunction ϕ0, ‖ϕ0‖ = 1 to the problem (2) (‖ · ‖
means the norm of the space L(M)). This solution is nonnegative, the eigenvalue λ0
corresponding to it being positive and λ0 = r(T). Next, for any function F ∈ L(M)
and any positive integer n, the relation

(3) TnF = λn
0ϕ0〈ψ0, F 〉+Tn

1F

holds where ψ0 is a positive eigensolution to the problem adjoint to the problem (2)
(for λ = λ0), 〈ψ0, F 〉 ≡ ψ0(F ) and T1 is a linear operator such that

r(T1) < λ0.

Usually, the problem (2) is solved iteratively as follows: Choose a nonnegative
element f ∈ L(M), ‖f‖ = 1. Set ϕ0 = f , α0 = 1 and calculate

(4) ϕn = Tϕn−1/‖Tϕn−1‖, αn = ‖Tϕn−1‖

recurrently for n = 1, 2, 3, . . .

Under the conditions (i)–(iii), it follows from (3) that the process (4) is convergent,

lim
n→∞

αn = λ0 and lim
n→∞

ϕn = ϕ0.

The use of this iteration process to the numerical solution of the problem (2) brings
some difficulties:

• the function Tϕn and the number ‖Tϕn‖ must be expressed numerically in any
step n
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• the usual form the operator T is an infinite series of integral terms (see (1))
and, moreover, we cannot expect that the expression in digits of each of them
is accurate.

• by (4), inaccuracy of computation in step n transfers to step n+ 1 and, unfor-
tunately, it need not decrease as n tends to infinity.

Of course, (3) implies

(5) λ0 = lim
n→∞

‖TnF‖1/n, ϕ0(x) = lim
n→∞

(TnF )(x)/‖TnF‖.

In principle, by (5) the quantities λ0 and ϕ0(x) can be determined with accuracy

arbitrarily large (depending on the number n chosen). But in practice we cannot
avoid the difficulty of expressing formulae (5) numerically with sufficient accuracy if
n is large. In such a case, the use of the Monte Carlo method can be advantageous.

Random sequences and the solution to the problem

Let g be a nontrivial real nonnegative function such that the inequality

∫

M
dxg(x)|ϕ(x)| <∞

holds for any ϕ ∈ L(M). Then by (3)

(6) λ0 = lim
n→∞

(∫

M
dxg(x)(TnF )(x)

)1/n

and

(7)
∫

M
dxg(x)ϕ0(x) = lim

n→∞

∫

M
dxg(x)(TnF )(x)/‖TnF‖.

The random sequence of points of the set M is defined as follows: The first point
x1 is chosen randomly according to the probability density pin,

∫

M
dxpin(x) = 1.

The next point x2 is chosen randomly according to the density p(x1, x′) of the tran-
sition probability (i.e. p(x, x′) dx′ is the probability that if x is a point of the ran-

dom sequence then the next one will belong to the neighbourhood dx′ of the point
x′). Similarly, the point x3 is chosen randomly according to the probability density
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p(x2, x′), . . . etc. Termination of the random sequence at a point y (point of termina-

tion) is governed by the termination probability pt(y). For any x ∈M the quantities
p and pt are bounded by the equation

pt(x) +
∫

M
dyp(x, y) = 1.

A random sequence terminated at a point z can be prolonged. This possibility
is governed by the probability density q(z, z′) of the prolongation (q(z, z′) dz′ is the

probability that the random sequence terminated at the point z is prolonged and
its next point ν (point of prolongation) belongs to the neighbourhood dz′ of z′). In

general, ∫

M
dyq(x, y) � 1 for all x ∈M.

So the random sequence has the form

αm ≡ {β1, β2, . . . , βm}

where m > 0 is an integer, βi, i = 1, 2, . . . ,m are subsequences of αm,

βi ≡ {xi
1, x

i
2, . . . , x

i
n(i)}

while xi
j ∈ M, j = 1, 2, . . . , n(i), are points of the random sequence. In particular,

x11 denotes the first point, x
i
1 (i = 2, 3, . . . ,m) are the points of prolongation and

xi
n(i) (i = 1, 2, . . . ,m) the points of termination.

From now on, we will suppose that the number of terms of any subsequence βi,
i = 1, . . . ,m, is finite with probability 1, i.e.

(9) lim
n→∞

∫

M
dx1 . . .

∫

M
dxnp(x, x1)

n−1∏

j=1

p(xj , xj+1) = 0

for any x ∈M.
Using relations (8) and (9), we get the identity

pt(x) +
∫

M
dy1p(x, y1)pt(y1) +

∫

M
dy1p(x, y1)

∫

M
dy2p(y1, y2)pt(y2) + . . .(10)

= 1−
∫

M
dy1p(x, y1) +

∫

M
dy1p(x, y1)

−
∫

M

dy1p(x, y1)
∫

M
dy2p(y1, y2) + . . . = 1.

Let G be a nonnegative nontrivial element of L(M).
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Considering the sequence αm define numbers ζ(m) and η(m),

ζ(m) = H(x11)
m−1∏

i=1

(n(i)−1∏

i=1

u(xi
j , x

i
j+1)

)
w(xi

n(i), x
i+1
1 )(11)

×
(n(m)−1∏

k=1

u(xm
k , x

m
k+1)

)
h(xm

n(m)),

η(m) = H(x11)
m−1∏

i=1

(n(i)−1∏

j=1

u(xi
j , x

i
j+1)

)
w(xi

n(i), x
i+1
1 )(12)

×
n(m)∑

k=1

(k−1∏

l=1

u(xm
l , x

m
l+1)

)
g(xm

k ),

where it is understood that

k∏

i=j

f(xi) ≡ 1 for j > k.

and where

H(x) =

{
G(x)/pin(x)

0 if pin(x) = 0,

u(x, y) =

{
A(x, y)/p(x, y)

0 if p(x, y) = 0,

w(x, y) =

{
B(x, y)/q(x, y)

0 if q(x, y) = 0

and

h(x) =

{
g(x)/pt(x)

0 if pt(x) = 0.

Clearly, if to any sequence αm a number ζ(m)(η(m)) is attached by formula (11),
((12)) we have defined a random variable ζm(ηm) as a real function the domain of

which is the set of all random sequences αm.

Let us simulate the behaviour of these random variables by N mutually indepen-
dent trials. Each of the trials consists of the construction of a random sequence αm

i

and of the computation of the number ζm(αm
i )(η

m(αm
i )), i = 1, . . . , N , according to

(11) ((12)).
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Denote by Eζm(Eηm) the expectation and by Dζm(Dηm) the dispersion of the

random variable ζm(ηm).

Theorem 1. Let the following implications hold:

G(x) �= 0⇒ pin(x) �= 0,
g(x) �= 0⇒ pt(x) �= 0

and

A(x, y) �= 0⇒ p(x, y) �= 0,
B(x, y) �= 0⇒ q(x, y) �= 0.

Then, for any δ > 0,

lim
N→∞

P

(
m−1

√∫

M
dxg(x)ϕ(x) + δ � m−1

√√√√
N∑

i=1

ζm(αm
i )/N(13)

� m−1

√∣∣∣∣
∫

M
dxg(x)ϕ(x) − δ

∣∣∣∣
)
= 1

where P denotes the probability and ϕ ≡ Tm−1(I−A)−1G. If, moreover,Dζm <∞
then, for any x > 0,

lim
N→∞

P

(
m−1

√∫

M
dyg(y)ϕ(y) + x

√
Dζm/N > m−1

√√√√
N∑

i=1

ζm(αm
i )/N(14)

> m−1

√∣∣∣∣
∫

M
dyg(y)ϕ(y)− x

√
Dζm/N

∣∣∣∣
)

=
√
2/�

∫ x

0
dt exp(−t2/2).

�����. We can write

Eζm =
∑

αm

P (αm)ζm(αm)

where the summation is taken over all random sequences corresponding to a given
m, P (αm) is the probability of the occurrence of the random sequence αm.
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Expressing P (αm) by Pin, p, q, pt and using (11) for ζm(αm) we get

(15)

Eζm =
∞∑

n(1)=1

. . .

∞∑

n(m)=1

∫

M
dx11 . . .

∫

M
dx1n(1) . . .

∫

M
dxm
1 . . .

∫

M
dxm

n(m)

pin(x
1
1)

m−1∏

i=1

(n(i)−1∏

j=1

p(xi
j , x

i
j+1)

)
q(xi

n(i), x
i+1
1 )

(n(m)−1∏

k=1

p(xm
k , x

m
k+1)

)
pt(x

m
n(m))ζ

m(αm)

=
∞∑

n(1)=1

. . .

∞∑

n(m)=1

∫

M
dx11 . . .

∫

M
dx1n(1) . . .

∫

M
dxm
1 . . .

∫

M
dxm

n(m)

G(x11)
m−1∏

i=1

(n(i)−1∏

j=1

A(xi
j , x

i
j+1)

)
B(xi

n(i), x
i+1)

(n(m)−1∏

k=1

A(xm
k , x

m
k+1)

)
g(xm

n(m))

=
∫

M
dxg(x)(Tm−1(I−A)−1G)(x).

But, by assumptions (i)–(iii),

(16)
∫

M
dxg(x)ϕ(x) ≡

∫

M
dxg(x)(Tm−1(I−A)−1G)(x) <∞

so that, according to the Kchinchin theorem ([2], §32), the relation

(17) lim
N→∞

P

(∣∣∣∣
N∑

i=1

ζm(αm
i )/N −Eζm

∣∣∣∣ � δ

)
= 1

holds for any δ > 0.
In the case Dζm <∞, Lyapunov’s theorem ([2], §42) can be applied by which

lim
N→∞

P

(∣∣∣∣
N∑

i=1

ζm(αm
i )/N −Eζm

∣∣∣∣ < x
√
Dζm/N

)
(18)

=
√
2/�

∫ x

0
dt exp(−t2/2), x ∈ (0,∞).

Obviously, the relation (13) follows from (15), (16) and (17) while the relation (14)

is a consequence of (15), (16) and (18). �

���� 1. Condition Dζm <∞ of the theorem can be fulfilled if, for example, the
inequalities

C1pin(x) � G(x), C2p(x, y) � A(x, y), C3q(x, y) � B(x, y) and C4pt(x) � g(x)
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hold where Ci, i = 1, 2, 3, 4 are finite positive constants, C2 � 1. Indeed, according
to (11) and the assumption of the theorem, we have

ζ(m) = C1

[m−1∏

i=1

(n(i)−1∏

j=1

C2

)
C3

](n(m)−1∏

k=1

C2

)
C4 � C1C4C

m−1
3

and therefore, by (16),

Dζm ≡ E(ζm)2 − (Eζm)2 � C1C4C
m−1
3 Eζm − (Eζm)2 <∞.

Theorem 2. Let the following implications hold:

G(x) �= 0⇒ pin(x) �= 0, A(x, y) �= 0⇒ p(x, y) �= 0 and B(x, y) �= 0⇒ q(x, y) �= 0.

Then, for any δ > 0,

lim
N→∞

P

(
m−1

√∫

M
dxg(x)ϕ(x) + δ � m−1

√√√√
N∑

i=1

ηm(αm
i )/N

� m−1

√∣∣∣∣
∫

M
dxg(x)ϕ(x) − δ

∣∣∣∣
)
= 1.

If, moreover, Dηm <∞ then, for any x > 0,

lim
N→∞

P

(
m−1

√∫

M
dyg(y)ϕ(y) + x

√
Dηm/N > m−1

√√√√
N∑

i=1

ηm(αm
i )/N

> m−1

√∣∣∣∣
∫

M
dyg(y)ϕ(y)− x

√
Dηm/N

∣∣∣∣
)

=
√
2/�

∫ x

0
dt exp(−t2/2).
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�����. Using the definition (12) and the identity (10) we can write

Eηm =
∞∑

n(1)=1

. . .
∞∑

n(m)=1

∫

M
dx11 . . .

∫

M
dx1n(1) . . .

∫

M
dxm
1 . . .

∫

M
dxm

n(m)

pin(x11)
m−1∏

i=1

(n(i)−1∏

j=1

p(xi
j , x

i
j+1)

)
q(xi

n(i), x
i+1
1 )

(n(m)−1∏

k=1

p(xm
k , x

m
k+1)

)
pt(xm

n(m))

H(x11)
m−1∏

i=1

(n(i)−1∏

j=1

u(xi
j , x

i
j+1)

)
w(xi

n(i), x
i+1
1 )

n(m)∏

k=1

(k−1∏

l=1

u(xm
l , x

m
l+1)

)
g(xm

k )

=
∞∑

n(1)=1

. . .

∞∑

k=1

. . .

∞∑

n(m)=k

∫

M
dx11 . . .

∫

M
dx1n(1) . . .

∫

M
dxm
1 . . .

∫

M
dxm

n(m)

G(x11)
m−1∏

i=1

(n(i)−1∏

j=1

A(xi
j , x

i
j+1)

)
B(xi

n(i), x
i+1
1 )

(k−1∏

l=1

u(xm
l , x

m
l+1)

)
g(xm

k )

(n(m)−1∏

l=1

p(xm
l , x

m
l+1)

)
pt(xm

n(m)) =
∞∑

n(1)=1

. . .

∞∑

n(m−1)=1
. . .

∞∑

k=1

∫

M
dx11 . . .

∫

M
dx1n(1) . . .

∫

M
dxm
1 . . .

∫

M
dxm

n(m)G(x
1
1)

m−1∏

i=1

(n(i)−1∏

j=1

A(xi
j , x

i
j+1)

)
B(xi

n(i), x
i+1
1 )

(k−1∏

l=1

A(xm
l , x

m
l+1)

)

g(xm
k )

{
pt(xm

k ) +
∫

M
dxm

k+1p(x
m
k , x

m
k+1)pt(xm

k+1) + . . .

}

=
∫

M
dxg(x)(Tm−1(I−A)−1G)(x).

The next part of the proof is the same as in the case of Theorem 1. �

���� 2. Condition Dηm <∞ of Theorem 2 can be fulfilled if the inequalities

C1pin(x) � G(x), C2p(x, y) � A(x, y), C3q(x, y) � B(x, y) and C4 � g(x)

hold where Ci, i = 1, 2, 3, 4 are finite positive constants, C2 < 1. Indeed, according
to (12) and the assumption of Theorem 2 we have

η(m) � C1

[m−1∏

i=1

(n(i)−1∏

j=1

C2

)
C3

]
C4/(1− C2) � C1C4C

m−1
3 /(1− C2)

and therefore by (16)

Dηm ≡ E(ηm)2 − (Eηm)2 � C1C4C
m−1
3 /(1− C2)Eηm − (Eηm)2 <∞.
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Theorems 1 and 2 can serve as a basis for numerical solution to the dominant

eigenvalue problem (2) by the Monte Carlo method. Indeed, in accordance with (6)
we have

lim
n→∞

[∫

M
dxg(x)ϕ(x)

]1/(m−1)
= lim

n→∞
[Eζm]1/(m−1) = lim

m→∞
[Eηm]1/(m−1) = λ0

so that λ0 can be approximated by the number

m−1

√√√√
N∑

i=1

ζm(αm
i )/N or m−1

√√√√
N∑

i=1

ηm(αm
i )/N

for N , m large. Similarly, knowing λ0, then according to (3) and (7) the detailed

behaviour of the eigensolution ϕ0(x) can be found out by computing EΩkl
j -the ex-

pectation of the random variable Ωkl
j ,

Ωkl
j =

l∑

m=k+1

λ−m
0 /(l − k)Γmj .

Here k and l are large integers and Γmj are the random variables defined as ζm or

ηm by formulae (11) or (12) for the set of functions g = gj , j = 1, 2, . . . appropriately
chosen.

Of course, the use of expression (3) for practical computations depends on the
value of the dominance ratio r(T1)/r(T). So it is necessary to ensure that the
number m is sufficiently large. It may be a matter of an appropriate choice of the
probability functions pin, p, pt and q.

Applications

On the basic of Theorems 1 and 2, the computing code MOCA 2 has been de-

veloped. It is aimed at the solution of the criticality problem (of the form (2)) for
the neutron transport equation in the case of the multigroup and spatially three-

dimensional formulation. Two test problems were computed by this code and the
resulting values of the multiplication coefficient keff (the dominant eigenvalue) are

shown in the following table. Problem 1 corresponds to the case of the fuel assembly
VVER-1000 placed in an infinite regular hexagonal lattice of the same assemblies.

The height of the assembly is infinite and the presence of absorbing elements is sup-
posed. Formulation of the second problem is the same but the absorbing elements

are replaced by water. Both calculations were performed with four energy groups
and we have put m = 100.
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For comparison, the same problems were computed by the method of successive

generations [3] using code MOCA [4]. In this case, we have considered 100 particles
per one generation, 5 initial generations were omitted.

MOCA2 MOCA
Var. N keff Err. (%) N. of gen. keff Err. (%)
1 600 .9585 .19 1245 .9517 .31
2 700 1.1547 .16 1774 1.1434 .24

Table. Results of two test problems
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